
Scientific Analysis by Queries in Extended

SPARQL over a Scalable e-Science Data Store
Andrej Andrejev#1, Salman Toor#2, Andreas Hellander*3, Sverker Holmgren#4, Tore Risch#5

Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden.
1andrej.andrejev@it.uu.se, 2salman.toor@it.uu.se,
4sverker.holmgren@it.uu.se, 5tore.risch@it.uu.se

* Department of Computer Science, University of California Santa Barbara, 93106, USA.
3andreash@cs.ucsb.edu

Abstract— Data-intensive applications in e-Science require
scalable solutions for storage as well as interactive tools for
analysis of scientific data. It is important to be able to query the
data in a storage-independent way, and to be able to obtain the
results of the data-analysis incrementally (in contrast to
traditional batch solutions). We use the RDF data model
extended with multidimensional numeric arrays to represent the
results, parameters, and other metadata describing scientific
experiments, and SciSPARQL, an extension of the SPARQL
language, to combine massive numeric array data and metadata
in queries. To address the scalability problem we present an
architecture that enables the same SciSPARQL queries to be
executed on the RDF dataset whether it is stored in a relational
DBMS or mapped over a specialized geographically distributed
e-Science data store. In order to minimize access and
communication costs, we represent the arrays with proxy objects,
and retrieve their content lazily. We formulate typical analysis
tasks from a computational biology application in terms of
SciSPARQL queries, and compare the query processing
performance with manually written scripts in MATLAB.

I. INTRODUCTION

With data-intensive science realized as a fourth paradigm
[17], a number of efforts have been made to address data
management and analysis needs in science. Applications in
astronomy, geosciences, high-energy physics, computational
biology, and many other fields of natural sciences produce
large amounts of observation and simulation data, typically in
form of multidimensional numeric arrays accompanied by
metadata describing the complex structure and parameters of
the experiments. While the source of the generated data is
different in each case, they all face the same challenge: how
can massively generated data, ramping towards exascale and
beyond, be managed and analysed in a collaborative
environment?

In early solutions, the complete workable datasets had to be
moved from the data store to a computing node, before the
analysis could be initiated. As the datasets kept growing, the
need for finer-grained workflows became more evident, so
that application-side processing could be started as soon as
data begins to arrive. More interactive data analysis tools that
also provide simple ways to express complex search
conditions and combine existing data processing methods are
certainly wanted by scientists in application areas.

The use of relational databases in scientific computing
environments has been limited so far. One of the hindrances is
the need to design the database schema; an efficient use of a
database requires a certain level of expertise in data
engineering. Another key issue is the nature of the scientific
data itself: it frequently consists of complex data types such as
matrices and tensors, which are normally not handled by
relational databases. Instead, scientific data is often stored in
ad-hoc text or binary file formats or specialized databases, like
ROOT [10] or NetCDF [4].

The RDF data model was initially proposed as a schema-
free alternative to relational and hierarchical databases, and is
so general that most other data models can be easily mapped
to RDF. Mapping from tree-like (hierarchical, XML) data to
an RDF graph is straightforward, and mappings from
relational data model are examined e.g. in [26]. The fact that
no schema has to be specified upfront, but can optionally
accompany the data, gives greater freedom for the
applications, especially in experimental sciences where the
organization of data constantly evolves from one experiment
to the next. SPARQL [7] is the W3C standard query language
for RDF.

However, as we have shown in [8], to make the RDF model
useful and accepted in scientific applications one needs to
extend the RDF data model and the SPARQL query language
with capabilities to represent, search and process large
numeric arrays. . For this we have defined our extension,
SciSPARQL, and implemented it in our prototype system,
Scientific SPARQL Database Manager, SSDM [8]. In this
work we show how our approach scales to handle large
datasets efficiently. To be able to query massive scientific data
in terms of RDF, two usage scenarios are possible:

1) Loading data into a storage back-end system once and
querying it afterwards. This is primarily useful if the original
data is represented by a set of binary or text files. Converters
to an RDF format (e.g. Turtle) need to be written. In section
IV we define a general relational storage schema to represent
scientific RDF data on top of any RDBMS supporting
standard SQL. SciSPARQL queries are then translated to SQL
calls to retrieve metadata and binary chunks representing the
desired fragments of arrays.

2) Accessing data in a native e-Science data repository by
mapping it to the RDF model. Since RDF is extremely
flexible, it is usually easy and straightforward to map any
structured data to RDF. The SciSPARQL queries can then be
translated to native queries or API calls of the storage system.
In this paper we define an RDF view of scientific experiment
data stored in a distributed data store, Chelonia [27] , extended
for scientific applications in order to store simple and complex
(e.g. vectors and matrices) values of variables describing the
parameters and results of experiments.

Our main contributions in this paper are:
 We extend the prototype system SSDM implementing

SciSPARQL queries with the ability to query massive
scientific data residing in any relational DBMS or in
external distributed storage systems, such as Chelonia.

 We define a generic relational database schema for
RDF with arrays, and use it with SSDM to implement a
back-end storage in any RDBMS supporting SQL.

 We show how to map a flat spreadsheet-like application
metadata model in Chelonia to the RDF data model by
defining an RDF view over it. In this way, we are able
to expose exactly the same relational schema as in
Chelonia, allowing SciSPARQL queries to be
formulated independently of the storage system.

 We evaluate our approach within the context of a highly
data-intensive kinetic Monte Carlo simulation
application from molecular systems biology called
BISTAB. We demonstrate the expressivity of the
SciSPARQL language on a for the application
representative set of queries, present the run times with
different storage back-ends, and show that this approach
results in comparable performance to the use of hand-
written MATLAB scripts reading files directly from
disk; the previously employed post-processing
workflow by the users of the application.

