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Abstract—The Reference Architecture Model Industry 4.0
(RAMI4.0) proposes two models to guide the design of virtual
representations of assets. A cubic model represents assets in
the form of layers and allows them to be tracked over their
lifetime and assigned to technical or organizational hierarchies.
The I4.0 component model suggests how to organise virtual
representations, i.e., asset properties (data and functions). A
service hierarchy has also been proposed as the mechanism to
gain access to asset properties. This paper presents an analysis of
the RAMI4.0 service hierarchy, compared to traditional service
oriented architecture, towards a methodology for the design of
RAMI4.0 services. We envision a methodology based on object-
oriented analysis and design principles. The rationale behind
our approach is the similarity that holds between objects and
assets as I4.0 components. Data and functions within objects
are accessible through method invocations; data and functions
of assets are accessible through service invocations. The paper
outlines the use of this approach in defining RAMI4.0 services
for a software system being designed to support decision making
under events that disrupt manufacturing operations.

Index Terms—Industry 4.0, RAMI4.0, Internet-of-Things,
Smart Factories, Reference Architectures, Service-Oriented Ar-
chitectures

I. INTRODUCTION

The Internet of Things (IoT) is all about making our envi-
ronments smarter and friendlier through ubiquitous computing.
Cyber-physical systems (CPSs) are a key technology for IoT
and are already being deployed in various settings — smart
homes already allow appliances such as air conditioners to be
controlled remotely through the Internet. A CPS consists of an
embedded system (hardware and software), sensors, actuators,
and a network access device [1]. Although embedded systems
have been used since the advent of the microprocessor in the
1970s, their use until recently has mostly involved specific
tasks to control individual devices, machines and processes [2].
CPSs can interact with their environment and with other
CPSs to accomplish dynamically determined cooperative tasks,
including collective self-adaptivity.

The vision of IoT in manufacturing, known as Industry
4.0 (I4.0), is automated vertical and horizontal integration
including product lifecycle management (PLM) [3]. Most re-
quired technologies are now available [3]–[6]. The main issue
is their integration through software [3]. Various reference
architectures have been proposed to guide this integration and

the transition into Industry 4.0 [7]–[11]. A reference archi-
tecture is a blueprint to guide the design of concrete software
architectures in a particular domain. It has the twofold purpose
of reducing design effort and ensuring interoperability between
applications in the domain. A reference architecture’s design
is based on standards and complemented with supporting
documents related to use cases to exemplify its applicability,
best practices for development, and current technologies and
products that may facilitate implementations. The Industrial
Internet Reference Architecture [7], by the Industrial Internet
Consortium1, provides guidance for the entire development
process of industrial IoT systems (in Energy, Healthcare and
Manufacturing, among other domains): from the evaluation
of business benefits and use cases analysis up to design and
deployment of a generic software infrastructure.

The Reference Architecture Model Industry 4.0 [8], or
RAMI4.0, by the German initiative Platform Industry 4.02,
proposes a cubic layer model and the I4.0 Component model to
guide the design of virtual/digital representations of assets. The
I4.0 component model “constitutes a specific case of a cyber-
physical system” [12]. An I4.0 Component comprises an asset
and a (software) wrapper, called Administration Shell, that
enables remote access to the properties (data and functions)
of the asset. Interaction with, and between, I4.0 components
is to be based on a service hierarchy [13], [14] that comprises
application, information and communication service layers.

This paper presents an analysis of the RAMI4.0 service
hierarchy, compared to the traditional Service Oriented Ar-
chitecture (SOA), towards a methodology for the design of
RAMI4.0 services. Their main difference is that RAMI4.0
services are logically attached to assets [13]. Thus, in general,
assets must be identified first; or if a service is identified first,
an asset to which to attach the service should eventually be
designed. For example, a service to configure a production line
should be attached to an asset such as productionLineCon-
figuration. An approach is presented towards the design of
RAMI4.0 services that seeks to identify assets to be managed
as I4.0 components and is based on Object-Oriented Analysis
and Design (OOA&D) principles. The rationale behind the use

1www.iiconsortium.org/
2www.plattform-i40.de/I40/Navigation/EN/Home/home.html



of OOA&D is the similarity that holds between objects and
assets as I4.0 components. Data and functions within objects
are accessible through method invocations; data and functions
of assets are accessible through service invocations (managed
by an Administration Shell). Although the similarity of objects
and I4.0 components is apparent and SOA and OOA&D are
well known, how to combine these technologies for the design
of I4.0-Component systems in a systematic manner is not
obvious. The paper discusses relevant relationships between
those technologies and an approach based on OOA&D to
combine them.

