
Parallel Processing of Large-Scale XML-Based Application Documents on

Multi-core Architectures with PiXiMaL

Michael R. Head† Madhusudhan Govindaraju‡

Grid Computing Research Laboratory, SUNY Binghamton, NY

{†mike, ‡mgovinda}@cs.binghamton.edu

Abstract
Very large scientific datasets are becoming increasingly

available in XML formats. Our earlier benchmarking re-

sults show that parsing XML is a time consuming process

when compared with binary formats optimized for large

scale documents. This performance bottleneck will get ex-

acerbated as size of XML data increases in e-science appli-

cations. Our focus in this paper is on addressing this per-

formance bottleneck. In recent times, the microprocessor

industry has made rapid strides towards Chip Multi Proces-

sors (CMPs). The widely available XML parsers have been

unable to take advantage of the opportunities presented by

CMPs, instead, passing the task of parallelization to the

application programmer. The paradigms used thusfar to

process large size XML documents on uni-processors are

not applicable for CMPs. We present the design, imple-

mentation, and performance analysis of PiXiMaL, a par-

allel processing library for large-scale XML-data files. In

particular, we discuss an effective scheme to parallelize the

tokenization process to achieve an overall performance in-

crease when parsing large-scale XML documents that are

increasingly in use today. Our approach is to build a DFA-

based parser that recognizes a useful subset of the XML

specification and converts the DFA into an NFA which can

be applied on any subset of the input.

1 Introduction

The widespread adoption of Web services in e-science

middleware and large scale distributed applications is pri-

marily due its rich features including extensibility, flexibil-

ity, namespace qualification, data-binding to various lan-

guages, and support for wide variety of types. The focus

thus far in e-science middleware and distributed applica-

tion design has been on how the service-oriented function-

ality can be achieved using Web services standards. How-

ever, performance considerations for Web services is now

of critical importance as the volume of XML data used for

specification, communication, and data representation has

steadily increased over the years in both e-science and busi-

ness applications. For example, the MetaData Catalog Ser-

vice (MCS) [12] runs on top of a Web service that provides

functionality to store and retrieve descriptive information

(metadata) on millions of data items. Workflows based on

the XML specification format have emerged as critical tools

to facilitate in the development of complex large-scale sci-

entific applications such as mesoscale meteorology [5]. An-

other example is the International HapMap project that aims

to develop a haplotype of the human genome. The schemas

used to describe the common patterns in human DNA se-

quence variation can have tens of thousands of elements.

The XML files in the protein sequence database are close

to a gigabyte in size. Processing of such large-scale XML

documents has emerged as a significant bottleneck in the

overall application execution time of e-science applications.

It is thus critical to design new XML processing algorithms

that can process the emerging large-scale XML data sizes

in a scalable manner.

The nature of computing is rapidly changing with the

movement of the microprocessor industry towards chip

multi-processors (CMPs), commonly referred to as multi-

core processors. Web services based applications are ex-

pected to be extensively deployed on multi-core processors.

Use of the currently available Web services implementation

stacks can result in a severe impact on performance of ap-

plications when run on CMPs. Our previous benchmarking

work demonstrates that most implementations of Web ser-

vices do not scale well when the size of the XML document,

which needs to be processed, is increased [7, 8]. As mem-

ory access and latency can be the choking point in CMP

processors, this performance limitation will be exacerbated

on multi-core processors because performance gains need

to be mainly achieved by adding more parallelism rather

than serial processing speed.

In CMPs the on-chip core-to-core bandwidth and com-

munication latency are orders of magnitude faster than in

traditional chip-to-chip multiprocessing systems that are

typically used for parallel computing. The recent trends and

announcements from major vendors indicate that the num-

ber of cores per chip will steadily increase in the near future.

It is thus important to design XML-based e-science middle-

ware technologies to leverage the opportunities presented

by this trend and gracefully scale with the increase in the

number of cores on each processing node.