The rest of the paper is organized as follows. Section II
gives an overview of related work. Section III describes the
SciSPARQL language and its implementing system, SSDM.
Section IV describes storage and retrieval of RDF data with a
relational DBMS back-end. Section V describes the Chelonia
data store and its integration into our architecture. Section VI
introduces the systems biology application. In section VII we
define the queries from section VI in SciSPARQL and
evaluate the performance in different settings. Finally, section
VIII discusses future directions and concluding remarks.

II. RELATED WORK

In this section we review related work in which database
technology is employed to facilitate data analysis in scientific
applications.

The SciDB project [9] addresses similar issues of
management of complex data but with a different approach.
SciDB provides a native parallel data management system for
large scale array processing. The whole database is organized
as a collection of n-dimensional arrays. For extensibility
SciDB provides user-defined-types (UDT) and user-defined-
functions (UDF) similarly to Postgres [6]. The architecture of

SciDB is based on a share-nothing approach in which each
node runs a semiautonomous instance of the SciDB engine
and communicates with a centralized catalog system, which
makes it a scalable e-Science data store. In contrast to our
approach, the SciDB data model requires that all data is
contained in named arrays, that can be updated and queried
for content or shape, but no other named properties are
supported. In the context of e-Science data management this
would mean a proliferation of single-element arrays
containing strings, dates and other metadata. Managing
scientific experiments require both metadata that describe
properties of experiments and numeric data to represent the
results. The example SciSPARQL queries in this paper
illustrate the importance of this synergy. Furthermore, with
our framework, array-structured data residing in SciDB can be
made available using SciSPARQL queries, once an RDF view
is defined in terms of the AQL interface language of SciDB.

There have been several projects extending relational
databases with array semantics. Lerner and Shasha [19] are
generalizing the idea of arrays as ’ordered data’, and discuss
the optimization opportunities of AQuery, an order-aware
query language. Kersten et. al. [18] view arrays as relational
tables, where dimension values comprise the primary key.
They suggest an extension to SQL, called SciQL where basic
array operations are defined. These systems introduce arrays
on the schema level, while in SciSPARQL arrays are data
instances.

SciHadoop [11], as an extension of Hadoop’s Distributed
File System (HDFS) [23], is another effort to facilitate
scientific applications by managing array data efficiently. In
Hadoop data is managed by utilizing the MapReduce strategy
for writing fault-tolerant ’embarrassingly parallel’ batch
programs. Since the actual distribution of data is formed
regardless of its contents, it can be very inefficient for
handling array data. To alleviate this SciHadoop implements a
plugin for Hadoop which employs NetCDF to manage array
data and also to help choosing the data distribution strategies.
To achieve these results SciHadoop modifies the standard task
scheduler. A customized array based query language is used to
explicitly specify operations on the available data in each
parallel Hadoop node (as the map function).

ArrayStore [24] is another similar effort for enabling
complex parallel array processing. It is a specialized storage
manager and not built on top of any relational DBMS. The
work includes an array partitioning strategy to gain better
performance and also demonstrates how to define operators
for efficient array access in neighboring array partitions
during parallel processing. The whole system is written in
standard C++. The article also presents a detailed performance
evaluation based on different partitioning strategies together
with different operators.

Compared to the above-mentioned projects [11] and [24],
we follow a different approach: storage distribution is handled
entirely by a back-end system, and can be configured
independently of the application. For example, nodes in
Chelonia are autonomous and can be geographically
distributed. We also provide a complete solution both for

simple data types and massive numeric arrays, so it is fairly
easy to analyze complex numeric data by writing declarative
queries using SciSPARQL. The extensibility of SciSPARQL
allows applications to run custom modules for advanced data
analysis. Currently the technique we are using to store
multidimensional numeric arrays in the relational database is
based on an array chunk partitioning scheme. To speed up the
interaction, on SSDM side we use array descriptor objects in
memory and array proxy objects pointing to a back-end
database to effectively accumulate array projection and
transformation operations without physical access to array
contents.

III. SCISPARQL – SCIENTIFIC SPARQL

A. Syntax and semantics

SciSPARQL is an extended version of the W3C query
language SPARQL 1.1 [7]. SciSPARQL extends SPARQL
with syntax and semantics for accessing numeric arrays of
arbitrary dimensionality, array slicing, projection and
transposition, and the ability to connect and invoke foreign
functions and define functional views.

For example, using array slicing for selecting a matrix
containing every second column of the original matrix bound
to variable ?a is expressed as ?a[:,::2], and accessing every
row of the same matrix is expressed as ?a[?i,:]. The latter
expression also generates all corresponding bindings for the
variable ?i used as row subscript.

The slicing syntax is borrowed from Python, where
lo:hi:stride values are specified for every dimension, any of
the specifiers may be omitted, and ’:’ denotes a complete
range in a dimension. Elements are enumerated starting from
0, and elements corresponding to hi (the upper bound) are
never included into the result. When projecting or selecting an
element, a single subscript value is supplied instead of range,
e.g. ?a[?i,?j].

One of the important features of SciSPARQL is the array
aggregate functions, like array array_sum(?a) that returns the
sum of all elements of a given array argument. Array
aggregate functions operate over arrays, unlike SPARQL 1.1.
where aggregate functions such as SUM() operate over bags.
In SciSPARQL bag-oriented aggregate functions are
overloaded to operate on arrays of uniform dimensionality, so
using SUM(?a) in the SELECT clause will compute an array
whose elements are sums of respective elements of all arrays
bound to variable ?a within a query or grouped query values.