Section II presents background to SOA and RAMI4.0 mod-
els and service hierarchy. Section III presents design issues
for RAMI4.0 services and Section IV the main aspects of
our approach. Section V outlines the use of our approach in
identifying assets and services in the system being designed
within the EU project DISRUPT to support decision making
under events that disrupt manufacturing operations. Section VI
presents related work and Section VII concludes the paper.

II. BACKGROUND TO SOA AND RAMI4.0

A. SOA

SOA is a style to architecture design where services, as
building blocks, are designed to comprise business processes.
The main benefits of SOA are agility and flexibility to create
new business processes quickly and efficiently from existing
services, or mostly from them. Technically, a service is a wrap-
per to functionality available in enterprise software systems or
through other services, or combinations thereof. Services are
organised into a hierarchy to facilitate separation of concerns,
loose coupling and service reuse. Business services at the top
layer correspond to business tasks within business processes.
Integration/functional services in the layer(s) below serve to
compose services in the layer above; infrastructure systems at
the bottom layer provide the required (service) functionality.

1) SOA based on Business Modelling: Creating new busi-
ness processes quickly and efficiently from existing services
requires that services be aligned with business goals and
objectives. A business model should: (a) represent the business
resources and processes required to meet enterprise opera-
tional, tactical, and strategic business goals; and, (b) specify
enterprise goals, enterprise outcomes (objectives) to meet the
goals, the processes to achieve the outcomes, the capabilities
to implement the processes, and the services to expose the
capabilities [15].

2) Service Design (Identification): How agile and flexible a
SOA is can be determined by the level of service reuse. Service
design should aim to reuse and extend existing services first,
and to create a new service as a last resort [15]. Thus, the
initial identification of services should aim to identify services
that have wide applicability and whose functionality does
not overlap, or is minimum. Efficient service identification
requires a searchable catalogue (e.g., a registry) that lists the
functions and data provided by existing services in order to
check that functionality is not replicated. Catalogues also pro-
vide access to service descriptions, software services, policy,

Fig. 1. RAMI4.0 cubic model [12]. Copyright Platform Industrie 4.0, 2015.

documentation, and other assets essential to the operation of
a business.

3) Semantic Interoperability: Reusability involves interop-
erability too. For services to be reusable within different
business processes at different levels/layers, services must use
a common enterprise (or inter-enterprise) semantic data model.
Service interface design is based on the semantic model.
Access to data in domain systems involves a mapping from the
semantic model to internal data models of each domain system
and vice versa. The creation of the semantic model should
consider industry and cross-industry semantic dictionaries, if
available, in order to ensure interoperability.

4) Service Types: Business services are offered to external
consumers, are coarse grained and support high-level function-
ality. Integration services facilitate the integration between,
and access to, existing applications and services in layers
below. They can be classified according to the service clas-
sification by ISO/IEC 18384-2 Reference Architecture for
SOA (originally developed by the Open Group) [16]. Access
services integrate legacy applications and functions into a SOA
solution. Information services provide access to the persistent
data of a business. Lifecycle services support the management
of the lifecycle of SOA solutions.

B. RAMI4.0: Reference Architecture Model Industry 4.0

RAMI4.0 proposes two models to guide the design of
virtual/digital representations of assets, an asset being anything
of value to an organisation including physical objects, such
as a product, a machine, a production line, a factory, but
also intangible objects, such as ideas, designs, software, and
machine configurations.

1) RAMI4.0 Cubic Model: Shown in Fig. 1, this model
“shows technical objects (assets) in the form of layers, and
allows them to be described, tracked over their entire life-
time and assigned to technical and/or organizational hierar-
chies” [8]. An asset is represented at the bottom layer (vertical
axis) in the figure; the layers above represent the various
types of functions of an asset. The Layers view represents
a functional decomposition to guide software design.

The life cycle of an asset is represented by the Life Cycle
& Value Stream dimension (left-hand horizontal axis in that
figure), both as a product type and as a product instance.