It has been shown that the current XML processing land-

scape does not apply parallelization techniques to XML

processing [7, 8]. While this was acceptable for small-sized

documents, it has emerged as a significant bottleneck in e-

science applications where the size of XML data can some-

times exceed size of available system memory. As a result,

our focus is on harnessing the benefits of fine grained paral-

lelism, exploiting SMP programming techniques to process

large-scale XML-based application documents, and design-

ing algorithms that scale well with increase in number of

processing cores.

Parallel compilation has been studied for many years [2,

9], investigating both compilers that generate parallel code

as well as compilers that divide work across multiple pro-

cessors. Yet despite this work, little has been applied to

related problems in XML parsing of large documents. This

can be attributed to two reasons: (1) modern processors are

“fast enough” for most parsing tasks for small-sized doc-

uments; (2) it is challenging to automatically identify the

parts that need to be serially scanned and those that can be

parallelized.

The work presented in this paper is based on our hypoth-

esis that the scanning task can be parallelized in an efficient

way for large XML documents. The motivating factor for

our work is the fact that enormous XML files (upwards of

100MB) are becoming prevalent in scientific applications,

and new tools need to be developed to address this chal-

lenge. Additionally, with the popularization of multi-core

processors and the disparity between processor and memory

speed, we expect that substantial benefits can be uncovered

by utilizing more cores during XML document processing.

The specific contributions of our work include:

• We propose techniques to modify the lexical analy-

sis phase for processing large-scale XML datasets to

leverage opportunities for parallelism.

• We contrast the effect of our techniques on various pro-

cessor configurations. We also find the practical limits

for this particular parallelization approach, testing on

a variety of systems, under a variety of conditions.

• We study efficient use of multiple threads to read from

a large applications data file to achieve gains in overall

throughput.

• We study how the complexity of large-scale XML data

affects possibilities for parallel processing on multiple

cores.

• We model the work done by our parser with tests to

find the practical limits of our parallelization approach.

The reference implementation of the WSRF specifica-

tion, available from the Globus Alliance website is based

on the toolkit. The architecture of the reference implemen-

tation is modular in nature and facilitates the use of special-

ized pluggable modules for various various aspects of Web

services implementation stack. The work presented in this

paper can be incorporated as an optimization module in the

WSRF implementations for the XML processing phase.

2 Related Work

A wide range of implementations of XML parsers is

available, including Xerces (DOM and SAX), gSOAP[13],

Piccolo, Libxml, and XPP3. Simple and straight for-

ward implementations of XML parsing paradigms and di-

rectly using the available XML processing toolkits result

in a severe impact on performance of current and emerg-

ing e-science applications [1, 3, 8], To address the perfor-

mance limitation, several novel efforts to analyze the bot-

tlenecks and address the performance at various stages of

a Web services call stack have been discussed in the litera-

ture [1, 3, 6, 13]. These optimizations are however applica-

ble only in the uni-core case.

Recent work by Zhang et al [14] has demonstrated that

it is possible to achieve high performance serialized pars-

ing. They have developed a table driven parser that com-

bines the parsing and validating an XML document in a very

efficient way. While this technique works well for serial

processing, it is not tailored for processing on multi-core

nodes, especially for very large document sizes. One related

project, MetaDFA [10, 11] toolkit, presents a paralleliza-

tion approach that chiefly uses a two-stage DOM parser.

It conducts pre-parsing to find the tag structure of the in-

put before, or possibly pipelined with, a parallelized DOM

builder run on its output (a list of document offsets of start

and end tags). Our toolkit, PIXIMAL , however, generates

SAX events and thus serves a different class of applications

than MetaDFA. Additionally, PIXIMAL conducts parsing

work dynamically, and generates as output a sequence of

SAX events. This results in larger number of DFA (Deter-

ministic Finite Automata) states, and more scope for opti-

mizations for different class of application data files. For

distributed filesystems, PIXIMAL is designed to work as

a MapReduce application: it can distribute work to nodes

that have the data and executing speculative NFAs (Non-

deterministic Finite Automata) on portions of the input file

that don’t include the beginning.

