
The University of Manchester Research

Provenance in dynamically adjusted and partitioned
workflows

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Goodman, D. (2008). Provenance in dynamically adjusted and partitioned workflows. In Proceedings - 4th IEEE
International Conference on eScience, eScience 2008|Proc. - IEEE Int. Conf. eScience, eScience (pp. 39-46)

Published in:
Proceedings - 4th IEEE International Conference on eScience, eScience 2008|Proc. - IEEE Int. Conf. eScience,
eScience

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:30. Apr. 2024

https://research.manchester.ac.uk/en/publications/bc2ab214-350a-4a7b-9c43-0aff7cc21c79


Provenance in Dynamically Adjusted and
Partitioned Workflows

Daniel Goodman
Oxford e-Research Centre

7 Keble Road
Oxford, OX1 3QG

Daniel.Goodman@oerc.ox.ac.uk

Abstract—In this paper we describe the provenance system
built into the distributed Martlet middleware. Due to both the
need for scientific reproducibility, and to determine exactly what
has happened with any given piece of analysis, it is necessary for
this middleware to record detailed and structured provenance
data in an easily query-able form. This is achieved through the
use of integer clocks and directed graphs. Using these, this system
is capable of keeping a complete history of the creation of all
data, including the ability to store in-depth information defined
by the task about the operations performed. This allows the
system to continue to gather provenance data regardless of the
rough grained functions being wrapped by the middleware.

The middleware was developed to support functions de-
scribed in “Martlet”, a workflow language developed to ad-
dress the problem of how to analyse the data generated by
the climateprediction.net experiment. This data is both highly
distributed, and resides in a dynamic environment where the
partitioning of data structures across the distributed nodes may
change both in the number of pieces and their locations, and
resources may come and go. This makes it necessary for the
structure of the workflows to change from execution to execution.
As such the provenance system is also required to be able to
handle such a dynamic environment.

I. INTRODUCTION

In this paper we describe a Directed Acyclic Graph (DAG)
based design and implementation of the provenance system
integrated into the middleware [1] supporting Martlet [2], [3]
workflows. This system is able to keep track of the events
leading to the current state of every item of data within
the system, including process defined information about each
task performed. This data is structured such that it can be
queried and filtered by the user with a range of tools, as well
as providing scope for the user to extend this with custom
constructed visitors [4] to explore the data. This is achieved
through the use of DAGs and integer clocks. These DAGs are
grown inductively throughout the life time of the different data
structures.

Provenance [5] is of particular importance to the analysis
done using the Martlet middleware because in addition to
the standard requirement in scientific work for results to be
reproducible, Martlet workflow execution results in not only
the location of the computation and the data varying, but
also the absolute structure of the functions being used to
perform the analysis. This is done to overcome the changing
partitioning and high distributed nature of the output from
projects such as climateprediction.net [6], [7]. As these details

are ordinarily hidden from the user, it is necessary to have a
detailed provenance system if the user is to be able to ascertain
exactly what computation was performed. This need is also
furthered in a Grid environment where it is possible to publish
URIs of data structures online for others to use. When this
usage pattern occurs it is not necessarily sufficient for the user
to record what he has done. Moreover, it is possible for such a
system to record information about any operations performed
on the data with greater detail, accuracy and fidelity than a
user could manage.

There is already a huge volume of existing work on prove-
nance systems [8], including much work on systems based on
DAG’s, and we could turn this paper into a survey of such
work. However, the core difference between this work and the
work that has gone before is that this work has to be able to
handle the two tier data structures and the changing structures
of the workflows from execution to execution provided by
Martlet.

In this article we provide background by first briefly in-
troducing the problem, and the language and middleware we
have developed as a solution to this problem. We then look in
detail at the implementation of the provenance system that is
integrated into this middleware.

A. Motivation for Martlet and its middleware

Martlet was developed to assist in the analysis of large
quantities of dynamically distributed data generated by the
climatepredication.net (CPDN) [6], [7] experiment. Existing
combinations of middleware and workflow languages are not
sufficient for analysing the CPDN dataset, as while there is a
wide range of different languages, compatible with different
middleware, supporting different tools, databases, scientific
equipment etc, all of them address the same programming
model. In this model there are a known number of data
inputs that need to be mapped to computational resources.
As a result, none of them are able to handle data that is split
into an unknown number of pieces at the time the workflow
is submitted. This problem occurs because these workflow
engines, although aware of the data type, do not interpret the
data, but instead they simply pass it between functions. This
restriction means that existing workflow engines are not able
to take a generic workflow and use it to generate workflows
that match the partitioning of data they are passed.