TABLE I
PROPOSED SERVICES FOR RAMI4.0 SERVICE ARCHITECTURE [13], [22]

Communication services Information services Platform services
(used by Inf. services) (used by App. services) (admin. services)

+ DiscoverHost() + Read() + Register()
+ Transmit() + Write() + Discover()
+ Connect() + Publish() + GetId()
+ Disconnect() + Subscribe() + GetVersion()
+ NegotiateQoS() + Create() + Authenticate()
+ Encrypt() + Delete() + Connect()

+ Browse() + NegotiateQoS()
+ MethodCall() + GetCurrentQoS()

As a product type, a design is produced and refined; as a
product instance (of a design), a product is manufactured, used,
maintained, and disposed of (cf. PLM [3]). This dimension is
based on IEC 62890, “Life-cycle management for systems and
products used in industrial-process measurement, control and
automation” [17]. A product in use is assigned to a functional
(operational) hierarchy level within a factory (right-hand hor-
izontal axis). The Hierarchy Levels dimension is based on
IEC 62264, “Enterprise-control system integration” [18], and
IEC 61512, Batch Control [19]. The RAMI4.0 cubic model
is based on the cubic model of the Smart Grid Architecture
Model Framework (SGAMF) [20].

2) The I4.0 Component Model: An I4.0 component is made
up of an asset and an Administration Shell (AdminShell). The
AdminShell is a software wrapper structured into a Manifest
and a Component Manager. The Manifest holds the properties
(data and functions) of an asset; the Component Manager
provides access to them. The structure of the AdminShell
is based on “IEC 62832 - Digital factory framework” [21],
but was extended for RAMI4.0 to include the specification of
functions an asset can perform. An AdminShell does not have
to be physically close to its asset; it can reside on a software
server. I4.0 components can be nested, making up composite
components that may be only temporarily active if needed.

3) Service-based Interoperability: A service architec-
ture [13], [14] is being defined to provide access to the proper-
ties (data and functions) of assets. The service architecture is
organised into layers, communication, information and appli-
cation service layers, which fairly correspond to the software
decomposition layers in Fig. 1 — the application service layer
embraces both the functional layer and the business layer in
Fig. 1. Thus, software decomposition layers implement asset
functionality; service layers expose asset functionality.

RAMI4.0 has proposed the base services shown in Table I
in order to facilitate interoperability. Communication and
information services are ‘non-technology specific’. They have
been defined at an abstract/conceptual level to avoid vendor
lock-in and to efficiently cope with technology evolution.
Hence, they must be mapped to services in the communication
technology used, e.g., OPC-UA Services [23]. Communication
services are used by information services, as described below.
Information services must be used/refined by platform and ap-

TABLE II
SIGNATURE OF INFORMATION SERVICE CALLS [13]

Signature (o = optional) Description
Operation: what is being done to the entity at the given
Read, Write, etc. target address
Target address target of the service operation, e.g: attribute to set
Information payload attribute values to assign
RSVP flag (o) indicates whether a response/reply is expected
Context QoS (o) QoS to provide for this service call
Context security (o) expectation on the confidentiality of the

end-to-end communication
Context (implicit) context of the service call: application, user, the

local I4.0 Network, a global (discovery) scope

plication services. Platform services are functional services (cf.
functional layer in Fig. 1) that are ‘domain-agnostic’ as their
sole purpose is administering assets virtual representations.

Application services (cf. functional and business layers in
Fig. 1) are not defined by RAMI4.0. They may be domain-
specific and would refer to some higher-level, often asset-
specific functionality (e.g., ‘close valve’, ‘calibrate’, ‘drill
hole’). As observed in [22], “no standards for application-
specific services or respective service catalogues are known”.

4) The Link between Software and Service Layers: The Ad-
minShell “itself is implemented on the information layer” [13,
p. 7], “making available data and functionality of the adjoining
layers” [idem.]. That is, the Manifest (in an AdminShell)
comprises the information layer (in Fig. 1), holding all the
(properties) data and functions of an asset. The Component
Manager (in an AdminShell) receives information service
requests (operations), those in the middle column of Table I, to
access the data and functions of an asset. These functions are
exposed, by design, by higher level application services [13,
pp 17,19], and are invoked by a Component Manager through
the service operation MethodCall() (see Table I).