SciSPARQL is extensible with algorithms expressed in
conventional algorithmic languages, like Python, Java, or C. It
is possible to define both regular and aggregate functions.

For example, the aggregate function

DEFINE AGGREGATE mysum(?a) AS PYTHON ’mysum’;

can be implemented in Python as

def mysum(b): return sum([i[0] for i in b])

We believe that this kind of extensibility is vital for a query
language to be adopted in the scientific community, where
historically the information processing logic has been

evolving in the context of algorithmic programming languages,
and libraries of quite sophisticated solutions exist and play the
role of de-facto standards.

Another distinctive feature of SciSPARQL is functional
views, which are user-defined functions expressed in terms of
SELECT queries. This allows for building up libraries of
SciSPARQL subqueries defining standard computation
formulas or commonly used data retrieval tasks for further use.
We define two such functions in Chapter VII, both for
purpose of re-using the code, and encapsulating the argument
to the second-order system function ARGMAX().

During query processing the functional views are expanded
similarly to SQL views, in order to give the query optimizer
greater freedom for finding the optimal order of execution. As
a query language, SciSPARQL is declarative, optimizable,
and terse. This means that most kinds of conditions and
constraints on the data retrieved from a database can be
expressed directly as algebraic equations. It is the
responsibility of the DBMS to come up with an optimal
execution plan, taking into account storage statistics,
distribution, communication and computation time. Even the
foreign functions can be associated with cost models used for
query optimization.

B. Scientific SPARQL Database Manager (SSDM)

SSDM is our prototype system built on top of the object-
relational DBMS Amos II [22] providing a cost-based query
optimizer, extensible type system, and foreign functions.

We have extended Amos II with a new type representing
numeric multidimensional arrays, NMAs. In SSDM arrays
stored in main memory are represented by storage and
descriptor parts. Most array operations, like slicing, projection,
and transposition are implemented in terms of producing new
descriptors for the same storage type, without copying or
otherwise accessing array elements. A number of derived
arrays, e.g. the ones representing the columns of an original
matrix, share the same storage object in memory as explained
in [8]. In section IV we also define array proxy objects that
operate exactly as array descriptors but point to arrays stored
in the back-end database instead.

SSDM supports a stateless query-only interface for
SciSPARQL, like most other SPARQL endpoints working as
a basis for the Semantic Web. In addition a convenient
interpreter-style session interface is provided, where
SciSPARQL directives like DEFINE are available. There are
also directives, like SOURCE() for batch execution of
SciSPARQL scripts (typically consisting of function
definitions), LOAD() for loading RDF data from files, e.g. in
Turtle format, DUMP() for saving RDF data to Turtle files,
and QUIT for ending the session. Any SciSPARQL function
can be called as a directive, with results returned the same
way as results of SELECT queries.

IV. EXTERNAL STORAGE OF RDF WITH ARRAYS

We have extended SciSPARQL Database Manager with the
following features:

 utilizing any relational DBMS with SQL support as
back-end storage for RDF data including
multidimensional numeric arrays;

 representing stored arrays, their subsets and elements
with array proxy objects;

 retrieving array data in binary chunks, and effectively
cache and reuse these chunks;

 downloading and storing in indexed main-memory all
metadata as RDF triples. In our e-Science applications
the amount of memory required to store the metadata
information represented by triples is several orders of
magnitude smaller than the size of data in numeric
arrays and therefore fits in main memory.

A. SQL-based RDF storage schema

To allow the stored amounts of numeric array data to scale
beyond the capacity of main memory, we have defined a
simple SQL-based storage schema, as shown on Fig. 1. The
table representing the set of RDF triples is horizontally
partitioned based on object type: URITriples, LiteralTriples
and ArrayTriples. Sice URIs are commonly repeated in RDF
datasets, we introduce a URI dictionary table, and store
integer identifiers of URIs in all other places.

URI

URITriple
s
p
o

LiteralTriple
s
p

otype

ArrayTriple
s
p

id
uri

o
long LongString str

ArrayChunkarrayid
chunkid

chunk

size0
size1 size2

size3

type

ndims

:TEXT

:BLOB

NN

N

N

1

1

11

Fig 1. The SQL-based storage schema for RDF with arrays.

We also introduce the LongString table with an arbitrary-
length TEXT field to store literal values beyond the limit of
32 characters, and the ArrayChunk table with a BLOB field to
store binary chunks of numeric arrays. Arrays are identified
by auto-incremented arrayid values, and chunks with chunkid
values, unique within the scope of an array. The element type,
number of dimensions ndims, and the sizes of the first four
dimensions of an array are explicitly stored in the ArrayTriple
table. For arrays of higher dimensionality the shape
information is stored as a sequence of (ndims-4) integer values
in the beginning of the first chunk.

B. Array proxy objects

A special kind of descriptor is used when accessing large
arrays stored in relational back-ends or external repositories
such as Chelonia. For each reference to an external array an
array proxy is created that stores all information necessary to
retrieve the array. When using an SQL back-end, this
information includes a unique array identifier, dimensions,
and range. For Chelonia this is database name, task identifier,
variable name, shape, and range information. As with the in-

memory descriptors mentioned above, an array proxy
representing a derived array is computed as the result of
applying array operations over original array proxies, without
accessing the external repository. Typically each application
of such array operations leads to a smaller derived array. A
derived array is retrieved ’lazily’, i.e. as late as possible, when
returning it as a result or passing it to an external algorithm for
numeric processing.