An example of a situation where the current solutions
are ineffective is the calculation of an average across a list.
Across a local list [x0, x1, . . . , xn−1] a solution can be written
as;

x =
∑n−1

i=0 xi

n

This is easily described with existing workflow languages.
However if this list of numbers is now partitioned into a
pieces [x0, x(n1−1)], . . . , [xn(a−1) , x(na−1)], and the solution
rewritten as:

y0 =
∑n1−1

i=0 xi

z0 = n1

y1 =
∑n2−1

i=n1
xi

z1 = n2 − n1
...
...
ya−1 =

∑na−1
i=na−1

xi

za−1 = na − na−1

x =
∑a−1

i=0 yi∑a−1
i=0 zi

This can now not be written in existing workflow languages
unless the value of a is known at the point the workflow is
written, or the programmer includes the specifics of how to
handle the variable number of arguments. This adds complex-
ity to the system that the user does not want and may not
be able to deal with, and simultaneously introduces a much
greater potential for the insertion of errors into the process.

B. Overview of Martlet

Martlet [2], [3] is the workflow language that the mid-
dleware containing this provenance system was designed to
support. The language supports most of the common features
expected of a workflow language, but it also has constructs
inspired by the inductive constructs of functional programming
languages [9], which it uses to abstract the parallelisation of
the data and workflow. In addition it supports two classes of
data structure, ’local’ and ’distributed’ to enable it to reason
about the data it handles.

In functional programming languages it is possible to write
extremely concise powerful functions based on recursion. For
instance the reverse of a list of elements can be defined in
Haskell as:

reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

This simply states that, if the list is empty, the function
should return an empty list, otherwise it should take the first
element from the list and turn it into a singleton list. Then
it should recursively call reverse on the rest of the list and
concatenate the two lists back together. The importance of
this example is the separation between the base case and
the inductive case, which allows the function to avoid ever

mentioning the length of the list. Using these ideas it has
been possible to construct a language that abstracts the level
of parallelisation of the data away from the user, leaving the
user to define algorithms in terms of base cases and inductive
cases. For example, the distributed average problem looked at
in section I-A, taking the distributed dataset a and returning
the average b, can be written in Martlet using a map statement
to distribute the base case across an unknown number of
pieces of partitioned data. These base cases generate for each
partitioned piece of the dataset the sum and cardinality of these
local sets. The distributed output from the base case results are
then merged through addition to produce a pair of local results
that represent the whole system. This is orchestrated through
the use of a tree statement, taking the function to merge
two results as an argument. As this is a function, the merge
operation can be arbitrarily complex. The final result can then
be calculated by a final division to produce the overall average
for the distributed dataset.

The important thing to note about this function is that,
although it works on partitioned data structures, at no point
is a reference made to how the data structure is partitioned.
The user therefore remains unaware of the partitioning and
the function can be reused on differently partitioned datasets
without having to make changes to the code.

C. Middleware

The supporting middleware [1] is constructed using a ser-
vice oriented architecture. This is built on top of Apache
Axis [10] running on Jakarta Tomcat [11].

The middleware itself is designed using an architecture that
is similar to MONET [12], taking on board ideas put forward
by WS-GAF [13] and WS-RF [14] on the use of handles and
URIs to manage resources. It is not however constructed with
a strict adherence to any one set of ideas or principles.

The middleware is abstracted so the different conceptual
parts of the system are separated into different concrete parts.
The structure of the communication between these parts and
the use of XML documents posted by each node on the web
means that nodes can be added and removed at will, without
having to inform the whole system of the change.

Data is passed by reference, which has two main advantages.
First, the data is only moved when it is required, allowing
the references to be passed through many services without
having to move very large amounts of data through with them.
Second, the use of references means that data transfer can be
instigated by a more efficient method than SOAP [15]. As a
result the data transfer model is abstracted so that the protocol
used to transfer the data is separate from the implementation
of the rest of the middleware, with lazy evaluation [16] being
used to minimise the data transfer overhead.

As well as the use of references to pass data, references are
used to pass functions. This allows functions to be first class
values that can be passed into and used in other functions.
This applies both to functions that have been submitted to
the middleware using the Martlet language and to the base
functions that are deployed to the system by administrators.