So far, only the signature of information service calls has
been proposed, see Table II. This table shows the parame-
ters to be received by a Component Manager in a service
request message. The parameter Operation (one of those in
the middle column of Table I) identifies the internal method a
Component Manager will call with parameters Target address
and Information payload. The optional parameters, if specified,
will be processed by a Component Manager through calling
the relevant communication service operation (left column
of Table I): Transmit() (a response) if the RSVP flag is
specified; NegotiateQoS() if Context QoS is specified;
and Encript() if Context security is specified [13, p. 22].

III. DESIGN ISSUES FOR RAMI4.0 SERVICES

A. Overview

SOA and the RAMI4.0 service Architecture (RM-SA) share
a few design concepts. They both propose a service hierarchy
with business services at the top. The AdminShell is similar
to the Service Container described in ISO/IEC 18384-2 Ref-
erence Architecture for SOA [16].

The main difference between both is that services in RM-
SA are attached to assets, which are inherently stateful in



contrast to traditional SoA. Assets are considered first in
RAMI4.0, or should so be considered; services are the means
for accessing asset properties. This is a key concept defined at
the model-design level. It stems from the fundamental purpose
of Industry 4.0: “to facilitate cooperation and collaboration
between technical objects [assets], which means they have to
be virtually represented and connected” [8, p. 7]. By attach-
ing services to assets at model-design level, communication
and interoperability capabilities are endowed to an asset the
moment its virtual representation is specified.

Communication requires agreement on APIs, while inter-
operability requires agreement on the meaning of data to be
exchanged. Accordingly, RM-SA has also proposed signa-
tures (APIs) for services in the information layer, which is
the point of entry to all other services. For interoperability,
RAMI4.0 has proposed the use of standards for modelling
asset properties (cf. semantic information model), accessible
through AdminShells (see Fig. 8 in [13, p. 20]: “Examples
of existing standards to be integrated into the [AdminShell]”).
Thus, RAMI4.0 developers can focus on designing application
services atop Communication and Information (CI) services.
Further, CI services are not technology-specific, and hence are
inherently flexible — different assets can use different com-
munication technologies, or these technologies can change,
without affecting design based on CI services.

In traditional SOA, asset and infrastructure services [16]
among others could be considered as asset-attached services
(section II-A4). All services in a SOA can be considered as
attached to the assets to which they provide access (e.g., a
database system). Also, it is possible to develop functional
capabilities for “cooperation and collaboration between tech-
nical objects” following traditional SOA best practices. Some
example applications in this direction are already available,
e.g., home appliances controlled through the internet, and
automatic software updates in our computers [24].

However, there is a fundamental difference in the design
approach between SOA and RAMI4.0 and its service archi-
tecture, a difference that can be regarded as analogous to
the difference between procedural programming and object
oriented programming (see Booch et al. [25] for an in-
depth comparison of both programming paradigms). SOA
offers a strong overhaul to remote procedure call techniques
where services are expected to be developed on a stateless
manner (just like procedures implemented in the functional
programming paradigm). In contrast, the focus of RAMI4.0
are assets that exist in the physical world, thus the SOA’s
stateless handling of assets would become cumbersome (e.g.,
these assets often require certain protocols to follow during
the manufacturing process), and in fact these assets resemble
objects more.

As design practice tends to align with the principal design
concept, SOA and procedural programming have similar de-
sign practices in that main ‘activities’ are identified first and
data is defined as needed. In SOA, business resources and
processes to achieve enterprise goals are first identified (cf.
business model), then business services, integration services,

etc. The enterprise semantic data model is defined as needed
with global scope. (Note that business resources correspond
to assets, but design is focused on services.) In procedural
programming, the major procedures (modules) are first identi-
fied and then utility procedures; data structures are defined as
needed, with local or global scope depending on the problem.

B. Traditional Objects vs I4.0 Components

It is our view that RAMI4.0 models suggest a develop-
ment based on OOA&D. It is indeed the case that most
service-oriented software (e.g., web systems especially stateful
services based on RESTful [26] and WSRF concepts [27])
has been developed using OOA&D — but perhaps not as
cohesively as, in our view, RAMI4.0 suggests, throughout
those entities whose properties need to be reached remotely:
“Even a factory can be an asset that has an administration
shell and can be addressed using its ID” [8, p. 36].