The chosen approach enables the streaming of array data
into memory, and applying the computations at reasonably
low granularity. A really large array cannot be put into
memory in its entirety, however, the operations of interest,
like summing up or averaging, can be performed row-by-row
or column-by-column. A SciSPARQL query includes the
expressions specifying what parts of the array need to be
retrieved per operation, as shown in section VII A. These
queries are executed in such a way that they retrieve one array
piece at a time, and completely avoid accumulating massive
intermediate results.

V. CHELONIA STORAGE SYSTEM

The Chelonia storage system [20] is a joint effort of the
NorduGirid collaboration [5]. It has been developed with the
next generation components of Advanced Resource Connector
(ARC) middleware [1] under the knowARC project [3].
Chelonia is a service-oriented storage system originally
designed to manage data on geographically distributed storage
nodes. The design goal was meeting the requirements ranging
from simple data sharing to the support for scientific analysis.
Being part of the ARC middleware, Chelonia provides
flexible data accessibility for the grid jobs running under ARC.

A. Architecture

The architecture of Chelonia is based on four core services,
Bartender; front-end of the system, Librarian; catalog service,
A-Hash; metadata store and Shepherd; service running at the
storage node. The system architecture ensures scalability,
efficiency, and ease to deploy and maintain. [20] describes its
features and architectural details whereas [2] documents
technical aspects of the system.

The extended version of Chelonia operates on top of
MySQL DBMS, and defines a generic schema shown on Fig.
2, typically used by the scientists to store experimental data. It
features Experiment and Task entities, and Variables, that
might have different types and values corresponding to
different tasks.

Fig. 2. ER-diagram of Chelonia storage schema

The storage types supported are character strings, integer
and real numbers, and the multidimensional arrays of numbers.
Chelonia is highly optimized for storing and querying large

arrays, and provides transparent array chunking: the SQL
queries passed to Chelonia Bartender service are translated to
address physical data on the storage nodes, and if array range
is provided in a query, only the corresponding array chunks
will be accessed.

B. Integration

In the current architecture Chelonia works as a distributed
storage manager for BISTAB data and the access from SSDM
is provided through a wrapper interface. The aim is to provide
a flexible and scalable solution for data analysis. Chelonia
provides the scalable and distributed storage of scientific data
and SciSPARQL enables data analysis through queries.

Chelonia exposes interfaces accessible by SOAP over
HTTP(S) requests and provides access to arrays, subarrays,
and simple values. The stored data is presented as RDF triples
inside SSDM and becomes queryable with SciSPARQL and
accessible to the foreign functions.

In SSDM an RDF view of Chelonia is generated where
tasks and experiments are mapped to RDF subjects, names of
variables to RDF predicates, and values (including arrays) to
RDF objects. This is achieved with a call to the SciSPARQL
directive

CheloniaExperiment(namespace, db, experiment_name);

where db is the name of the Chelonia database being mapped,
and experiment_name denotes the experiment that will be
available as RDF triples enhanced with arrays. The prefix
namespace is used in all queries during the session. This
exposes the application-level schema for BISTAB to
SciSPARQL queries.

When a dataset is connected, the metadata about all tasks
and their respective variables gets downloaded and cached
inside SSDM. In RDF terminology, this becomes a cache of
all subjects and all subject-property pairs. Query joins of triple
patterns are not executed by Chelonia, so most of the pattern-
matching job is done in the SSDM in-memory database
containing the cache. Only object values are retrieved from
Chelonia.

It should be noted that the current interface to Chelonia is
read-only. In the BISTAB application discussed in this article,
the experimental data is loaded into Chelonia using a separate
shell script.

V. URDME – AN APPLICATION FROM SYSTEMS BIOLOGY

a) Stochastic reaction-diffusion kinetics: Simulation of
reaction kinetics is frequently used to study the dynamics of
regulatory biochemical pathways inside the cell. Key
regulatory macromolecules, such as transcription factors or
messenger RNAs, are often present in few copies, rendering
the dynamics stochastic in its nature. This so called intrinsic
noise is a factor that needs to be accounted for when studying
cellular regulatory pathways since it can be expected to have a
profound impact on the regulatory mechanisms. For example,
some network motifs make the pathways more robust to
molecular fluctuations [25].

In a discrete stochastic setting, the most common modeling
framework is continuous-time discrete-space Markov

processes. Statistically correct realizations of the process can
be generated using kinetic Monte Carlo (kMC) methodology,
such as the Stochastic Simulation Algorithm (SSA) [16]. To
introduce spatial heterogeneity in the models, the
computational domain is discretized into non-overlapping
mesh cells, and diffusion is modeled as discrete jump events
along the edges of the mesh. Recent computational studies
have highlighted scenarios where both spatial and stochastic
effects are essential to explain the behavior of the system [15],
[13].

