
Virtual Simulation Objects Concept as a
Framework for System-Level Simulation

Sergey V. Kovalchuk, Pavel A. Smirnov
e-Science Research Institute,

National Research University of IT, Mechanics and Optics
St. Petersburg, Russia

kovalchuk@mail.ifmo.ru

Sergey S. Kosukhin, Alexander V. Boukhanovsky
e-Science Research Institute,

National Research University of IT, Mechanics and Optics
St. Petersburg, Russia

Abstract — This paper presents Virtual Simulation Objects
(VSO) concept which forms theoretical basis for building tools
and framework that is developed for system-level simulations
using existing software modules available within cyber-
infrastructure. Presented concept is implemented by the software
tool for building composite solutions using VSO-based GUI and
running them using CLAVIRE simulation environment.

Keywords-simulation; modelling; composite application;
workflow; expert knowledge

I. INTRODUCTION
Contemporary e-science tasks often require large amount of

computer simulations to be performed. The simulation process
today is often characterized not only by computational
complexity, but also by structural complexity: solving the e-
science tasks requires composition of resources from different
classes – hardware, software, informational, even human
resources. All these resources should be integrated and
managed in the appropriate way to solve particular complex
simulation tasks. The issue of integration resources within one
composite solution becomes more complex as there is a great
diversity of resources to be integrated.

There exists a lot of simulation software already developed
in almost every problem domain. Some of them are rather
modern, but some are developed decades ago and still are in
use as they have earned the trust of domain specialists.
Considering integration issues both legacy and modern
software pieces are to be integrated within composite solutions.
One of the common ways for collecting the software within
one environment is offered by problem solving environment
(PSE) concept [1]. But still there are two problems which occur
while solving the integration issue. Firstly, taking into account
huge diversity in technologies, execution platforms, and data
formats etc. it is still a great challenge to build large composite
application even within a PSE. Secondary, there are difficulties
related to the use of the existing third-party software with a
lack of knowledge about its functionality, and internal features.

Looking at contemporary computational resources we can
also see high level of diversity in architectures, technologies,
supported software etc. Moreover today we have an ability to
combine different computational resources using such
approaches as metacomputing, Grid [2], or Cloud [3]. In this

case the problem of integration becomes more important as we
should take care of performance issues in heterogeneous
computational environment because of computational intensity
of e-Science software.

Today common approach for building composite solutions
using diverse resources is based on the workflow structure [4]
which allows calling integrated software pieces within one
algorithm using software-as-a-service (SaaS) approach. But
contemporary trends in e-science show interest to more system-
based approach for building investigation process (see e.g. [5]):
instead of running several procedures arranged within
workflows, we probably need to make a shift to exploring the
whole system within the simulation-driven approach. This
issue becomes much more topical when interdisciplinary tasks
are concerned. This kind of tasks requires new and more
complex approaches, which need knowledge from many
problem domains to be combined within one solution.

Thus the mentioned paradigm shift leads us to more
domain-specific and more general way of system analysis than
the workflow-based approach. This may be claimed because
the investigated system and its properties belong to the
problem domain, while workflow in fact is the object much
more related to IT-domain. Moreover as the end-users of e-
science solutions are domain specialist whose interest is
exploration of domain-specific system, the new approach may
lead us to more user-friendly solutions and platforms.
Nevertheless taking into account the mentioned issues of
resource integration and composite solution building, the new
approach to building composite solution is required. This
approach should a) allow domain-specialists to build the
interactive model of system being explored; b) run the
simulation for getting required parameters as a results.

In this paper we present the Virtual Simulation Object
(VSO) concept which is devoted to manage the mentioned
issues, by using domain expert knowledge for a) system-level
model construction and b) running simulation process in a
hidden way using the defined model. This concept is proposed
as an extension to Intelligent PSE (iPSE) concept [6], which
offers the domain-specific knowledge-based approach to use
cyber-infrastructure for running simulation. iPSE concept and
platform based on it are developed and used by e-Science
Research Institute during several projects within last years. The
remaining structure of the paper is as follows. In section II the

mailto:kovalchuk@mail.ifmo.ru

Virtual Simulation Objects concept is described with more
details. Section III shows implementation of the concept as an
extension to CLAVIRE platform, which is based on iPSE
concept. Section IV presents discussion on features of VSO
and related fields of knowledge. Section V claims conclusions
on VSO concept and current state of its implementation.