In this section, traditional OO objects and RAMI4.0 ob-
jects, i.e., I4.0 Components, are compared. In Section IV we
discuss the use of OOA&D in the design of I4.0 Component
services. The terms asset, object and technical object are used
interchangeably from now on.

1) Objects and Remote Objects: Traditional objects consist
of methods and data, data is typically encapsulated and is
accessed through method invocations. The method invocation
mechanism is a given in that we simply refer to the relevant
object method, e.g., myObject.add(1). Invoking remote
object methods is similar, though it involves more setting-
up. E.g., Java remote method invocation (RMI) uses local
and remote stub methods in clients and servers that hide the
communication aspects of remote method invocations.

2) I4.0 Components: Objects+Internet: In an I4.0 Compo-
nent, asset functions and data (virtual representation of the real
life properties of the asset) are specified in the asset Admin-
Shell, in the Manifest, and are exposed through services. Since
communication and information (CI) services in RM-SA have
been proposed, and application services atop must be based on
CI services, the service invocation mechanism of application
services is somewhat a given as well. RAMI4.0 developers
can thus focus on designing application services that involve
interacting with I4.0 components. E.g., knowing the ID of
an I4.0 component, its functions and data can be obtained
(queried) through its CI services. The functions exposed by
application services in an AdminShell can correspond to, or
can be a subset or a superset of, the actual functions supported
by the relevant asset; it is only a design decision.

Accessing the actual functions of an asset involves a series
of service invocations starting at an application service, going
down through the specified service hierarchy, until the actual
functions are reached. For a software asset, such as a DBMS,
access to its actual functions will take place in the same way
it does in traditional SOA: the last service (in that series) will
be an access service that invokes queries or updates on the
DBMS using the DBMS internal interface.

Recall that application services are not defined in/by
RAMI4.0. To the best of our knowledge, we know of no



proposed definition for any domain. Also, application services
comprise functional and business services. This is only a
logical division. It suggests that, as in traditional SOA, appli-
cation business services should be at the top and correspond to
business tasks, and that other application services be defined
as deemed necessary, possibly organised into a sub hierarchy
(between business and CI services) in order to promote loose
coupling and service reuse.

3) Accessing Physical Asset Properties: In manufactur-
ing, some business processes correspond to manufacturing
processes such as producing a particular car model. Hence,
business services comprising such processes would correspond
to manufacturing tasks, such as welding, assembling, painting,
etc., which are performed by manufacturing physical assets
such as machines and production lines.

Access to manufacturing assets’ functions and data differs
from access to software assets’ only in the last step. A series
of service invocations will go down the service hierarchy up
to an access service that invokes methods, relevant to the
task on hand, on the software that controls a machine, e.g., a
Manufacturing Execution System (MES). Finally, the software
that controls the machine can send/write commands to the
machine’s embedded system to actually affect the machine
operation or read status data.

Note that manufacturing assets have temporary constraints.
Their physical functions may be long-term compared to func-
tions of software assets, and thus may affect non-functional
requirements with regard to quality of service. Services that
provide information on the time granularity of assets physical
functions are needed for planning.

IV. I4.0 COMPONENT DESIGN BASED ON OOA&D

The similarity between traditional objects and I4.0 com-
ponents suggests considering the use of OOA&D for the
design of I4.0 components. The benefits of OOA&D include:
abstraction, encapsulation and modularity, among others [25].

In this section we outline a generic design of I4.0 compo-
nents and their services based on OOA&D, discussing relevant
issues as they arise. We follow a top-down approach, identi-
fying assets that should be managed as I4.0 components (i.e.,
through an AdminShell), and suggesting how to group, and
what application services to attach to, I4.0 components. Recall
that application services comprise business and functional
services and must be based on RM-SA communication and
information (CI) services.

A. The Ultimate I4 Object Class

There is a class in various object-oriented programming
languages that is the ultimate superclass of any class. In Java,
every class has Object as its superclass; all subclasses can
use or override the base methods of this class, e.g., clone()
to create a copy of an object, equals(otherObject) to compare
two objects, among others. Similarly, every I4.0 component
can have an ultimate superclass that we call the I4 Object.

The base services (cf. methods) of the I4 Object class can
include RM-SA CI and platform (admin.) services, see Table I.