Analysis of the behavior of a spatial stochastic model for
different input parameters would benefit from a systematic,
observationally driven approach in which statistical
approaches from e.g. machine learning and bioinformatics
would be applied to the simulated data in order to discover
input combinations where the model displays interesting
behavior. In its simplest form, such an analysis could consist
of aggregation of the full time series data to a set of
biologically significant scalar or vector quantities, followed by
the application of clustering algorithms to find groups of input
cases displaying similar behavior. Such an approach is
currently limited by the existing infrastructure, and would
benefit greatly from integration with database solutions that
simultaneously support knowledge discovery in databases and
online selection and post-processing through queries, in our
case SciSPARQL queries.

b) The URDME framework: BISTAB is implemented using
the URDME framework for stochastic simulation of reaction-
diffusion processes on unstructured meshes [12], [14]. It relies
on the scientific computing environment MATLAB as a front-
end, while the core simulation routines are implemented as
stand-alone C programs. Another third party software, Comsol
Multiphysics, is used to provide a modeling environment for
the geometry and to provide unstructured mesh generation. If
used interactively, URDME behaves much as a MATLAB
toolbox. It is designed to provide flexibility for the applied
users in terms of (biochemical) model design, execution and
post-processing via e.g. customized MATLAB scripts. Given
a description of the chemical reactions (in the form of C code)
and of the geometry (in the form of a Comsol .mph file), the
URDME MATLAB layer creates all necessary data structures
and serializes the model to an input file in .mat format.
URDME then compiles an executable specific to the model
under consideration, launches the simulation, and then imports
the output data back into the MATLAB interface.

The raw output from a simulation with URDME is a time
series, or trajectory, with the number of molecules of each
species recorded in every cell in the mesh for each output time
point. It thus resembles the output of most partial differential
equation (PDE) solvers, such as those based on the finite
element method. An important difference from most standard
PDE applications is that, since each run provides only one out
of many possible realizations of the stochastic process, it is
typically necessary to gather many independent trajectories
into ensembles to form a basis for statistical analysis.
Frequently, some model parameters such as the kinetic rate
constants or diffusion constants are undetermined by

biological experiments or known with low precision. It is
therefore necessary to conduct “parameter sweeps” in order to
tune model parameters to an experimentally observed
behavior, or to study the robustness of the model to changes in
the input. A computational experiment may thus require the
generation of tens or hundreds of thousands trajectories. The
computational cost to generate the ensembles is large, but
each realization can be simulated independently of the others.

c) Post-processing: The large amount of output data
generated by URDME for a typical computational experiment
poses a big challenge, both in terms of storage requirements
and in terms of infrastructure for post-processing. While
output data could be aggregated to e.g. mean values at the
time of simulation, a computational experiment will likely
require many different post-processing queries, and many of
them will not be known in detail at the time of generation of
the data. It is hence desirable that raw simulation output be
persistent at least for the duration of a modeling project. The
earlier solutions were based on either storing simulation
output files locally on the user workstation, or transferring
them to a central URDME server when they need to be
accessed in the computation [21]. In the first case, hardware
will likely limit high-throughput analysis of the model, and in
the second case, the performance of the system will be limited
by the data transfer cost. A more general approach with lazy
access to a data repository through queries, as one described
in the previous sections, is desired.

d) Model problem: The BISTAB dataset is a model of a
bistable system [13], and was one of the first models used to
demonstrate the use of spatial stochastic simulation in
computational systems biology. For some parameter
combinations, the system will be globally bistable, and for
other combinations the proteins will self-organize in local
areas of higher concentrations, leading to loss of global
bistability. The BISTAB dataset consists a parameter sweep of
1900 realizations, where each realization is a file containing
the result of a simulation with randomly chosen parameters.
Processing this dataset and analyzing the biochemical model’s
behavior for the different parameter combinations requires
both compute intensive post-processing of the time series data
and the ability to manage and filter the post-processing results
based on metadata such as parameter values.

e) Example queries: To demonstrate the utility of the
proposed system we have applied it to run a number of
different queries that are representative of the kind of array
slicing and aggregate functions that are frequently needed as
primitives in more complex post-processing routines. These
queries often constitute the data-intensive part of the post-
processing workflow, where the complete dataset is mapped
to derived quantities of biological interest in a lower
dimension. The queries we consider in this paper are:

• Q1: Compute the number of molecules over the whole
spatial domain of a certain species as a function of time.

• Q2: Compute the number of certain species at a certain
time point for all the realizations that have kinetic rate
constants in a certain range.

• Q3: Retrieve the identifier of the trajectory that resulted in
the maximal result for Q2.

The operation in Q1 is typical for visualization of the
realizations and is for example needed to produce the time
series plots in [13], [15]. While simple array slicing and
aggregate functions like that done on a single matrix in Q1
can be expressed easily and efficiently in a scripting language
such as MATLAB, already simple queries such as Q2 and Q3
will place the responsibility for managing all the many
different files and their properties on the user of the URDME
application, while SSDM uniformly manages all data and
metadata. With the traditional approach the management and
analysis of e.g. large parameter sweeps quickly becomes
tedious when metadata is stored separately and may be a
bottleneck that limits the productivity of the user. We show
how the system efficiently combines the utility of a database
to select subsets of the data based on the metadata describing
the experiments in terms of a high-level declarative language
capable of expressing array operations.

VII. RESULTS AND DISCUSSION

A. SciSPARQL queries for the BISTAB experiment

We have developed a database schema for the BISTAB
dataset, as described by the ER-diagram shown on Fig. 3. It is
used both for generating an RDF dataset to be stored in SSDM
with a relational database backend, and for defining an RDF
view over the scientific database stored in Chelonia.

Once mapped dataset is accessible as the default RDF
graph for SciSPARQL queries during the session, i.e. the
queries do not need a FROM clause when addressing this
dataset. In the BISTAB schema, all values are contained in
properties of Experiment and Task instances. There are 1900
task instances currently stored in Chelonia. To test SQL-based
storage, we use a sample of 100 instances.

The performance evaluation uses a relational database
backend. We furthermore show the possibility to run the same
SciSPARQL queries against a Chelonia native repository for
scientific data mapped to RDF.