II. VIRTUAL SIMULATION OBJECTS

A. Conceptual Requirements
The main idea behind VSO concept is to develop an

approach for domain-specific system’s description, which
allows to run simulation and to use their results as
characteristics of the explored system. Within VSO concept
system is described as a set of objects, which interact with each
other. Each of the VSOs is related to some real-world object,
which forms a real system. So the set of VSOs can be
considered as an image of system to be investigated using
simulation. This approach should response to the following
requirements:

1) System’s description should be considered as a structural
model of investigated system, containing the interactive
objects. Each object is described by a set of characteristics,
which are simulated by a set of interconnected models. Each
model can be implemented by a composite application, which
include calling of particular software. System description itself
can be processed as VSO, so the VSO entity can be considered
as a hierarchical structure. System description should allow to
manage the simulation process, performed using resources
within the available cyber-infrastructure.

2) VSO should contain knowledge to support
interconnection with other VSOs and to run simulation within
composite solution automatically. So VSO needs to be a
distributable set of knowledge which can be integrated within
processing system to make it support simulation of particular
objects. To do that the set of knowledge should include
following subsets: a) set of domain-specific knowledge, which
defines used simulation models, object input and output
parameters; b) set of technological knowledge, which allows
performing simulation in an automatic way; c) set of task-
related knowledge, which allows to process the integrated
composite solution, defined in relation to system’s description.
The goal of these knowledge sets’ usage is to make system’s
description interpretable in two ways: a) the system should
have sense within a problem domain, so the user having the
knowledge within this domain should intuitively understand
the structure and its usage; b) the description should be
machine-interpretable so the simulation process can be
performed in an automatic way.

3) Typical e-science task consists of three stages: modeling,
simulation and result analysis. VSO concept should present
continuous technological and informational support for all
three stages of this process. System description should be core
structure for performing all three stages: define system’s
structural mode by selections VSOs, tune their parameters and
interconnect them; automatically perform simulation process
according to the defined structure and provided data; present
the simulated data available for analysis and its visualization

arranged with the system’s structure. The better way to do this
is to give the system’s structure a graphical interactive
representation, which allows user to perform all this stages.

B. Usage of Knowledge
VSO concept would be impossible without strong usage of

expert knowledge. There are three main domain of knowledge
involved into solving e-science problems: problem domain, IT
domain and general problem solving domain. Within iPSE
concept [6] the first two classes of knowledge are formalized.
That allows providing automatic processing of tasks expressed
using abstract workflows (AWF), which describes the
workflows with specification of software packages, domain-
specific methods and parameters. With the use of knowledge
AWF is translated into concrete workflow (CWF), which
defines calling particular services using input data compiled
with the provided domain-specific parameters. This approach
uses a) knowledge on parameters of available software and
theirs domain meaning; b) knowledge about performance of
available software running on different hardware architecture
(that allows to tune running parameters to gain better
performance); c) knowledge about available platforms and
running mode (this part of knowledge allows to adopt the
running parameters to the particular hardware); d) collection of
the best practices of running software to provide the user with
the prepared patterns for solving of different domain-specific
tasks.

There exist the extensions for iPSE concept which are
oriented to the use of the third knowledge domain –
knowledge which allows solving domain-specific problems
with general approach. We use the following conceptual
hierarchy to describe simulation process:

1) Simulated object, which represents the main entity,
which is explored during simulation. The object can be
concerned as a composite entity, or system of objects. In this
case the simulation process might be defined for whole
composition or for separate objects, with explicit definition of
theirs interaction. The explored system can be concerned as a
composition of the objects.

2) Simulated model, which describes a set of static and
dynamic characteristics of the object and can be used to
explore it. The model can be defined as static if it describes
object’s structure within a fixed moment of time. Models of
this type can be used for structural analysis of the system. In
case the model describes evolution of the system within the
time domain it is defined as dynamic.

3) Method can be defined as imperative description of the
model usage process. With the given input parameter set, the
method allows to calculate output model parameters. Methods
are implemented in simulation software as algorithms for
solving some particular domain problem. Considering this
hierarchy the problem can be defined as a composition of
object description and model.