Fig. 1. An example of how five servers could be configured. Note that more
than one Process Coordinator can use each Data Store and Data Processor
and the Process Coordinator does not need to know about all available Data
Processors.

The middleware also has a comprehensive locking and data
transfer model that allows multiple functions to run at the
same time, and functions to be queued without having to
worry about forgetting data or generating race conditions.
The locking system is extended to keep records, allowing the
provenance system to be built into the middleware, keeping a
complete record of the life of each piece of data.

1) Topology: The middleware is divided into three logical
units: Data Stores, Data Processors and Process Coordinators.

a) Data Stores: provide a set of methods for accessing
the data stored at a given location. This unit is deliberately
lightweight and only capable of generating a data structure
from stored data.

b) Data Processors: ingest, store and run Martlet ab-
stract syntax trees on datasets, which they either have locally
or retrieve from another Data Processor or a Data Store.

c) Process Coordinators: are the components that users
interact with. They handle access to the rest of the middleware.
This is consequently where most of the complexity of the
project occurs, since this is where the generic trees that
represent submitted functions are adjusted to fit the arguments
on which the function has been called, and then are broken
up and scheduled across the Data Processors. This is the
only component to have any knowledge of other nodes in the
system.

All three components share common functionality for trans-
ferring, discarding, and publishing data. They can be grouped
together at will on servers, so it is possible to have both a Data
Processor and a Data Store on the same machine. A possible
configuration of five servers is shown in Figure 1. It is worth
noting that many different Process Coordinators can use each
Data Processor and Data Store concurrently and each Process
Coordinator does not need to be aware of all the other nodes.

2) Data Structures: There are two classes of data structure
supported by the middleware, ’local’ and ’distributed’. Local
data structures are any data structure that always resides on a
single server. Distributed data structures are abstractly a list
of local data structures. So for example a distributed matrix
is a list of matrices, which, if concatenated together in the
order they appear in the list, would produce a single matrix

equivalent to the distributed matrix. This means that, when
a new data structure is added, its distributed counterpart is
automatically generated.

3) Resource Lookup: All data structures and functions
are held in handles stored in a lookup table indexed by
URIs. The URI’s are constructed such that they are always
unique to the server in question, so if data is copied between
servers, a new URI will always be provided to maintain this
uniqueness. The use of handles to hold the data structure or
function facilitates the storage of meta-data, allowing it to be
seamlessly passed around with the data structure or function.
This meta-data consists of both object specific information
and implementation specific information. Examples of this
data include, the number of processes currently using a data
structure, whether a data structure is locked to prevent race
conditions, and when the data structure’s existence can no
longer be guaranteed.1 This means that if a data structure
is forgotten because of either the failure of a server or the
forgetfulness of the user, the resources used to store it will be
recovered automatically.

4) Function Execution: To allow both the use of legacy
code and the concurrent operation of functions, the mechanism
to call functions is broken into two pieces. Stored in the handle
in the lookup table is a Function Constructor, this is stateless,
and so thread safe. It has the task of taking a list of arguments
and generating a Function Object from this list. The Function
Object is an object which when invoked will perform a specific
task on the arguments that where passed to the Function
Constructor. As a unique Function Object is created for every
function invocation, the complexity of concurrent calling is
now removed. The Function Object itself is a wrapper for the
code that is actually going to be called, providing a uniform
interface for the rest of the middleware to interact with. This
wrapper then in addition to providing a way of adding legacy
code to the rest of the system handles the locking of data
structures to prevent race conditions, and the operation of the
provenance system.

II. PROVENANCE

The intrinsically dynamic and distributed nature of this
programming model and architecture make the need for
provenance even more pronounced than in other distributed
applications. To address this, a provenance system built on
distributed clocks and directed acyclic graphs has been con-
structed. Because the design and functionality of the mid-
dleware is detached from the functions being executed on
the individual nodes, it is a necessary requirement of the
provenance system to allow functions to add their own meta-
data to the provenance system. It is also necessary for the
system to be able to handle the two different classes of data
structure and the hierarchy of functions that can exist in a
manner such that the user is still able to sensibly query them.

1If there is space to continue storing a data structure there is no reason to
actively destroy it. Instead this can be delayed until the garbage collector is
invoked.



The DAG data structure in the provenance system, like the
functions written in Martlet, is built up inductively over the
life of all the individual data structures. The nodes on this
graph can contain a range of different information, and, if
required, these nodes could be added to or extended to gather
other information that it is not possible or sensible to collect
from the underlying tasks. Such information could include the
overhead time taken to perform certain instructions within the
middleware.