Task

solver
alias

k_a

k_d

k_4

k_1

realization

tspan

UMspecies

Ncells

A B
E_A

E_B

Experiment inExperiment1 N

Fig 3. Entity-relationship diagram of BISTAB dataset

The time series being the result of an URDME simulation
are stored in the matrix U, containing a row per mesh cell per
species type, and a column per time point (Fig. 4). The
number of cells (Ncells), species (Mspecies), and the time
values for every time point (tspan vector) are part of

Experiment metadata. The values of the species names A, B,
E_A, and E_B are used to access rows corresponding to these
species types.

Together with each U matrix, a set of simulation
parameters k_1, k_a, k_d, and k_4 are stored. Since the
simulation is stochastic, several different results per parameter
set can be generated, and the realization number is used to
distinguish between them.

C
el

l 1
C

e
ll

2
C

el
l 3

Specie A
Specie B
…

Specie A
Specie B
…

Specie A
Specie B
…

time

SUM

…

t i

species

cells

time

SUM

Specie A
slice

t i

(a) (b)
Fig 4. Simulation results stored in U matrix

Query Q1: Compute the sum of all species A over all
mesh cells in the experiment as a function of time for the
trajectory matrix U of task Task1. Q1 always selects one
matrix, associated with Task1, and aggregates the information
on species of type A, effectively accessing 12.5% of the
matrix elements in the database. This query is representative
of a frequently occurring use case; to reduce the data of an
individual sample point to e.g. plot the 3D spatial data as a 1D
aggregated time series.

First, we define a function total_species(U, species,
mspecies) that sums up the given species type in U, applying a
vector sum to the corresponding rows. Every simulation cell
occupies mspecies rows in U:

DEFINE FUNCTION total_species(?U ?species ?mspecies)
AS SELECT (SUM(?U[?i]) AS ?res)
 WHERE { FILTER (mod(?i, ?mspecies)
 = ?species-1) };

The variable ?i will be bound to all possible subscripts
in ?U constrained by the filter expression. Every mspecies row
is retrieved, and a (scalar) sum is computed over the elements
of respective columns, as shown on Fig. 4a. If we think about
the same data as a 3D array, with the ’species’ and the ’cells’
dimensions unnested, each summed-up subset can be
represented as a slice, shown on Fig. 4b.

Query Q1 can now be formulated as

SELECT (?tspan[?j] AS ?t)
 (total_species(?U,?a,?mspecies)[?j] AS ?sum_A)
 WHERE { :Task1 :U ?U ;
 :inExperiment ?experiment .
 ?experiment :A ?a ;
 :MSpecies ?mspecies ;
 :tspan ?tspan };

The variable ?j joins the possible subscript values for
elements of the ?tspan vector with those of a vector returned
by total_species(). The WHERE clause specifies triple
patterns used to extract (1) the U matrix associated with the
experiment task instance named Task1, (2) the corresponding

experiment instance (property inExperiment), and (3) other
metadata associated with the experiment. The query returns
pairs of (timepoint, sum) that can be directly used for plotting
the wanted function of time.

Query Q2: Select the sum of all species A for time point
10s for all trajectory matrices U with parameters k_a and k_d
in given ranges. Q2 selects just one column of a matrix, and
the column index ?j by looking up the tspan vector for the
time point of interest. There can be many tasks falling into the
specified parameter range.

SELECT (array_sum(?U[?a-1::?mspecies,?j]) AS ?res)
 WHERE { ?task :U ?U ;
 :k_a ?k_a ;
 :k_d ?k_d ;
 :inExperiment ?experiment .
 ?experiment :A ?a ;
 :MSpecies ?mspecies ;
 :tspan ?tspan .
 FILTER (?tspan[?j] = 10 &&
 1.0E8 <= ?k_d && ?k_d <= 1.0E9 &&
 50 <= ?k_a && ?k_a <= 90) };

This query sums up only one column with index ?j
expressed by the constraint tspan[j]=10. The SELECT
expression sums up elements in one column and every
mspecies row (grey in Fig 4a). Since we are interested in only
one time point of the trajectory, here we do not use a vector
sum as we do in function total_species().

Query Q3: Find the task that has the maximal total
population of species A or B for any time point. Q3 is an
example of typical batch processing job. It makes a complete
(unselective) sweep across all U matrices in the dataset,
computes aggregated statistics for each matrix, and identifies
the task that has received the maximum score.

We will need a helper function max_AB_sum(task),
aggregating the vectors returned by different calls to
total_species():

DEFINE FUNCTION max_AB_sum(?task) AS
SELECT
 (max(array_max(total_species(?U,?a,?mspecies)),
 array_max(total_species(?U,?b,?mspecies)))
 AS ?res)
 WHERE { ?task :U ?U ;
 :inExperiment ?experiment .
 ?experiment :A ?a ;
 :B ?b ;
 :MSpecies ?mspecies };

For each matrix U two vectors are computed: summing up
the populations of species A and B and returning their
maximum. The function is similar to Q1 and Q2 in the triple
patterns involved, but the ?task instance is now the function’s
argument. This allows us to apply the second-order function
ARGMAX() to express query Q3:

SELECT (ARGMAX(max_AB_sum) AS ?maxtask);

This query applies max_AB_sum() to all possible bindings
of variable ?task to task instances – computed by the triple
patterns inside max_AB_sum(). The argument corresponding
to the maximal function result is returned, and can be further
queried for properties, e.g. parameters of the trajectory.