3 Multi-Core Case: Use of DFAs in Parsing

In general, all parsers and compilers begin by tokeniz-

ing the input characters of the file into syntactic tokens that

are used later in the parse phase. This process is generally

(and efficiently) implemented with a deterministic finite au-

tomata (DFA)-based lexical scanner – whether hand coded

or generated by a tool such flex. The scanner’s job is to

match different sections of the input to different parts of the

language. For example, in a given XML parser, the scanner

might recognize a ‘<’ and insert a constant representing the

LEFT ANGLE token, and a ‘ ’ character as a WHITESPACE to-

ken. In addition to recognizing keywords composed of more

complicated sequences of characters (‘id’ or ‘</’), the to-

kenizer also demarcates the remaining input characters that

are not contained in keywords and reliably group them into

words. Every time the scanner recognizes a token, it must

perform some action to store the token or pass it to a higher

level part of the parser. The various token types and key-

words can be defined as regular expressions, which can be

readily (both theoretically and practically) converted into a

DFA-based scanner. The DFA representation is chosen be-

cause of its efficiency: each character in the input need be

read only once, and there is very little overhead on a per-

character basis.

Unfortunately, DFAs are inherently serial in nature.

It must start at the beginning of the input and proceed

character-by-character until the end. It is not possible to

simply split the input in two and process the first and sec-

ond halves independently; there is no way to know in which

state to start the DFA operating on the second half of the

input.

In this way, at bottom, all the standard XML parsers are

limited to a serialized indivisible scanner. For small files

and desktop-style mass storage devices, this is acceptable,

even desirable, because the scanner is fast – especially so

for small input files – and because desktop mass storage

access algorithms work well reading from a single stream

from disk. If multiple threads concurrently access different

disk blocks, many more read head movements will be re-

quired and overall performance will suffer as the otherwise

independent threads will be waiting more often for data. In-

deed, desktop users (whose applications are generally I/O

bound) may see increasingly smaller performance gains as

more and more cores are packed onto chips.

However, data-sets of e-science applications running on

cluster-class hardware, are much more amenable to paral-

lelization. In these circumstances, (XML) input files can be

very large, larger than main memory, and mass storage is

more likely to be arranged in higher performance configu-

rations (e.g., RAID, NAS, SAN) which can more efficiently

feed multiple data streams to concurrent threads. Our re-

search results can be readily applied to these cases.

3.1 Speculative Execution with an NFA

We partition the input XML document (stored in string

format as P) into N substrings, P1,P2, ...PN , run the usual

DFA-based lexical analyzer (LDFA) on substring P1 con-

currently with N − 1 speculative scanners on substrings

P2,P3, ...PN . As mentioned in §3, a DFA-based scanner can

only be run on an input by starting at the initial state of the

DFA at the initial character in the input. The problem is

that it is not possible to know which state to start the LDFA

in for any substring other than P1. To address this issue, we

have designed a transformation that can be applied to create

a scanner that can be applied to any of the substrings.

A DFA requires that only one state be active at a given

time, whereas an NFA can be active in any number of states.

For the first character in the ith partition, Pi, there is some

state of LDFA, Si, which LDFA would be in after traversing P

up to Pi. If Si were known ahead of time, we could simply

start LDFA in Si at the beginning of Pi and continue process-

ing. Unfortunately, it is not possible to know this ahead of

time. However, if LDFA is transformed into an NFA, LNFA,

where every state is a start state, it can be applied to any Pk

and perform some scanning work. In this way, LNFA begins

processing along multiple execution paths through LDFA.

Further, there is one correct execution path that started with

Si, which remains unknown until all the lexical analyzers

running on P up to Pi complete.

Along each execution path e, there is a corresponding

traversal through LDFA, which would trigger some sequence

of actions, Ai,e, as the DFA recognizes various tokens. Be-

cause each LNFA runs without the knowledge of which state

it should have been in (i.e., Si), it cannot reliably perform

the actions of Ai,e, because the path recognizing the state

might not be on the correct execution path. So for each ex-

ecution path e, a NFA starting at some point i must store

all Ai,e until Si is determined. Unfortunately, most of the

stored actions for LNFA must be discarded, which implies

that some work will be wasted.