We will now look in more detail at the nodes, how this
graph is created, and how it handles the complexity of the
different classes of data structure; we will then examine how
this data can then be queried and how this process might scale
as the use of the middleware increases.

A. Handles and Provenance Nodes

The handles used in the lookup table to store data structures
and Function Constructors contain a range of meta-data. This
meta-data includes for provenance, an integer clock that will
record the largest value of any integer clock it encounters, and
a reference pointing to the provenance DAG node that was
created by the middleware the last time an operation occurred
that wrote to the data structure. The nature of the provenance
nodes themselves can vary according to the information that
they need to store about how the data structure was last
modified. However, they will all contain an integer recording
the value of the integer clock when they were created.

Currently there are four ways that data structure can be
created or modified, these are: by creating a new structure; by
creating an empty handle to hold output from a function; by
moving a data structure’s location; and by executing a function
that modifies the data structure.

B. Data Structure Creation

The creation of data structures, or the empty handles that
will hold them, is the base case for the construction of the
provenance DAG. Because of two classes of data structure
and the different types of data, there are multiple ways that
this can occur, and these are introduced here.

1) Local Data Structures: The most basic type of data
structure that maybe created is a Local data structure, either on
a Data Store or on a Data Processor. These data structures are
created by the user submitting a description of the structure
they would like to create, either as part of a workflow, or as
a Web Service call. These descriptions may be entirely self-
contained, for example create an n by n identity matrix, or
they may draw on information held on a Data Store, such
as creating a matrix of climate model runs where each model
produces a single column containing specified values, and each
model satisfies a given set of conditions. With all of these
cases the node in the provenance graph will contain at least the
information used to create the data structure, and the integer
recording the value of the integer clock in the handle at the
time the node was created. As there are no vertices leaving this
node, and at this stage none pointing to the node, it provides
one of the base cases for the DAG.

2) Distributed Data Structures: Distributed data structures
are created on Process Coordinators where if required, infor-
mation about the state of the Data Stores is gained from a
source, such as a database or a supporting Web Service. They
then make the necessary requests to the Data Stores or Data
Processors to construct the local data structures corresponding
to the request. Once these have been created and their URI’s
have been returned, the list of URI’s are placed in a handle, and
the provenance reference set to reference a node that contains
the data used to create the local data structures, or the data
used to generate this query, and an integer recording the value
of the handles clock at the time of creation. As with the local
data structure there are no vertices currently pointing to this
node, and none leaving it, so it is another base case.

3) Empty Handles: As functions require both the input and
the output handles to be handed to them as arguments it is
necessary to create empty handles for the output information
to be placed in. These empty handles come in two forms,
the simplest is for a local data structure, in which case a
handle is produced containing no data structure. This handles
provenance node just contains an integer storing the clock
value of the handle.

When a distributed handle is required, it is necessary to
determine how many pieces the data held by this handle will
ultimately be distributed across, this information is gained by
the user providing an argument containing a reference to an
existing data structure of the correct partitioning. Once this is
known, local empty handles for each of these can be created,
and a distributed handle produced to hold the corresponding
URI’s. The provenance node in this distributed handle will
then contain the information used to ascertain the distribution
of the local handles, and a clock recording the value of the
handles clock at the time of creation. Once more, as there are
no vertices to or from these nodes at this time, these are the
final examples of the possible base cases.

C. Applying Functions

Having looked at the ways that the base cases of the
provenance DAGs can be produced, we will now look at the
process that takes these from being independent nodes to part
of a larger DAG that grows as the users perform actions on
the data structures, recording in depth information about the
circumstances that lead to the current state of the data structure
in the process.