During the query execution A and B rows are accessed and
summed up separately, and referenced by separate array
proxies. Since the chunks contain two rows each, the chunk-
level caching prevents double retrieval of the same chunks. A
very small cache, capable of storing 25% chunks of a matrix,
completely eliminates the problem. The matrices are accessed
one at a time, so that the chunk cache is automatically
refreshed (according to LRU replacement strategy) when
function max_AB_sum() proceeds to the next task.

B. Setup and data loading

We have deployed both SSDM and the backend database
on a single HP Compaq 8100 workstation with Intel Core i5
CPU @ 2.80 GHz, with 8Gb RAM and running Windows
Server 2008 R2 Standard SP1.

The parameters (metadata) of the BISTAB experiment and
each simulation were collected into a Turtle file, enhanced
with links to binary data files (in standard MATLAB .mat
files) containing the experimental results (U matrices). We
used a dataset consisting of 100 realizations of U matrices,
each about 71.5 MB, containing an integer element for each of
(11107 cells 8 specie types  201 time points). 

As SQL back-end we experimented with two different
DBMSs accessed via JDBC: MySQL 5.6.10 and Microsoft
SQL Server 2008 R2. The back-ends are configured to use
small chunks of 1608 bytes each, so that a chunk contains two
successive rows of a U matrix. This amounts to 44 428 chunks
per matrix, and 4 442 801 array chunks in total (one chunk
stores tspan).

To evaluate different data loading methods, we compared
the performance of naive one-by-one insertion of each chunk
with loading the complete dataset at once using the bulk-
loading facility of the DBMS. The results are shown in Table
1. In case of bulk loading, the system first has to prepare a set
of bulk-load input files to be sent to the bulk-loader. Here the
data to be loaded into each table in our general relational
storage schema for RDF (Fig 1) needs one or several prepared
input files. If the data to be bulk-loaded into a table is larger
than allowed by the OS (8 GB in our setting), the system splits
the bulk-load input into several files.

TABLE 1. DATA LOADING TIMES FOR 100 MATRICES

task MySQL
MS SQL
Server

Preparing files for bulk-loader 980 s 82 s

Bulk loading 1 543 s 1 275 s

Total 2 523 s 1 357 s

Naïve one-by-one insertion 7 577 s 7 827 s

The bulk-loading into MySQL is slower since its bulk-
loader requires text-based input. Here the array chunks are
represented in hexadecimal form and the preparation work
includes converting the binary data into hexadecimal
representation. The gain is still a factor three compared with
inserting the chunks one a time, mainly because incremental
updates of internal DBMS structures in the latter case.

MS SQL Server allows bulk-loading binary files. Preparing
these files becomes simply moving binary data from memory.
The bulk-loader does not have to do any parsing. This is
therefore the fastest option.

C. Query execution

Once the data was loaded into SSDM with its connected
relational backend RDF storage, we ran the queries Q1 - Q3
and measured the execution time and the number of resulting
tuples emitted. Our experiments on smaller datasets showed
that all queries take practically constant processing time per
matrix. As a comparison, we also made MATLAB scripts to
perform the equivalent computations on a set of
(uncompressed) binary .MAT files. Since MATLAB stores
the matrix elements as floating-point numbers, the size of data
it is reading from disk is in the best case twice bigger than the
data we retrieve from a relational database, which explains
why MATLAB is sometimes slower.

Table 2 shows "cold cache" run times where all data reside
on disk before the query is executed:

TABLE 2. QUERY EXECUTION TIMES (IN SECONDS) WITH COLD CACHE

task
U

matrices
results MySQL

MS SQL
Server

MATLAB

Q1 1 201 1.748 2.15 1.826

Q2 36 36 80.703 44.512 30.042

Q3 100 1 187.073 192.365 133.279

We can see that on smaller amounts of data our system

slightly outperforms MATLAB with .MAT files. All results
fall within same order of magnitude, which proves that the
benefits provided by our solution combine with quite
competitive performance.

Table 3 shows "warm cache" results, obtained by repeated
runs of the same query. There are three cache levels involved:
OS-level file cache, DBMS-level query cache, and SSDM-
level array chunks cache. Due to massive amounts of data
processed, Q3 does not benefit from any of these, and the
results are same as in Table 2. In contrast, for Q1 there is an
interesting case possible when all the data processed fits
entirely into the SSDM cache, so the DBMS is not accessed at
all; it only runs in the background, consuming some system
resources. This particular case is shown as Q1*.

TABLE 3. QUERY EXECUTION TIMES (IN SECONDS)
WITH WARM OS/DBMS LEVEL CACHE

task
U

matrices
results MySQL

MS SQL
Server

MATLAB

Q1 1 201 0.434 0.526 0.157

Q1* 1 201 0.138 0.152 N/A

Q2 36 36 63.542 13.378 1.203

Here we can see that the SSDM cache is faster than the OS-

level cache utilized by MATLAB. However, Q2 reads just a
single column from every matrix, but it has to retrieve the
same amount of chunks from DBMS. This makes it
significantly slower than a system without chunking per row,

which is currently used in the current SSDM. Single-column
access can be regarded as particular worst case for row-based
array storage, as the useful data load is relatively small for the
array retrieval operations.