4 Tests and Testing Environment

The XML input for all the test results presented here

is SwissProt.xml[4] which encodes a protein sequence

database. It is roughly 109 megabytes, contains 2,977,031

elements, 2,189,859 attributes, and has a maximal tree

depth of 5. All tests mmap(2) this input file to reduce mem-

ory usage and eliminate many string copies. In all cases,

input is read from the local disk – not from a network file

system. Additionally, the input file is pre-read into the oper-

ating system’s disk buffer, so the tests stress the CPU/RAM

interface. The tests are designed to model the PIXIMAL

approach described in §3.

We run these tests on a range of differently configured

nodes:

• 2× uniprocessor – 1U nodes in a cluster, each of which

has two 3.2Ghz Intel Xeon CPUs, 4 gigabytes of RAM

and run a 64 bit version of Linux 2.6.15. Results on

this class of machines are taken by averaging the tim-

ings found on 4 of these nodes. The filesystem in use

in the test directory here is reiserfs.

• 2× dual core – 1U nodes in a cluster, each of which has

two 2.66Ghz Intel Xeon 5150 CPUs, 8 gigabytes of

RAM and run a 64 bit version of Linux 2.6.18. Results

on this class of machines are taken by averaging the

timings found by running the test on 10 of these nodes.

The filesystem in use in the test directory here is xfs.

• 2× quad core – 1U nodes in a cluster, each of which

has two 2.33Ghz Intel Xeon E5345 CPUs, 8 gigabytes

of RAM and run a 64 bit version of Linux 2.6.18. 10

nodes from this cluster were selected to perform this

test and the results presented reflect the mean timings

taken. The test directory on these machines is backed

by a xfs filesystem.

4.1 Memory Bandwidth Test

An N-way parallel parser would concurrently be read-

ing using N different threads, so this tests checks whether

the memory subsystem can provide substantial bandwidth

when sequentially reading from a very large input.

This test has two parameters: split percent and thread

count. The split percent is particular to the PIXIMAL ap-

proach: it denotes the percent of input that is directed at

the DFA thread. The number of threads defines the number

of concurrent automata: 1 DFA and number o f threads−
1 NFAs. The balance of the input (input size ∗ (1 −
split percent/100)) is divided evenly among the NFA

threads. In the case that number o f threads = 1,

split percent is overridden to be 100% in order to ensure

that the entire input is read.

In this test, the DFA is modeled by a thread that reads

each byte of memory in its partition of the input and looks

up a value in a table indexed by that byte. The NFAs are

modeled by threads that do precisely the same task on their

given partition of the input.

4.2 State Scalability Test

The speculative threads in a parser built using NFAs will

have substantially more work than the DFA thread. This

test models an aspect of that extra workload – the number

of states that the NFA must initially consider – to examine

the affect of language complexity on the efficacy of this ap-

proach.

This test has one more parameter than the memory band-

width test: the size (number of states) of the DFA. Here,

the PIXIMAL DFA is modeled as a thread that has a

state number which is initialized to 0 and takes values be-

tween 0 and d f a size− 1 . The next state number is cal-

culated for each byte of input by looking up the current

state number and current byte in a two dimensional array.

The NFAs are modeled by threads that start with an array

of d f a size−1 start values, each initialized to a number be-

tween 1 and d f a size− 1. An NFA will never start in the

state designated by 0, because that is a start state that is only

valid before the DFA begins reading. The NFA recalculates

each entry of the state array for each byte of input using the

same rule as the DFA.

5 Results and Discussion
The focus of PIXIMAL is to achieve “scalable paral-

lelism”, wherein processing of large-scale XML data con-

tinues to get good performance as the number of cores in-

creases. The performance results are presented for classic

2× uniprocessor (two total cores), 2× dual core (four total

cores), and 2× quad core (eight total cores) configurations

(all SMP), as these are the processor configurations that are

in use today. The trends on quad-core and 8-core nodes

are good indicators for how PIXIMAL will scale to a larger

number of cores, as they become available.

It is to be noted that the PIXIMAL parallelization ap-

proach of providing scalability over multiple cores may

be applicable to other table-driven or DFA-based parsers.