The inductive step of the construction of these DAGs
appears in several forms. The simplest of these is when a
base function is called. A base function is a function that is
not constructed by chaining together other functions supported
by the middleware, but instead just calls an external function
wrapped by the middleware in a Function Object. An example
of such a function could be matrix multiplication provided
in a numerical analysis library. When this is executed, the
provenance system records this by updating all the argument
handles integer clocks so that they now contain a value that
is strictly larger than the largest value currently held by any
of the argument handles. A new provenance node is then



Fig. 2. A diagram illustrating the changes to the handles and the DAG when
the data structure referenced by URI 1 is moved to a different server, and a
new handle is created.

created containing the new value of the integer clocks, a list
of vertices that reference the provenance nodes belonging to
the arguments of the function, the URI of the function being
executed, and finally a set of key value pairs. These key value
pairs are the mechanism by which the middleware is able to
store function specific data about the execution. This list of key
value pairs can contain any information that the programmer of
the wrapper wishes to store, and it is envisaged that they would
be used to store information such as the completion state of the
function, or elements of log files, however it is entirely up to
the programmer to decide, and they could in principle contain
a range of other information. Having constructed this node, all
the handles that are marked as being written to by the executed
function then have their reference to the provenance DAGs
updated to reference the new provenance node. In doing so
the graphs are now extended and joined to contain the history
of how the data structures written to reached their new states.
A diagram demonstrating this can be seen in Figure 3.

The next case is handling functions that are constructed
through the composition of other existing functions in the
middleware. In principle, it would be possible to do nothing
for these cases and just allow the underlying calls to functions
provide all the documentation. However in doing this a large
amount of control flow information and structure would be
lost, so instead, two nodes are used to provide the semantic
equivalent of brackets around the function. The first of these is
created and assigned to all of the arguments that will be written
to, before the function is executed. The second node is added
after the function has completed its execution. If we assume
that there are no failures, all that would be required of each
node is to have a list of vertices pointing to the nodes of the

arguments, and one node to contain the URI of the function.
However, since it is not realistic to make this assumption,
both nodes contain the URI of the function. They also contain
a unique reference, allowing them to be paired up and any
abnormalities caused by a function failure to be detected. This
can be seen in Figure 4.

The final case for the inductive steps is the separation
between the DAGs being constructed within distributed data
structures, and the DAGs created within the local data struc-
tures contained by the distributed structure. The strategy taken
here is to just record the function calls on the distributed
structures in the same way function calls are recorded for
local structures. Then if more detail is required, the user can
then retrieve the history of each individual piece of data.
This separation means that the provenance systems model
will remain intact, if, as planned, the Process Coordinator is
placed onto other middleware from other projects, for example
by using JIT compilers to produce output in other workflow
languages. In addition, it is felt that this is not a major
restriction as the focus of this project is to hide the distribution
of the data. Where it is necessary to look in enough detail
at results to determine the partitioning of the data that they
were generated from, these results will normally be local data
structures, so the partitioning information is already described
in their own provenance DAG. If, in the future, it is decided
that this separation is not appropriate, the extra information
that needs to be added to encapsulate the functions can be
achieved in the same way that hierarchies of functions are
handled using nodes to encapsulate specific pieces of the DAG.

D. Movement of Data

When a data structure is moved to a different server as part
of a computation, the DAG that is reachable from the handle
of the data structure is transferred with it. This ensures that,
at any time, each data structure has access to the complete
DAG data structure describing its history. There are practical
issues relating to the relative sizes of the provenance data
structures, and it is only practical to do this for applications
with a sufficiently independent and rough grained usage of
data structures. However this can be trivially overcome in a
range of ways discussed in Section II-F.

To allow the URI to carry on referencing the server contain-
ing the data structure, when a data structure is moved between
servers, its URI is changed to reflect its new location. This
change is recorded in the DAG through the addition of a new
node at the root of the DAG documenting the change. The
change of URI is important for the provenance because it
ensures that all URI’s only appear on a single server. This
means that a URI combined with the clock value stored in a
node is always unique to a node representing a specific event
in the history of the data structure reference by that URI. A
demonstration of this can be seen in Figure 2.

E. Querying the Provenance Data

Having generated all this data about the sequence of events
that have resulted in a given data structure reaching its current



3a: The initial state of the handles, with DAGs that can be assumed independent.

3b: The state of these handles and DAGs after F has been applied to the 4 arguments, URI’s 2-4 have been written to.

Fig. 3. Diagrams representing the before and after states of the application of F to 4 arguments.

state, it is important to be able to query this information. The
simplest means of performing this is to have a visitor [4]
explore the DAG of a given data structure and produce a report
on the sequence of events that resulted in the existence of
this structure. To achieve this, the visitor would explore the
DAG held by the data structure, collecting the integer clock
value, and a query based report from every accessible node.
Having ensured that there are no duplicates, the reports are
then sorted by the clock values and appended to create the
final report of the history of the structure. Duplicate entries
are easily identifiable since no report-clock value pair should
be identical. Also, the fact that many events may have the
same clock value is not a problem, as the construction of the
DAG means that any two events with the same clock value
are independent and so could have occurred in any order,
or at the same time. As a result of this, and the general
absence of data describing the execution order of independent
events, the exact ordering of execution in the report may
differ from that which was actually executed. However, all

dependencies are guaranteed to occur in the correct order. A
diagram demonstrating this process can be seen in Figure 5.