4) Software packages are used as implementations of the
defined methods in form of an algorithm. Usually this kind of
software is developed by the domain specialists. Often there is

a huge amount of software with different variants of the same
method implementation.

5) Service within a distributed computational environment
(in case we are using SaaS approach) can be considered as the
software deployed on computational resource (hardware or
virtual machine). Services are the low-level elements of
regular workflows.

Most modern distributed simulation environments work on
level 5 (services) of this hierarchy. More advanced
environments and PSEs get to the level 4 (software packages).
General iPSE concept covers level 3 (methods) which allows to
call domain-specific methods within AWFs. One of the
extensions to iPSE concept [7] allows to compare and to select
models and methods according to the quantitative domain-
specific quality estimation based on the analysis of provided
data and interactive dialog with the user. So this extension
allows operating on levels 2 and 3. Concerning this hierarchy
VSO concept is developed as the conceptual extension which
works on levels 1 to 3. Thus, the knowledge used within this
extension should contains information on the explored objects,
related models and should be linked to the lower levels of
presented conceptual hierarchy to make a simulation running
available to the user.

Within VSO concept we define the following structures,
which are used to represent knowledge within ontology
structure:

1) Virtual Simulation Objects themselves. This structurual
entity is used to organize simulation models and to define
structure of the explored system’s virtual representation.

2) VSO data, which can be defined by the user, or
obtained by running the simulations. It can be devided into
subgroups according to the processing style: a) bases –
domains for defining other parameters of object; b)
parameters – data that define the objects (doesn’t change
during the simulation); c) values – data processed during the
simulation.

3) Simulation models, related to defined VSO, which can
use VSO data as the input and output values. Models as well
as data should be tunable by switching on/off and defining
some additional options.

4) Simulation scenario, define the variations of models
usage, which can differ by the input and output sets as well as
the options set. Thus, together with the implemented method,
the simulation scenario define relations between the model
and available values within VSO.

5) Scenario implementation links the simulation scenario
with available software using domain-specific parameters.
Parameters of software running can be either set directly
within the scenario, or defined as a model-level option, or
obtained as a value within VSO. This piece of knowledge
define the parts of composite simulation software to be run
using iPSE-based environment. Thus, the scenario
implementation can be defined as a parts AWF.

The entities described above define the structure of VSO
which will be described in the next section.

C. Virtual Simulation Obects Structure
The structure of virtual simulation object can be considered

as a tuple:

 EMQVBVSO ,,,,= , (1)

where B is a set of available bases; V is a set of values,
which can be defined on the bases from B ; Q is a set of
quality metrics for values from V ; M is a set of models,
which operates with values from V ; E is a set of
interconnections between models. Elements of virtual
simulation objects are described further with more details.

Bases. Bases can be defined as a parameters domain for
values. Typical examples here are space, time and groups,
which can make different combinations [8]. Considering VSO
B is defined as a set of available positions within the used
bases combination. E.g. if we explore dynamic of the sea level
we can define B as a set of two-dimensional grids, used within
the simulation process, considered at every time step (so we
have a combination of time and space bases). Bases within B
can be defined absolutely or relatively. E.g. in the previous
example space grids can be defined using absolute coordinates,
while time can be counted from any 0t . Bases describe the
object configuration in a form which is used during simulation
process.

Values. Values are any quantified entity (scalar or vector),
which either can be associated with the elements from B set or
can be an abstract values defining object’s characteristics. E.g.
the sea level can be defined on a particular grid within defined
moment of time. Values set can be decomposed into two sets:

VARCONST VVV ∪= , where CONSTV are invariant parameters,
which describe the virtual object itself, VARV is a set of variable
parameters, which is processed within the simulation process.

Quality metrics. This set defines the available meta-
characteristics of values. E.g. it can be defined as

ExpertM QQ × , where { }1,0=MQ shows if the value is
measured or simulated, ℜ=ExpertQ – is the quantitative
quality estimation defined by the experts. The quality metrics
could be related to the quality estimations of the solutions
proposed within extended iPSE concept [7].