Also, though we have conducted extensive tests on large-

scale XML documents, the approach is tailored to poten-

tially work for a lexical analyzer for any structured applica-

tion data format.

In the results below, speedup is always calculated using

the formula: T1/TP, where T1 is the mean time taken when

no NFA threads are scheduled and TP is the mean time taken

at the particular data point – over all test runs where the test

parameters and hardware configuration are identical. Mean

raw timing values are used to provide an overview of the

actual result space, while speedup is used to make certain

results comparable across hardware.

5.1 Memory Bandwidth Results
The memory bandwidth test models the memory work

being done by the DFA thread and the NFA threads by se-

quentially reading the input and passing it through a table.

NFA threads do the same amount of work as the DFA and

are set to read the sections of input that the actual PIXI-

MAL NFA would, and we clearly see performance wins by

adding extra threads/CPUs to the task of reading the input.

This suggests that we’re not causing a serious reduction in

cache performance simply by reading from multiple sources

of input. It also demonstrates that access to main memory

is not a major limiting factor in this approach: each thread

is still able to get enough data to do its (small amount of)

work. This scales with the number of cores up to around

6-7 cores in the 8-core case.

Figure 1 examines the entire parameter space of this test

on the 2×-quad core configuration. All split percents and

thread counts are displayed over the range of values tested.

This provides a great deal of visual information about the

test space. It is quite clear that adding threads can provide

an advantage when there are spare cores to use. It is also

instructive to note that once the best time is achieved by

for a given split percent, adding more threads does not de-

tract much from overall performance. This may be due to

high performance I/O subsystems and file systems on these

cluster nodes. The best performing configuration is the one

denoted by the deepest part of the “well.”

Number of Threads

5

10

15

S
pl

it
P
er

ce
nt

20

40

60

80

T
im

e
 (s

)

4

6

8

10

12

Figure 1. Input read times of the memory band-

width test on an 2× quad core configuration (8

total cores). Note that adding threads contin-
ues to improve performance, though returns

diminish past the 6th thread.

2 3 4 5 6 7 8

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Number of threads

S
p

e
e

d
u

p

Split Percent

52 %

36 %

24 %

20 %

12 %

16 %

4 %

Figure 2. Speedup comparison on the 2×
quad core (8 total cores) configuration for

the memory bandwidth test. split percents are

selected to maximize the speedup for each

number of threads. Performance gains trail

off after 6 threads are given to the test

2 3 4 5 6 7 8

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Number of threads

S
p

e
e

d
u

p

cores (split %)

2 (52 %)

4 (28 %)

8 (12 %)

Figure 3. Best speedup achieved for each

processor configuration, together with the

split percent that achieves that maximal
speedup. Adding more cores continues

to improve performance, allowing a greater

portion of the input to be divided up. Memory

bandwidth between the processor and the

mmap(2)ed file is not a strict limiting factor on

thread-scalability.

Figure 2 plots the speedup (over the DFA-only case) of

the best split percent for each of varying thread counts on

the 2× quad-core systems. The split percents plotted are

chosen because they maximize speedup (compared to all

other split percents) at the thread counts plotted. This plot

reaffirms the conclusions from the three dimensional plot:

shifting the split percent back affords greater scalability,

even up to 6 threads on 8 core machines. They also demon-

strate that given an optimal split for a chosen number of

threads, performance does not degrade substantially after

passing that split percent. Figure 2 additionally demon-

strates how returns do eventually diminish as more than 6

threads are used.

Figure 3 plots the speedup for the best-case speedup for

each CPU configuration, for its performance on the best-

case split percent. This facilitates comparison across con-

figurations. The 4 and 8 CPU cases fare worse than the 2

CPU case at first just because this split percent is fixed for

each configuration in this plot. This approach was chosen

to show how performance would be affected by choosing

a particular configuration based on the detected machine

type. It is clear that even 8 total CPU configurations can

potentially provide performance improvements, even with

current memory and I/O subsystems.