Given the amount of data stored, and that it has a much
richer structure than just a list of events, it is possible to
construct much more powerful tools for exploring the DAG’s
and providing output. These tools for example could be
similar to those produced by the EU Provenance project [17],
including query languages to allow the user to subset the
provenance data produced by the individual functions. As the
DAGs can be explored by visitors, it is possible to construct
visitors which produce output that is compatible with existing
tools for exploring filtering and mining data, not just tooling
that has been produced for the benefit of provenance analysis.

F. Scaling and Fault Tolerance

Currently this model builds and stores the DAGs in memory.
This is possible because the number of operations performed
on a give data structure is relatively small due to the nature
of the analysis being performed. This results in the size of the
DAGs remaining small in terms of memory, especially when



Fig. 4. A diagram representing the DAG produced from the state show in Figure 3a if F is a composite function made up of F1 and F2, instead of being a
base function. Within this composite, F1 writes to URI 2 and F2 writes to URI 3 and URI 4.

compared to the data structures they are describing, which can
include very large matrices performing rough grained analysis
by calling down to the Climate Data Analysis Toolkit [18].
Keeping the provenance in memory also means that in the
event of the failure of a node, currently both the data and
the provenance are lost. However, it is not reasonable to
expect that such situations will always be, as Martlet may be
deployed on systems using much finer grained analysis, and
the middleware may choose or need to start recording data
structures onto disk. This does not however mean that this
model for keeping the provenance data has to be abandoned
for models where the data structure size is smaller and less
detailed. Instead it is just necessary to use a database on

each server to store the nodes and vertices contained in the
servers DAG instead of keeping the structure in memory. A
combination of the clock values in the provenance nodes and
the original URI of the data structures provide a unique key
for storing each provenance node, since each URI is unique.

If it is also deemed that moving the provenance data with
the data structures is too expensive, then when querying the
provenance data it will be necessary to query several servers
and the servers guarantee the availability of the provenance
data. It is not realistic to require that databases must remain
available indefinitely and all data entered into them must be
stored indefinitely. An alternative would be to place an update-
able lifetime on the provenance data entries. The middleware



Fig. 5. A diagram showing the stages for the construction of a report from
a DAG. First, reports are generated, then these are sorted and duplicates
removed, before being used to construct the report. In reality, the removal
of duplicates may occur at the same time as the pass over the DAG for
efficiency reasons.

could then, for any data structures it holds, extend this at a
predetermined interval, contacting the distributed data bases
as required. This would then allow out of date data to be
identified and removed. In the event of a server being down
when there is a request for the provenance data, or when trying
to update the life time, it will just be necessary to queue the
request and try again later. It must be noted though, that this
is a scale, trading the amount of meta data moved with the
data structure against the amount of data transfer needed to
maintain the middleware, so this position is only envisaged in
for extreme cases where the provenance data is large and data
structures are short lived.

III. CONCLUSIONS

While there are already a number of provenance systems
that take advantage of DAG’s to store their data [8], this
system is different from these other systems in that it is able
to handle the two classes of data structure and the resulting
complexity. This allows this work to provide insight into
provenance systems for a different style of workflow language.

The provenance system itself is scalable, distributed, and, as
discussed, able to adapt to both the changing structures of the
workflows as they adapt to partitioned and distributed data, and
the changing provenance data that functions generate during
their execution. This is ability to store extra information is
important in ensuring that the system can successfully interact
with the wide range of legacy and external applications that
users will seek to take advantage of. The provenance data
can then be analysed using a range of tooling and techniques
depending both on what is appropriate given the complexity
of the functions the user has been executing, and any other
tooling constraints the user may have.

IV. ACKNOWLEDGMENTS

This work is funded by the Natural Environmental Research
Council and Microsoft. The author would like to thank Dr
Andrew Martin and climateprediction.net for all their help.

REFERENCES

[1] D. Goodman and A. Martin, “Scientific middleware for abstracted
parallelisation,” Oxford University Computing Laboratory, Tech. Rep.
RR-05-07, November 2005.