Using defined elements a set of possible data structures can
be defined as follows:

 () QBVD ×∅∪×= (2)

Models. A set of models M can be defined as follows:

 { }svspSPDDmM OUTIN ,,,,,== (3)

where DDD OUTIN ⊂, define required input and available
output for the model; P is a set of available software packages
which implements defined models; S is a set of available

scenarios containing calls of the software packages, which can
be defined using a function *: PSsp → ; sv is a function
which defines extra parameters required by the scenario

*: DSsv → . Extra parameters can be required either by
scenario itself or by packages used within the scenario.

Interconnection. Models can be interconnected using the
transition edges Ee∈ , which can be defined as follows:

 INOUT DmDmddmme ..:,, 2121 ∩∈= , (4)

where 1m and 2m are the interconnected models; d is a data
structure which is used to interconnect the models. Thus

EM , defines a graph structure which can be used to perform
a simulation process during the interpretation.

We define the following composition operator which
allows constructing the composite VSOs:

 21 VSOVSOVSOC •= (5)

where CVSO is composed according to the following rules:

.
,

,,:),(
,
,

21

21

2121

21

21

TC

TC

CCC

C

C

EEEE
MMMM

QQQQQQqmQ
VVV
BBB

∪∪=
∪∪=

↔↔=
∪=
∪=

 (6)

Here qm is a function which merge quality metrics in a
way that unified metrics set CQ can be mapped on sets 1Q and

2Q and vice versa. TM is a set of transition models, which
allows to transfer the similar values from one object to another:

 { }
{ }



























∪→∩∈

∈=

∈==

2121

222
)(

111
)(

)()(

:,
,,,

,,,

:,,,,,

VVSsvVVv
DqbvD

DqbvD

svspSPDD

M

TT

T
OUT

T
IN

TTTT
T

OUT
T

IN

T . (7)

In some cases it is possible to apply transition models
without calling any external packages (i.e. ∅=TP). E.g.
simple selection of the value can be considered as a transition
model. Transition models set allows to define transition edges
set:

{ }
{ }INOUTTT

OUTINTT
T DmDmddmm

DmDmddmm
E

..:,,
..:,,

∩∈∀
∪∩∈∀

= . (8)

Interpretation of VSO structure consists of three main
stages:

1) Selection of VSO structure. Graph structure EM , can
be filtered according to a particular task which is to be solved.
Some of models and edges are excluded from structure either
by the user or by intelligent support system.

2) Data processing. Selected graph is processed using a
given data set to get the requested data set (both of them are a
subsets of D). During this processing the system should find
and analyze all the possible sub-graphs which define the
models’ usage process. The final choice can be performed
either by the user or by intelligent support system.

3) Simulation processing. Selected sub-graph can be used
to construct a composite application describing data
processing and running of software packages.

D. Visual Representation of Virtual Simulation Objects
As it was mentioned before, the interactive graphical

representation is one of the requirements for developed VSO
concept, because the concept should form a basis for
interactive simulation tools. Thus, the basic schema for VSO
visual representation was developed. Fig. 1 shows an example
of two interacting VSO: the sea and the ship placed on this sea.

Each visual representation of VSO consists of the following
parts:

1) Header. Represents the naming of the object and allows
to tune the metaparameters of VSO processing (inluding
mode, which is defined by the scenario of general task
solving: analysis, forecast, optimization etc.)

2) Bases pane. Allows tuning of bases parameters (e.g.
define spatial grids, forecast period etc.)

3) Object parameters pane. Defines a set of parameters
which define the explored object.

4) Models graph. Shows the structure of interconected
models and values within the object.

Each dataset block (in object parameter pane or in models
graph) is linked with some of available basis defined in the
bases pane. User can select if the data is generated by
simulation (received from some model), downloaded from any
available data storage or defined by the user. Data blocks can
be marked with one of the following states: “OK” – the dataset
is checked for availability and correctness (see “Near-water
wind” input dataset on the fig. 1); “?” – the dataset need to be
defined and/or tuned (see “Bathymetry” dataset, which isn’t
presented at the moment); “X” – the dataset which will be
unavailable during the simulation process (see “Wave
parameters” dataset, which will not be produced due to
“Spectrum parameterization” model is disabled). Options for
tuning data integration process are available by “…” button.
Particular set of options is defined by the role of dataset within
the VSO.