Every I4.0 component, once specified, can be endowed with
those service capabilities. These services must be overridden
by each subclass derived from I4 Object, so that the actual
capabilities of each asset are used.

In addition to those services, generic functional application
services should be defined in the class I4 Object so that every
I4.0 component inherits them. As I4.0 components are Internet
objects per se, the service monitor(what, everyWhen) should
probably be such a generic service. It would be implemented
using information services to validate whether the property
what belongs to the I4.0 component being accessed, and to
read and send its values everyWhen.

B. The I4 Factory Class

An I4 Factory object comprises the I4.0 components of all
assets within a factory which, by design, need to be digitally
reached. It provides lookup services (atop the information
services) to search for available assets and services within
a factory, so they can be accessed. In essence, this factory
object offers a scope-limited service registry (i.e., a searchable
catalogue of associated I4.0 components and their services).

The assets can include manufacturing assets, hardware as-
sets, software assets, information assets, etc. The I4 Factory
object can contain references to the I4.0 components (objects
of I4 Object subclasses) of those assets, thus holding an
aggregation relationship. Notice that the factory itself is not to
be subclassed, but during instantiation of an I4 Factory object
it is expected that the managed I4.0 components are identified
or designed, along their services, in a similar way traditional
services are identified for a SOA solution. Business resources
and business processes should be identified first based on
business goals.

For the design of I4.0 components and their services, it
must be considered that: (a) business resources are assets to
be represented as I4.0 components of some class (more on
this shortly); and (b) services must be specified as attached
to an asset. Hence, a catalogue for searching either for (busi-
ness) resources or services, or both, is more convenient. This
catalogue can serve to identify assets to be managed as I4.0
components and their application services (atop CI services).

The catalogue can be initially loaded with all the existing
resources in a factory (manufacturing assets, software assets,
etc.). Then, for each resource/asset, its functions/services will
be added to the catalogue. For example, for manufacturing
assets such functions may include: welding, assembling, paint-
ing, etc. These services were mentioned above as business
services; they should be labelled so in the catalogue. If lower-
level (functional) services that comprise business services are
already implemented, they should be included in the catalogue.

Higher-level, composite AdminShells could represent com-
plex business and/or manufacturing processes (e.g., described
with BPMN/BPEL [28]). Cataloguing these services is essen-
tial to minimize the needs to extend our I4 Factory class (as
otherwise the need for subclassing I4 Factory would rise with
every new process to prepare for its specialities). By control-
ling the availability and access (i.e., authorization checks) to



these high-level services a factory object essentially validates
and coordinates the use of asset services. By utilising a stateful
behaviour as that of BPEL it also allows the coordination of
the outputs and inputs between services, or between processes
consisting or various services. Section V presents an example
of an I4 Factory object and its responsibilities.

C. Other I4 Classes

1) Manufacturing I4 Classes: For manufacturing as-
sets the class I4 ManufacturingAsset is defined as the root
class. Subclasses of this class could be defined based
on IEC 62264 Enterprise-control system integration [18]:
I4 MnfAsset BatchControl, I4 MnfAsset ContinuousControl
and I4 MnfAsset DiscreteControl.

Sub-sub-classes within each subclass could be defined, and
so on, the overall purpose being to facilitate organisation and
management. Within the class hierarchy thus defined, only the
class at the bottom will serve to instantiate I4.0 components of
actual assets (resources) initially identified and entered in the
catalogue. For a machine entered in the catalogue, its instan-
tiated I4.0 component object will hold services corresponding
to manufacturing tasks such as welding, painting, etc.

The I4.0 component object of a machine can hold mainte-
nance services. A maintenance service may or may not involve
human interaction while the service runs. A maintenance ser-
vice that involves no human interaction (other than launching
the service) will be updating the software driver that controls
the operation of the machine. This service will involve CI
services to fetch (read) the status of the machine, stop it if
needed, change (write) its status to software update mode,
check (read) its status has changed accordingly, send the new
software driver to the machine, re-boot the machine, etc.

Production processes can also be regarded as manufactur-
ing assets, and hence managed as I4.0 components derived
from an I4 ManufacturingProcess class. They can comprise
invocations to the services of I4.0 components of actual man-
ufacturing assets. They can include services for configuring
the various machines involved in the process they represent,
through invoking relevant CI services in the I4.0 components
of the machines to be used in the process.