The structure of these tests imply that conclusions drawn

N
u
m

b
e
r

o
f
D

F
A

 s
ta

te
s

5

10

15

Number of threads 5

10

15

T
im

e
 (s

)

15

20

25

30

35

Figure 4. The lowest input read times for all

DFA sizes and thread counts for the 2× dual

core (4 total cores) configuration. For a given
DFA size and number of threads, there is

a range of possible split percents that could

be chosen. The split percent is chosen for

each configuration of DFA size and number

of threads to minimize the time.

from them apply to most parallel data access algorithms on

a single machine. Each thread does the minimal amount of

work so that the test is effectively working just the memory

subsystem. If another data file type is to be read in paral-

lel by multiple threads or processes each operating sequen-

tially, such an input reader will need to do at least this work.

If the workload is dominated by memory access, then these

results will apply directly and it is unlikely that attempting

to utilize more than 6 threads will yield much benefit on

machines that are configured like those tested here.

5.2 State Scalability Results

The state scalability models the amount of work each

combination of DFA/NFA threads would have to do given

a certain language/parser complexity. We define DFA com-

plexity by the number of states (N) in the DFA. An NFA

(for this particular test) based on a DFA of complexity N

will need to do O(N) times more work than the DFA: for

each state in the DFA, the NFA must calculate the next state

for each character of input, whereas the DFA must only cal-

culate the next state for one state, namely the distinguished

start state.

Figures 4 and 5 show the best timings for each combina-

tion of DFA complexity and thread count. It is interesting

to note that for most cases, it is possible to improve over-

all performance by taking advantage of unused cores, even

when the number of threads outnumbers the cores avail-

able. There is also a significant contrast between the 2×
dual core and 2× quad core configuration: the 2× quad

core case shows a stable speedup, which is not indicated

N
u
m

b
e
r

o
f
D

F
A

 s
ta

te
s

5

10

15

Number of threads 5

10

15

T
im

e
 (s

)

10

20

30

40

Figure 5. Input total read times for 2× quad

core (8 total cores) configurations. In con-

trast to figure 4, there is a continued perfor-

mance increase over the space of parameters

tested.

in the 2× dual core case. It is also apparent that the best

speedup obtainable for a given DFA complexity is when

the number of threads matches the number of cores. This

is not a clear result of the memory bandwidth test because

the extra NFA threads did not add much extra work. Here,

each additional NFA does add a substantial amount of work,

which increases along with the complexity of the DFA. The

final item to note on these perspective graphs is the steep

ledge around DFA size 6. This indicates a major crossover

point where the complexity of the NFA begins to take over

the bulk of the work from the memory subsystem. Greater

speedup is more readily obtainable before this point. The

ledge above 4 and 8 threads on the respective figures also

becomes more pronounced, again indicating that a signifi-

cant crossover point has been met.

Figures 6 and 7 are plotted similarly to figure 2. That

is, given a configuration (number of cores, number of DFA

states), a split point is chosen that applies for all threads.

The split point, which can be thought of as the globally op-

timal split point for a given DFA size is chosen to maximize

the speedup across all thread counts shown on the horizontal

axis. This is done to show how the parser in a given config-

uration acts as the number of NFAs used is increased. Be-

cause of this, there is a slowdown shown for some cases. In

those cases, a better split point could have been chosen that

would demonstrated some speedup, specifically, the split

point chosen for display for that configuration in figure 4 or

5. A variety of DFA state sizes are plotted which reinforce

a conclusion from above: there is a major changeover when

DFA complexity is greater than 6. Examining the globally

optimal split percent for each state suggests why this is so:

the split point must shift much farther into the document.

For example, in the 2× dual core case, a 6 state DFA yields

2.0 2.5 3.0 3.5 4.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Number of Threads

S
p
e
e
d
u
p

DFA state size (w/split %)

2 states, 28 %

4 states, 32 %

6 states, 36 %

8 states, 56 %

10 states, 60 %

12 states, 64 %

Figure 6. Speedup for a variety of DFA sizes

for 2× dual core (4 total cores) configura-

tions. This test models a part of the ex-

tra work done by the NFAs over the DFA.