[2] D. Goodman, “Martlet; a scientific work-flow language for abstracted
parallisation,” in Proceedings of the UK e-Science All Hands Meeting
2006, S. J. Cox, Ed., National e-Science Centre. National e-Science
Centre, September 2006.

[3] ——, “Introduction and Evaluation of Martlet, a Scientific Workflow
Language for Abstracted Parallelisation,” in Proceedings of the 16th
International World Wide Web Conference, International World Wide
Web Conference Committee. ACM, May 2007.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley Publishing Company, 1995.

[5] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A character-
ization of data provenance.” in ICDT, 2001, pp. 316–330.

[6] D. Stainforth, J. Kettleborough, A. Martin, A. Simpson, R. Gillis,
A. Akkas, R. Gault, M. Collins, D. Gavaghan, and M. Allen, “Cli-
mateprediction.net: Design principles for public-resource modeling re-
search,” in 14th IASTED International Conference Parallel and Dis-
tributed Computing and Systems, Nov 2002.

[7] C. Christensen, T. Aina, and D. Stainforth, “The challenge of volunteer
computing with lengthy climate modelling simulations,” in Proceedings
of the 1st IEEE Conference on e-Science and Grid Computing, Mel-
bourne, Australia, December 2005.

[8] L. Moreau, B. Ludäscher, I. Altintas, R. S. Barga, S. Bowers, S. Calla-
han, J. George Chin, B. Clifford, S. Cohen, S. Cohen-Boulakia, S. David-
son, E. Deelman, L. Digiampietri, I. Foster, J. Freire, J. Frew, J. Futrelle,
T. Gibson, Y. Gil, C. Goble, J. Golbeck, P. Groth, D. A. Holland,
S. Jiang, J. Kim, D. Koop, A. Krenek, T. McPhillips, G. Mehta, S. Miles,
D. Metzger, S. Munroe, J. Myers, B. Plale, N. Podhorszki, V. Ratnakar,
E. Santos, C. Scheidegger, K. Schuchardt, M. Seltzer, Y. L. Simmhan,
C. Silva, P. Slaughter, E. Stephan, R. Stevens, D. Turi, H. Vo, M. Wilde,
J. Zhao, and Y. Zhao, “Special issue: The first provenance challenge,”
Concurr. Comput. : Pract. Exper., vol. 20, no. 5, pp. 409–418, 2008.

[9] R. Bird, Introduction to Functional Programming using Haskell, 2nd ed.
Prentice Hall, 1998.

[10] Apache Axis, Apache Software Foundation, 2005, uRL:
http://ws.apache.org/axis/.

[11] The Apache Jakarta Project, Apache Software Foundation, 2005, uRL:
http://jakarta.apache.org/tomcat/.

[12] The MONET Consortium, “Monet architecture overview,”
The MONET Consortium, Tech. Rep., 2003, uRL:
http://monet.nag.co.uk/cocoon/monet/.

[13] S. Parastatidis, J. Webber, P. Watson, and T. Rischbeck, “A grid
application framework based on web services specifications and
practices,” North East Regional e-Science Centre, Tech. Rep., 2003.
[Online]. Available: http://nersesc.ac.uk/projects/gaf

[14] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Se-
dukhin, D. Snelling, S. Tuecke, and W. Vambenepe, “The WS resource
framework,” Computer Associates International Inc and Fujitsu Limited,
HP and IBM and The University of Chicago, Tech. Rep., 2004.

[15] W3C, Simple Object Access Protocol (SOAP) 1.2, 2003, uRL:
http://www.w3c.org/TR/SOAP.

[16] P. Henderson and J. James H. Morris, “A lazy evaluator,” in POPL
’76: Proceedings of the 3rd ACM SIGACT-SIGPLAN symposium on
Principles on programming languages. New York, NY, USA: ACM
Press, 1976, pp. 95–103.

[17] L. Moreau, P. Groth, S. Miles, J. V. andJohn Ibbotson,
S. Jiang, S. Munroe, O. Rana, A. Schreiber, V. Tan,
and L. Varga, “The Provenance of Electronic Data,”
Communications of the ACM, Apr. 2008. [Online]. Available:
http://www.ecs.soton.ac.uk/ lavm/papers/cacm08.pdf

[18] Climate Data Analysis Tools, British Atmospheric Data Centre, uRL:
http://badc.nerc.ac.uk/help/software/cdat/.