VIII. CONCLUSION

In this article we have presented the architecture of SSDM
providing the SciSPARQL language front-end to access
scientific data stored in a relational database back-end. Two
widely-used SQL DBMSs were used as alternative choices for
the back-ends. Using the system’s extensibility we also used
the Chelonia system as an example of interfacing a back-end
e-Science data repository. We demonstrated the strengths of
our system by applying it to datasets from a highly data-
intensive application from systems biology. The SSDM
system was shown to provide a scalable storage mechanism
with efficient data analysis capabilities to the scientific
application. By formulating as SciSPARQL queries typical
real world post-processing tasks arising in the use of the
URDME framework, we showed that the system is capable of
addressing non-trivial online data analysis tasks with
competitive performance. The queries presented for the
URDME framework illustrate how other applications that
need interactive data analysis can access the data in terms of
declarative SciSPARQL queries combining metadata and
massive numerical data in order to accelerate the application
workflow. Our solution is thus adequate to support upcoming
data-intensive scientific applications and to build
comprehensive systems for managing scientific information.

Future work includes development of distribution and
replication strategies for data-intensive scientific and
engineering applications. Different kinds of query processing
and optimization techniques for such an architecture should be
developed. Architectures providing more direct file access,
completely transparent to SciSPARQL queries, are another
important direction of our research. The discussion of
different partitioning strategies in [11] [24] opens up another
direction for possible future work.

ACKNOWLEDGMENT

This project is supported by eSSENCE and the Swedish
Foundation for Strategic Research under grant RIT08-0041,
(U.S.) Department of Energy (DOE) Award No. DE-
SC0008975 and NIBIB of the NIH under Award No. R01-
EB014877-01. The content of this paper is solely the
responsibility of the authors and does not necessarily represent
the official views of these agencies.

We acknowledge valuable discussion with Brian Drawert.

REFERENCES
[1] Advanced Resources Connector. http://www.nordugrid.org/arc/
[2] Chelonia Web page. http://www.nordugrid.org/chelonia/
[3] EU KnowARC project. http://www.knowarc.eu/
[4] NetCDF. http://www.unidata.ucar.edu/software/netcdf/
[5] NorduGrid Collaboration. http://www.nordugrid.org/
[6] PostgreSQL: . http://www.postgresql.org/
[7] SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-query/

[8] A. Andrejev and T. Risch. Scientific sparql: Semantic web queries over
scientific data. The 3rd International Workshop on Data Engineering
Meets the Semantic Web (DESWEB), 2012.

[9] P. G. Brown. Overview of scidb: large scale array storage, processing
and analysis. In Proceedings of the 2010 international conference on
Management of data, SIGMOD ’10, pages 963–968, New York, NY,
USA, 2010. ACM.

[10] R. Brun and F. Rademakers. ROOT – An object oriented data analysis
framework. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 389(1-2):81–86, April 1997.

[11] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N.
Polyzotis, and S. A. Brandt. SciHadoop: array-based query processing
in hadoop. In Scott Lathrop, Jim Costa, and William Kramer, editors,
SC, page 66. ACM, 2011.

[12] Brian Drawert, Stefan Engblom, and Andreas Hellander. URDME 1.1:
User’s manual. Technical Report 003, Department of Information
Technology, Division of Scientific Computing, Uppsala University,
2010.

[13] Johan Elf and Mans˚ Ehrenberg. Spontaneous separation of bi-stable
biochemical systems into spatial domains of opposite phases. Syst.
Biol., 1(2):230–236, 2004.

[14] S. Engblom, L. Ferm, A. Hellander, and P. Lotstedt.¨ Simulation of
stochastic reaction-diffusion processes on unstructured meshes. SIAM
J. Sci. Comput., 31:1774–1797, 2009.

[15] D. Fange and J. Elf. Noise induced Min phenotypes in E. coli. PLoS
Comput. Biol., 2(6):e80, 2006.

[16] Daniel T Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reacting systems. J.
Comput. Phys., 22:403–434, 1976.

[17] T. Hey, S. Tansley, and K. Tolle. The fourth paradigm: data-intensive
scientific discovery. Microsoft Research, Redmond, WA, 2009.

[18] M. Kersten, Y. Zhang, M. Ivanova, and N. Nes. Sciql, a query
language for science applications. In Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, AD ’11, pages 1–12, New York,
NY, USA, 2011. ACM.

[19] Alberto Lerner and Dennis Shasha. Aquery: query language for
ordered data, optimization techniques, and experiments. In Proceedings
of the 29th international conference on Very large data bases - Volume
29, VLDB ’03, pages 345–356. VLDB Endowment, 2003.

[20] J. K. Nilsen, S. Toor, Zs. Nagy, and A. Read. Chelonia: A self-healing,
replicated storage system. Journal of Physics: Conference Series,
331(6):062019, 2011.

[21] P-O Östberg, A. Hellander, B. Drawert, E. Elmroth, S. Holmgren, L.
Petzold, Reducing Complexity in Management of eScience
Computations, Proceedings of CCGrid 2012 - The 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pp.
845-852, 2012

[22] T.Risch, V.Josifovski, and T.Katchaounov. Functional Data Integration
in a Distributed Mediator System, Functional Approach to Data
Management. Modeling, Analyzing and Integrating Heterogeneous
Data, ed. by in P.Gray et.al. Springer, ISBN 3-540-00375-4, 2004.

[23] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST),
MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

[24] E. Soroush, M. Balazinska, and D. L. Wang. Arraystore: a storage
manager for complex parallel array processing. In SIGMOD
Conference, pages 253–264, 2011.

[25] P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic
contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci.
USA, 99(20):12795–12800, 2002.

[26] S.Stefanova and T.Risch. Optimizing unbound-property queries to
RDF views of Relational databases. The 7th International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS), 2011.

[27] S. Toor, M. Sabesan, S. Holmgren, and T. Risch. A scalable
architecture for e-Science data management. e-Science, IEEE
International Conference on, 0:210–217, 2011.