For each DFA size, the split percent is cho-

sen which provides the maximal speedup for

some number of threads. It is clear that NFAs
built from larger sized DFAs incur stuff per-

formance penalties.

2 3 4 5 6 7 8

1
2

3
4

5

Number of Threads

S
p

e
e

d
u

p

DFA state size (w/split %)

2 states, 12 %

4 states, 16 %

6 states, 20 %

8 states, 36 %

10 states, 40 %

12 states, 40 %

Figure 7. Same as figure 6, but for the 2×
quad core (8 total cores) configuration. 6

states appears to be a good DFA size for this

particular model of the parallel parser.

an optimal split percent of 36%, slightly more than that

of the 4 state DFA case. The 8 state DFA yields an opti-

mal split percent of 56%: the best performance is achieved

here when the DFA thread processes over half of the input.

Under such circumstances, it will be impossible to achieve

even a 2× speedup over the single threaded DFA case, no

matter the number of cores available. The situation is sim-

ilar on the 2× quad core hardware. At between 6 and 8

states, the optimal split percent jumps disproportionately,

again due to this crossover where read time begins to be

dominated by the complexity of the DFA/NFA rather than

simply reading the input from memory.

Of special note here is that in figure 7, the maximal

speedup is greater than that shown in 3 (5 vs. 3.5). This

is likely due to the fact that the baseline comparison case

(the DFA model running over the entire input) is doing sub-

stantially more work, so dividing that work out to the NFAs

is a significant win, particularly when the number of states

is small, because the extra work done by the NFAs is not

large. In other words, the NFAs are doing O(N) more work

than the DFA, but when N is small, the constants dominate

and the constants here are small.

5.3 Conclusions

The PIXIMAL framework allows application program-

mers to quantify the exact number of threads, processing

cores, and split percentage for each core, that should be used

for their application data files.

The PIXIMAL approach to reading large-scale struc-

tured data files, such as XML documents, effectively uses

the available cores on a node. Based on our tests on a variety

of CPU configurations, we conclude that even with current

memory and I/O subsystems, processing large-scale data

files can potentially provide performance improvements.

Memory bandwidth between the processor and mmap(2)ed

files is not a strict limiting factor on thread-scalability.

Memory-bandwidth tests show that when multiple

threads process application data, such as structured XML

files, the performance scales to 6-7 cores, in the 8-core

case. Also, adding threads continues to improve perfor-

mance upto 6 threads, in the 8-core case.

The division of work between threads plays a key role

in enhancing the performance. Shifting the split percent

back affords greater scalability, up to 6 threads on 8 core

machines. Given an optimal split for a chosen number of

threads, performance does not degrade substantially after

passing that split percent. PIXIMAL framework can be

use to determine the major crossover point where the com-

plexity of the NFA begins to take over the bulk of the work

from the memory subsystem.

It is critical that the complexity of the DFA remain low.

Our tests indicated that such a DFA should have no more

than 6 states. A lower complexity DFA implies a lower

complexity language: a language with less syntax. This

implies that if a given e-science application file is guaran-

teed to use a restricted set of XML features (instead of at-

tributes, define sub-elements, for example), the data can be

efficiently processed in parallel on a multi-core architecture.

PIXIMAL framework can be used to guide application de-

velopers to design the optimial structure for large-scale data

files.

6 Future Work

In future work we plan to thoroughly study pre-fetching

and piped implementation techniques that can enhance the

performance of PIXIMAL . We will study the effect of op-

erating system-level caching on the parsing process of large

documents that may be read more than one time. We will

develop algorithms for optimal layouts of DFA tables in

memory to efficiently process frequently occurring transi-

tions. We will also accurately model and obtain perfor-

mance data for the additional work done by NFAs in PIX-

IMAL including detecting and queuing SAX events that

need to be played back when its initial state is finally calcu-

lated. We will build a MapReduce extension of PIXIMAL

to process large documents that are stored in a distributed

file system. We will further study the scalability of PIXI-

MAL as processors with multiple cores (greater than 8) are

available for research and testing purposes.