2) Software I4 Classes: Software assets such as databases
or Enterprise Information Systems offer data services and
operational services (e.g. MES). As I4.0 components, software
assets offer application services to access specific data, update
data, or control a machine (cf. MES). E.g., application services
for a database will offer read and write operations of specific
data records through a library, such as JDBC or ODBC.
Application services for maintenance purposes can be offered
to update software assets as described above for updating
machine driver software, based on CI services.

V. APPLICATION EXAMPLE

This section shows how to use our approach to I4.0 com-
ponent design. The example we use is based on work carried
out in the EU funded project DISRUPT3 [29]. We briefly

3http://www.disrupt-project.eu/

Fig. 2. DISRUPT conceptual architecture atop its target environment.

describe the DISRUPT system and then its configuration as
I4.0 components. Even though the DISRUPT system is not
designed as an I4-component system, it can offer a basis to
highlight the use of the proposed approach.

A design based on I4.0 components can be considered
for two reasons. First, such a design involves mostly the
design of wrappers (AdminShells), which are also needed for
SOA-based design. A design based on the I4.0 Component
model has the benefit of using OOA&D as outlined in the
last section. Thus, AdminShells and software assets can both
be designed using OOA&D. Second, the I4.0 Component
model (i.e., RAMI4.0+RM-SA) is a specific yet flexible
approach to interoperability. Since the structure to store asset
properties (i.e., the Manifest within the AdminShell of each
asset) and communication and information services to reach
the properties have been proposed, the development effort
can mostly focus on application services. Also, solutions that
partly involve I4.0 component design and implementation may
prove useful through the transition into Industry 4.0 paradigms.

A. The DISRUPT System

The purpose of the DISRUPT system is to support, in
close to real-time, data-driven decision making and enactment
of decisions on manufacturing operations under events that
disrupt enterprise operations, e.g., delays in the supply chain
or failure in a production line [29], [30]. Fig. 2 shows the
DISRUPT software architecture atop its target environment.
The target environment, labelled physical layer in the figure,
comprises existing manufacturing equipment and Enterprise
Information Systems (EISs).

The DISRUPT system is to be added on to such an environ-
ment to: (a) collect data from EISs and directly from the plant
floor and the supply chain in real time; (b) process this data
to identify events that disrupt enterprise operations; and (c)
generate alternatives to circumvent a disruption through mod-
elling, optimisation and simulation. A visualisation dashboard
(CloudBoard in figure) will display the state of enterprise



operations (continuously) and alternatives to disruptions on
identifying disruptions. Such alternatives can either be inter-
preted by a human, who will then manually enact relevant
actions, or carried out by a machine driven by the Cyber-
Physical System (CPS) module.

The Cloud Controller enacts user requests (received through
the CloudBoard) and facilitates the integration and interaction
between all other modules. User requests include setting-up
monitoring of equipment and enacting alternative actions to
disruptions through the CPS module, among others.

B. The DISRUPT System as I4.0 Components

The DISRUPT system will be deployed as a web system
using the Model-View-Controller (MVC) pattern. The Cloud-
Board will implement the View which corresponds to data
visualisation required by users. The Cloud Controller will im-
plement the Controller which corresponds to processing users
input requests and interacting with the View and the Model
as required. All other DISRUPT modules will implement the
Model which corresponds to the business logic and data.

1) The I4 Factory Component of DISRUPT: Recall that an
I4 Factory component (object), specified as an instance of the
I4 Factory class, corresponds to the virtual representation of
a factory. Such a component comprises the I4.0 components
(assets and services) within a factory which, by design, must
be exposed and digitally reached. It is, thus, the point of access
to available assets and services.

The I4 Factory component of DISRUPT (and of any enter-
prise for that matter) corresponds to both the Controller and
the Model (cf. MVC) in its web system. The Controller cor-
responds to the AdminShell, and thus to the DISRUPT Cloud
Controller; the Model corresponds to the factory as a set of
assets and services, i.e., to all other DISRUPT modules virtual
representations (I4.0 components). The I4 Factory component
of DISRUPT will expose high-level application services com-
posed of the specific application services provided by other
DISRUPT modules (except the CloudBoard).