Baltic sea : Sea

NWW_ITMOSoftware:

Scenario: From aloft wind

Parameters...Workflow...

SwanSoftware:

Scenario: Shallow water

Parameters...Workflow...

BSM+AssimilationSoftware:

Scenario: With assimilation

Parameters...Workflow...

Spectrum_interpSoftware:

Scenario: Jonswap

Parameters...Workflow...

Level and currents Sea waves

Near-water wind

Spectrum parameterization

Wave parameters

...

X

model

Object parameters

Source

Currents

...

ОК

modelSource

Water level

...

ОК

modelSource

Wave spectrum

...

ОК

modelSource

Near-water wind

...

ОК

storageSource

Level (obs.)

...

ОК

storageИсточник

Aloft wind

...

ОК

BOOSSource

Mode: forecast

Bases
Space FG: Full grid AP: Assimilation points O

Time ST: Start time FT: Forecast time O

...

Ship #1 : Ship ...Mode: analysis

ShipXSoftware:

Scenario: Ship behavior

Parameters...Workflow...

Ship behavior

Wave spectrum

...

ОК

modelSource

Resonance

...

ОК

modelSource

Rocking spectrum

...

ОК

modelSource

ShipDSSSoftware:

Scenario: Situation analysis

Parameters...Workflow...

RecommendationsRecommendations

...

ОК

modelSource

Analysis log

...

ОК

modelSource

Object parameters

Bases
Space O

Time ST: Start time O

FP: Force points

Forces application

...

ОК

storageSource

MT: Simulation time

Movement

...

ОК

modelSource

Parameters...

Wave selection

Bathymetry

...

?

storageSource
Initial position

...

ОК

storageSource

Ship model

...

ОК

storageSource

FG/O

FG/FT

AP/ST

FG/FT

FG/FT

FG/FT

FG/FT

FG/FT

O/O O/O

O/MT FP/MT

O/MT

O/MT

O/MT

O/MT

O/O

FG/FT O/MT

Figure 1. Virtual simulation objects graphical representation

VSO
management

system

Decision
support
system

iPSE
environment

Virtual reality
environment

simulation
storage

User

Real
system

Control

Behavior
of the
system

Observ

Structure of the system

System-level rules

States of
the system

Simulation
tasks

Simulation
results

Decision and control

Virtual reality exploration

System’s
analysis

Explore

Figure 2. VSO management system

Each model block contains the related sets of scenarios and
their implementations using the available software packages. A
set of scenarios define the possible relations between models.
Besides the selection of scenario and its implementation the
user can tune additional options, which may change according
to selected scenario and implementation. Also the user should
have ability to select the models of interest according to his/her
task. This selection is especially important in case of
interdisciplinary tasks – it is possible that only a few models
are required to simulate object’s behavior with the required
quality. So, on the fig. 1 models “Level and currents”, “Sea
waves”, “Ship behavior” and “Recommendation” are selected
within two objects. Using “Near-water wind” and “Level
(obs.)” datasets “Recommendations” is produced as a result of
simulation.

Interconnection between objects is done by presenting the
transition models, which allow to map the values between
bases of two or more objects. These models can use existing
software packages or can be presented by the scripts within
VSO environment. Transition models are also tunable with
additional options set as well as regular models. On the fig. 1
data (“Wave spectrum”) is transferred from one object to
another through the selection procedure (model) which allows
to map space and time bases of one object (full grid and
forecast time) on the corresponding bases of another object
(current location and simulation time).

E. Virtual Simulation Object Management System
VSO management system is a software environment which

supports a) user interaction according to VSO visual
representation approach; b) VSO-based work within simulation
process; c) presentation of simulation and observation results
and support of the user with arrangement to the VSO structure.
Thus, VSO management system should tightly interact with
several software systems (see fig. 2):

1) iPSE-based simulation environment. As VSO is an
extension of iPSE concept, its implementation should be
developed in tight connection with iPSE-based simulation
environment. Interaction with this environment is performed
within two main direction: a) simulation tasks constructed
during interpretation of VSO structure are tranmitted to the

VSO GUIVSO knowledge
base

Basic ontology

Описания
объектов
Описания
объектов

VSOs
descriptions

Upper-level
ontologies*

VSO core
service

VSO class
editor

Virtual reality
environment

Software
description Data storage Task running Execution

monitoring

CLAVIRE environment
Figure 3. VSO management system implementation

simulation enviroment in form of AWFs; b) data, processed by
iPSE-based environment (collected as the simulation results or
received from the external sources) are transferred to VSO
management system to be displayed with the arrangement
according to the to system’s object structure. Observation of
the real system can be consumed by the simulation
environmend (and thus, by the VSO management system)
among other data sources.