References

[1] N. Abu-Ghazaleh and M. J. Lewis. Differential Deserializa-

tion for Optimized SOAP Performance. In SC ’05: Proceed-

ings of the 2005 ACM/IEEE conference on Supercomputing,

page 21, Washington, DC, USA, 2005. IEEE Computer So-

ciety.

[2] A. V. Aho and J. D. Ullman. The Theory of Parsing, Trans-

lation, and Compiling. Prentice Hall Professional Technical

Reference, 1972.

[3] K. Chiu, M. Govindaraju, and R. Bramley. Investigating

the Limits of SOAP Performance for Scientific Computing.

In HPDC ’02: Proceedings of the 11th IEEE International

Symposium on High Performance Distributed Computing,

page 246, Washington, DC, USA, 2002. IEEE Computer So-

ciety.

[4] Expert Protein Analysis System. SwissProt curated protein

sequence database. http://www.cs.washington.edu/

research/xmldatasets/www/repository.html.

[5] D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy,

Y. Simmhan, and A. Slominski. On Building Parallel &

Grid Applications: Component Technology and Distributed

Services. In CLADE ’04: Proceedings of the Second Inter-

national Workshop on Challenges of Large Applications in

Distributed Environments, page 44, Washington, DC, USA,

2004. IEEE Computer Society.

[6] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley,

and D. Gannon. Requirements for and evaluation of RMI

protocols for scientific computing. In Supercomputing ’00:
Proceedings of the 2000 ACM/IEEE conference on Super-

comput, page 61, Washington, DC, USA, 2000. IEEE Com-

puter Society.

[7] M. R. Head, M. Govindaraju, A. Slominski, P. Liu, N. Abu-

Ghazaleh, R. van Engelen, K. Chiu, and M. J. Lewis.

A Benchmark Suite for SOAP-based Communication in

Grid Web Services. In SC ’05: Proceedings of the 2005

ACM/IEEE conference on Supercomputing, page 19, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[8] M. R. Head, M. Govindaraju, R. van Engelen, and W. Zhang.

Benchmarking XML Processors for Applications in Grid

Web Services. In SC ’06: Proceedings of the 2006

ACM/IEEE conference on Supercomputing, page 121, New

York, NY, USA, 2006. ACM Press.

[9] H. P. Katseff. Using data partitioning to implement a

parallel assembler. In PPEALS ’88: Proceedings of the

ACM/SIGPLAN conference on Parallel programming: ex-

perience with applications, languages and systems, pages

66–76, New York, NY, USA, 1988. ACM Press.

[10] Y. Pan, W. Lu, Y. Zhang, and K. Chiu. A Static Load-

Balancing Scheme for Parallel XML Parsing on Multicore

CPUs. In CCGRID ’07: Proceedings of the Seventh IEEE

International Symposium on Cluster Computing and the

Grid, pages 351–362, Washington, DC, USA, 2007. IEEE

Computer Society.

[11] Y. Pan, Y. Zhang, K. Chiu, and W. Lu. Parallel XML Parsing

Using Meta-DFAs. In Third IEEE International Conference

on e-Science and Grid Computing (e-Science 2007), pages

237–244, December 2007.

[12] G. Singh, S. Bharathi, A. Chervenak, E. Deelman,

C. Kesselman, M. Manohar, S. Patil, and L. Pearlman. A

Metadata Catalog Service for Data Intensive Applications.

In SC ’03: Proceedings of the 2003 ACM/IEEE conference

on Supercomputing, page 33, Washington, DC, USA, 2003.

IEEE Computer Society.

[13] R. van Engelen. gSOAP: C/C++ Web Services and Clients,

2007. http://www.cs.fsu.edu/~engelen/soap.html.

[14] W. Zhang and R. van Engelen. A Table-Driven Stream-

ing XML Parsing Methodology for High-Performance Web

Services. In ICWS ’06: Proceedings of the IEEE Interna-

tional Conference on Web Services (ICWS’06), pages 197–

204, Los Alamitos, CA, USA, 2006. IEEE Computer Soci-

ety.