2) I4 Software Components: DISRUPT modules (except
the CloudBoard and the Cloud Controller) can be I4.0 compo-
nents instantiated from the I4 Software class. The application
services of each module, to be specified within its AdminShell,
will be derived from the overall functionality of each module.
E.g., the CPS module is to continuously collect and process
data from the plant floor and the supply chain. Thus CPS
application services will include some form of data monitor
and filter services. The Data Collection Framework (DCF) will
collect, process and store data from EISs, and store processed
data from CPS. Thus DCF application services will include
query and store services. The Data Analytics (DA) module
will seek to identify (from data in DCF) abnormal trends that
may lead to actual disruptions. DA application services will
include analysis services such as regression analysis.

3) Manufacturing Assets: Within the project DISRUPT,
lower-level assets such as manufacturing equipment are not
managed as I4.0 components, i.e., AdminShells were not
defined for them. It can be done, but the design choice was

for the CPS module to manage those assets collectively or
individually according to decisions taken above. Partly this
decision was taken because DISRUPT functional requirements
involve only remote control of manufacturing assets, where
assets role can be seen as passive. Autonomous cooperation
between assets would require an active role from assets based
on complex application services atop CI services; in this case
an AdminShell for each active asset would be necessary.

4) Implementation and Deployment Issues: Compared to a
traditional SOA web system implementation, the implementa-
tion of DISRUPT as I4.0 components as outlined above must
include the following. Each I4.0 component (AdminShell)
must expose the CI services proposed for RM-SA (Table I) so
that assets data and application services can be reached; and
application services should be based on CI services. E.g., the
Cloud Controller (MVC Controller, I4 Factory AdminShell)
can offer a lookup service to be tuned according to some
criteria, say, data services or analysis services. This lookup
service can use CI-information services to recover the relevant
services. If a data service is chosen, e.g. monitored data
of a particular kind of equipment, the Cloud Controller can
invoke the relevant application service of the Data Collection
Framework to fulfil the service request for monitoring data.

The aspect of services being attached to assets should not
affect implementation much. The code of a service can be a
method within a Java program whose main() procedure will
act as the AdminShell, or it can be a PHP script in the same
directory where the PHP AdminShell resides. Overall we think
the concept of asset-attached services helps not only design
but also deployment. For instance, the web server directory
can be organised according to types and subtypes of assets to
facilitate access to relevant code and data.

VI. RELATED WORK

Our approach outlined above aims to guide the identification
of assets to manage as I4.0 components and the design of
application services to access through AdminShells. Tantik
and Anderl [31], [32] propose a structure for AdminShells
with “separated data modules and functionality applications
for a flexible adaptation”, based on the entire functionality
AdminShells should support as described in [33]. The structure
is generic; in principle it should be used for any (asset) I4.0
component. Such a structure could help select/specify the
application services an AdminShell should expose on account
of the actual functionality of the corresponding asset.

The identification and design of assets and services should
be based on the analysis of requirements and use cases to
identify the capabilities that are needed to fulfil business goals.
Usländer describes a systematic agile service engineering for
Industry 4.0 software applications [34] that can be considered
in defining our methodology.

The need for semantic interoperability (semantic data infor-
mation model) was discussed in the context of traditional SOA.
In Industry 4.0, semantic interoperability is multi-faceted due
to the different types of assets and standards and vocabularies
to describe them. González et al. [35], [36] propose to employ



the Resource Description Framework (RDF) as “the lingua
franca to represent and integrate information in Industry 4.0
contexts”, as a “middle layer” within AdminShells to support
interoperability. The approach can manage specifications in
English and German. It is not described how the middle layer
can be integrated within AdminShells. We believe different
types of RDF translations could be configured as application
services.

VII. CONCLUSION

This paper has analysed the RAMI4.0 models and service
architecture, comparing them to traditional SOA and OOA&D.
I4.0 components resemble objects; their communication capa-
bilities can be considered as a given. We have suggested to
model I4.0 components through OOA&D and outlined some
I4 classes to do so. We also presented an application example
of I4.0 components and highlighted their relationship to web
system technologies.

As for future work, our approach to identify assets and
application services must be refined through the design of
classes and application services for I4.0 components based on
application scenarios. What asset hierarchies, service hierar-
chies, or both, are more suitable under what type of application
scenarios? For example, a single I4.0 component CPS module
for the DISRUPT system is enough, as opposed to multi-
ple I4.0 components for each production machine, because
requirements involve a passive role for such equipment.
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