2) Virtual reality environment. VSO system’s structure
corresponds to some real-world sytem, which can be
represented within the virtual environment, presented to the
user. Bases datasets (spatial, temporal, group) can be used for
the correct placement of virtual objects. Simulation results
available within iPSE environment can be used to show
behavior of virtual system. Thus, interactive virtual
environmen, connected to VSO management system and
iPSE-based simulation enviroment, allows to construct the
virtual scenes in an automatic way. Also the virtual reality
environment may use special hardware (3d walls, caves etc.)
to be more expressive to the user. The virtual reality system in
this case can be considered as a powerful tool for the
simulation-based exploration of the real-world systems.

3) Decision Support System. Interaction between DSS and
VSO management system allows the additional arrangment
within the decision and control processes. Rule set of DSS as
well as the results of simulation (which can be used as the
decision arguments) can be linked with the parts of system’s
description within VSO framework and thus domain-specific
decision and control solutions can be build in the unified way.

F. System-Level Issues
As VSO concept is built around the domain-specific system

investigation, the system’s description plays an important role
within the concept. In this section some issues related to
system’s description are mentioned.

Knowledge distribution using VSO. As it was mentioned
VSO can be considered as a unit of knowledge distribution.
Experts from different problem domains can share their
knowledge on simulation properties of any object using
available software in the separate classes of VSO. This is a
thing of especial interest in case of interdisciplinary researches
being performed.

In case of sharing knowledge several issues should be taken
into account:

1) Automatic integration. If several objects within the
system’s structure are developed by different researches, VSO
management system should allow easy-to-use creation of
transition models. This becomes possible by developing a
general approach of basis processing due to the fact that there
are not so much general classes of bases (i.e. space, time and
group).

2) Unification of knowledge. To make VSO
interconnected automatically it is practical to use the existing
high-level ontologies (like SUMO, CYC, YAGO etc.) as they
are trying to develop the description of whole universe as a set

of related entities. E.g. concerning the example on Fig. 1 in
relation to SUMO [9] ontology it is possible to link Ship and
Sea objects to WaterVehicle (from Transportation ontology
extension) and WaterArea (from Geography ontology
extension) ontology terms respectively. Thus, the relations
between the terms within ontology (using Transportation
process) can produce relationship between VSOs.

3) VSO editor. To make the things easier to use, GUI-
based editor of VSO classes should be developed. Developed
classes then may be distributed and integrated into VSO
management system. Instances of these classes are used to
construct the system’s description.

System investigation tasks. There are different classes of
tasks which can be solved using VSO approach. These classes
can be used to arrange simulation of objects within the
system’s structure according to high-level template. E.g.
classes can be as follows: a) analysis – given the set of
properties of the system, it is needed to estimate several other
properties; b) forecast – given the initial state of the system, it
is required to estimate state of the system in a future; c)
optimization – given the boundary condition and quality
function, it is required to find optimal input parameters
according to the function. All these classes can produce special
simulation procedures which finally form AWF to be run and
response to be returned to the user. Thus the class of the task
should be defined before VSO-based simulation run (see field
Mode on Fig. 1).

III. IMPLEMENTATION DETAILS
To put the presented concept into practice, the

implementation of VSO management system software is now
being developed. It is integrated with CLAVIRE (CLoud
Applications VIRtual Environment) platform which allows
building composite the applications with the use of the set of
the domain-specific software available within the service-
oriented distributed computational environment. CLAVIRE
environment is based on iPSE concept. It was developed during
several projects, performed by e-Science Research Institute
over last few years.

A. Solution’s Structure
Structure of developing VSO management system is

presented on Fig. 3. Most software modules are implemented
using Microsoft .NET Framework. Main modules of this
implementation are as follows:

1) VSO core service is the main module which implements

a) b)

c)

Figure 4. Running simulation using VSO management system

the logic of presented concept. It is implemented as WCF-
service which provides other modules with the access to the
knowledge database and performs main processes using VSO
structure (runs simulation, manage data etc.). It calls the
corresponding services within CLAVIRE environment which
in turn are also implemented using service-oriented approach.

2) VSO knowledge base is a library which manage the
access to the structures that represent VSO classes. Set of
VSO classes is presented as the ontology structure using OWL
language. This ontology includes several descriptions of VSO
classes (each in separate owl-file) linked to a) basic ontology,
which defines VSO concepts; b) upper level ontology, which
is used to linking VSOs. Knowledge base is linked to the
software description presented within CLAVIRE environment
as PackageBase service.

3) VSO class editor is a web-application which allows to
add and modify VSO classes description stored in the
knowledge base.

4) VSO GUI is a web-application (developed using the
Silverlight technology) which implements the visual
representation concept described earlier. The implemented
visual representation can be linked to monitoring service of

CLAVIRE environment to provide the user with information
on simulation running process.

5) Virtual reality environment is a software solution for
representing simulation results within the virtual space. It can
use special hard- and software: e.g. during several
experimentations the virtual reality software was run using
3D-wall hardware allowing to use stereoscopic 3D effect.

B. Usage Example
To test the implemented system the ship behavior during

sailing in the sea was simulated. Fig. 4 shows different
software modules involved into the simulation process. Fig. 4a
represents the main user interface of VSO GUI web-application
during process of VSO tuning: Sea and Ship objects are
selected and tuned. Sea object is responsible for simulation of
waves using SWAN software. Characteristics of simulated
waves’ field are used then to simulate behavior of the ship:
parameters of rocking and expert system estimation of danger
level for the ship. Simulation is run using CLAVIRE
environment which is provided with AWF with blocks
describing corresponding software running. CLAVIRE user
interface (which is web-application as well) with this AWF
opened is presented at Fig. 4b. Screenshots on Fig. 4c shows
virtual reality environment that is running ShipXDS software

(developed by e-Science Research Institute). This software can
display the movement of the ship over the sea surface along
with the additional debug information. This software can be
run using simple PC or special hardware supporting
stereoscopic 3D effect.

The implementation of VSO management system is now
under development. Thus, it shows only partial functionality of
full VSO management system described earlier. Nevertheless it
demonstrates the potential capabilities of VSO approach within
simplification trends and shifts toward domain-specific human-
computer interaction.

IV. DISCUSSION
Presented VSO concept is called to try fill in the gap

between three large fields of knowledge: information
technologies – which is used to have access to large amount of
hardware and software resources within one composite
application; knowledge engineering – which gives ability to
manage diverse collections of knowledge bases; and theory of
modeling and simulation along with general systems theory –
which define general approaches to manage virtual system’s
description during solving simulation tasks. This conjunction
of three different fields allows building the powerful automatic
support tools for solving complex e-science tasks related to
computer simulation. Today there are a lot of works related to
these fields separately or in couples. E.g. there are several
projects trying to bring the knowledge-based and intelligent
support into the distributed simulation software using
ontologies, workflow patterns, AI algorithms (see [10-12] for
example). On the other hand there are huge amount of works
started a long time ago devoted to development of simulation
theory along with theoretical and software frameworks for
solving system level tasks using simulation (e.g. see great
works of Klir [8], Zeigler [13] and other [14, 15]). So today
when each of these fields is strong enough and there exists a
certain interest towards the system-level view within the
simulation-based approach [5] it is time to join these fields.

On the other hand, another triplet may be introduced to
support the presented idea. VSO concept is developed for the
continuous support of modeling, simulation and data analysis.
Nowadays there are frameworks and standards for solving
these tasks separately (see for instance SysML [16] for
modeling and HLA [17] for simulation). Presented approach is
developed to join all mentioned processes around the structural
model of investigated system. Also that corresponds to model-
based systems engineering which is considered within
development trends in a field of systems engineering [18].

V. CONCLUSION
This paper presents the Virtual Simulation Objects (VSO)

concept as a theoretical and applied framework to support
simulation-based investigation of complex systems on domain-
specific level. Proposed approach allows managing simulation
process using the system’s structural model, which can be
presented to the user via interactive graphical representation.
That structural model allows using redistributable knowledge
sets presented as description of virtual simulation objects that
represents the elements of real-world system which can be

simulated using available software. The concept is now being
implemented as a graphical web-application extending the
existing CLAVIRE simulation environment.

ACKNOWLEDGMENT
This work was supported by the project granted from

Decree 218 of Government of the Russian Federation under
contract 13.G25.31.0029 and project granted from the Leading
Scientist Program (Decree 220) of the Government of the
Russian Federation under contract 11.G34.31.0019.

REFERENCES
[1] J. R. Rice, R. F. Boisvert, “From Scientific Software Libraries to

Problem-Solving Environments”, IEEE Computational Science &
Engineering, vol.3, n.3, 1996, pp. 44-53.

[2] I. Foster, C. Kesselman, “The Grid: Blueprint for a New Computing
Infrastructure”, Morgan-Kaufman, 1999.

[3] I. Foster, Y. Zhao, I. Raicu, S. Lu, “Cloud Computing and Grid
Computing 360-Degree Compared”, eprint arXiv:0901.0131, 2008,
[http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf]

[4] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C.
Goble, M. Livny, L. Moreau, J. Myers, “Examining the Challenges of
Scientific Workflows”, IEEE Computer, vol. 40, n. 12, 2007, pp. 24-32.

[5] I. Foster, C. Kesselman, “Scaling System-Level Science: Scientific
Exploration and IT Implications”, IEEE Computer, vol. 39, n. 11, 2006,
pp. 31-39.

[6] A. V. Boukhanovsky, S. V. Kovalchuk, S. V. Maryin, “Intelligent
Software Platform for Complex System Computer Simulation:
Conception, Architecture and Implementation”, Izvestiya VUZov.
Priborostroenie, n. 10, 2009, pp. 5-24 (in Russian).

[7] S. Kovalchuk, A. Larchenko, A. Boukhanovsky, “Knowledge-Based
Resource Management for Distributed Problem Solving”, Proceedings
of the Sixth International Conference on Intelligent Systems and
Knowledge Engineering, Shanghai, China, 2011, pp. 121-128.

[8] G. Klir, “Architecture of Systems Problem Solving”, Plenum Press, New
York, 1985.

[9] Suggested Upper Merged Ontology (SUMO),
[http://www.ontologyportal.org/]

[10] J. Kim, Y. Gil, M. Spraragen, “Principles For Interactive Acquisition
And Validation Of Workflows”, Journal of Experimental & Theoretical
Artificial Intelligence, Vol. 22, 2010, pp. 103-134.

[11] T. Gubala, M. Bubak, M. Malawski, K. Rycerz, “Semantic-Based Grid
Workflow Composition”, Lecture Notes in Computer Science, Vol.
3911/2006, 2006, pp. 651-658.

[12] Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody, E.
Deelman, “Wings: Intelligent Workflow-Based Design of
Computational Experiments”, IEEE Intelligent Systems, vol. 26, n. 1,
2011, pp. 62-72.

[13] B. P. Zeigler, H. Praehofer, T. G. Kim, “Theory of Modeling and
Simulation, Second Edition”, Academic Press, 2000.

[14] Q. He, M.-X. Zhang, J.-X. Gong, “An Introduction of BOM Modeling
Framework”, International Journal of Machine Learning and Computing,
vol. 1, n. 4, 2011, pp. 354-358.

[15] H. Vangheluwe, “Foundations of modeling and simulation of complex
systems”, Electronic Communications of the EASST, 10: Graph
Transformation and Visual Modeling Techniques, 2008.

[16] “SysML Modelling Language explained”, Objet Direct Analyst &
Consultant, 2010, [http://www.omgsysml.org/SysML_Modelling
_Language_explained-finance.pdf]

[17] IEEE 1516–2010. Standard for Modeling and Simulation High Level
Architecture, 2010.

[18] “Systems Engineering Vision 2020”, International Council on Systems
Engineering (INCOSE), 2007. [http://www.incose.org/ProductsPubs/
pdf/SEVision2020_20071003_v2_03.pdf]

http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf
http://www.ontologyportal.org/
http://www.omgsysml.org/SysML_Modelling
http://www.incose.org/ProductsPubs/

