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Abstract— Data-intensive applications in e-Science require 
scalable solutions for storage as well as interactive tools for 
analysis of scientific data. It is important to be able to query the 
data in a storage-independent way, and to be able to obtain the 
results of the data-analysis incrementally (in contrast to 
traditional batch solutions). We use the RDF data model 
extended with multidimensional numeric arrays to represent the 
results, parameters, and other metadata describing scientific 
experiments, and SciSPARQL, an extension of the SPARQL 
language, to combine massive numeric array data and metadata 
in queries. To address the scalability problem we present an 
architecture that enables the same SciSPARQL queries to be 
executed on the RDF dataset whether it is stored in a relational 
DBMS or mapped over a specialized geographically distributed 
e-Science data store. In order to minimize access and 
communication costs, we represent the arrays with proxy objects, 
and retrieve their content lazily. We formulate typical analysis 
tasks from a computational biology application in terms of 
SciSPARQL queries, and compare the query processing 
performance with manually written scripts in MATLAB. 

I. INTRODUCTION 

With data-intensive science realized as a fourth paradigm 
[17], a number of efforts have been made to address data 
management and analysis needs in science. Applications in 
astronomy, geosciences, high-energy physics, computational 
biology, and many other fields of natural sciences produce 
large amounts of observation and simulation data, typically in 
form of multidimensional numeric arrays accompanied by 
metadata describing the complex structure and parameters of 
the experiments. While the source of the generated data is 
different in each case, they all face the same challenge: how 
can massively generated data, ramping towards exascale and 
beyond, be managed and analysed in a collaborative 
environment? 

In early solutions, the complete workable datasets had to be 
moved from the data store to a computing node, before the 
analysis could be initiated. As the datasets kept growing, the 
need for finer-grained workflows became more evident, so 
that application-side processing could be started as soon as 
data begins to arrive. More interactive data analysis tools that 
also provide simple ways to express complex search 
conditions and combine existing data processing methods are 
certainly wanted by scientists in application areas.  

The use of relational databases in scientific computing 
environments has been limited so far. One of the hindrances is 
the need to design the database schema; an efficient use of a 
database requires a certain level of expertise in data 
engineering. Another key issue is the nature of the scientific 
data itself: it frequently consists of complex data types such as 
matrices and tensors, which are normally not handled by 
relational databases. Instead, scientific data is often stored in 
ad-hoc text or binary file formats or specialized databases, like 
ROOT [10] or NetCDF [4]. 

The RDF data model was initially proposed as a schema-
free alternative to relational and hierarchical databases, and is 
so general that most other data models can be easily mapped 
to RDF. Mapping from tree-like (hierarchical, XML) data to 
an RDF graph is straightforward, and mappings from 
relational data model are examined e.g. in [26]. The fact that 
no schema has to be specified upfront, but can optionally 
accompany the data, gives greater freedom for the 
applications, especially in experimental sciences where the 
organization of data  constantly evolves from one experiment 
to the next. SPARQL [7] is the W3C standard query language 
for RDF.  

However, as we have shown in [8], to make the RDF model 
useful and accepted in scientific applications one needs to 
extend the RDF data model and the SPARQL query language 
with capabilities to represent, search and process large 
numeric arrays. . For this we have defined our extension, 
SciSPARQL, and implemented it in our prototype system, 
Scientific SPARQL Database Manager, SSDM [8]. In this 
work we show how our approach scales to handle large 
datasets efficiently. To be able to query massive scientific data 
in terms of RDF, two usage scenarios are possible: 

1) Loading data into a storage back-end system once and 
querying it afterwards. This is primarily useful if the original 
data is represented by a set of binary or text files. Converters 
to an RDF format (e.g. Turtle) need to be written. In section 
IV we define a general relational storage schema to represent 
scientific RDF data on top of any RDBMS supporting 
standard SQL. SciSPARQL queries are then translated to SQL 
calls to retrieve metadata and binary chunks representing the 
desired fragments of arrays.  



2) Accessing data in a native e-Science data repository by 
mapping it to the RDF model. Since RDF is extremely 
flexible, it is usually easy and straightforward to map any 
structured data to RDF. The SciSPARQL queries can then be 
translated to native queries or API calls of the storage system. 
In this paper we define an RDF view of scientific experiment 
data stored in a distributed data store, Chelonia [27] , extended 
for scientific applications in order to store simple and complex 
(e.g. vectors and matrices) values of variables describing the 
parameters and results of experiments.  

Our main contributions in this paper are: 
 We extend the prototype system SSDM implementing 

SciSPARQL queries with the ability to query massive 
scientific data residing in any relational DBMS or in 
external distributed storage systems, such as Chelonia. 

 We define a generic relational database schema for 
RDF with arrays, and use it with SSDM to implement a 
back-end storage in any RDBMS supporting SQL.  

 We show how to map a flat spreadsheet-like application 
metadata model in Chelonia to the RDF data model by 
defining an RDF view over it. In this way, we are able 
to expose exactly the same relational schema as in 
Chelonia, allowing SciSPARQL queries to be 
formulated independently of the storage system. 

 We evaluate our approach within the context of a highly 
data-intensive kinetic Monte Carlo simulation 
application from molecular systems biology called 
BISTAB. We demonstrate the expressivity of the 
SciSPARQL language on a for the application 
representative set of queries, present the run times with 
different storage back-ends, and show that this approach 
results in comparable performance to the use of hand-
written MATLAB scripts reading files directly from 
disk; the previously employed post-processing 
workflow by the users of the application.  

The rest of the paper is organized as follows. Section II 
gives an overview of related work. Section III describes the 
SciSPARQL language and its implementing system, SSDM. 
Section IV describes storage and retrieval of RDF data with a 
relational DBMS back-end. Section V describes the Chelonia 
data store and its integration into our architecture. Section VI 
introduces the systems biology application. In section VII we 
define the queries from section VI in SciSPARQL and 
evaluate the performance in different settings. Finally, section 
VIII discusses future directions and concluding remarks. 

II. RELATED WORK 

In this section we review related work in which database 
technology is employed to facilitate data analysis in scientific 
applications. 

The SciDB project [9] addresses similar issues of 
management of complex data but with a different approach. 
SciDB provides a native parallel data management system for 
large scale array processing. The whole database is organized 
as a collection of n-dimensional arrays. For extensibility 
SciDB provides user-defined-types (UDT) and user-defined-
functions (UDF) similarly to Postgres [6]. The architecture of 

SciDB is based on a share-nothing approach in which each 
node runs a semiautonomous instance of the SciDB engine 
and communicates with a centralized catalog system, which 
makes it a scalable e-Science data store. In contrast to our 
approach, the SciDB data model requires that all data is 
contained in named arrays, that can be updated and queried 
for content or shape, but no other named properties are 
supported. In the context of e-Science data management this 
would mean a proliferation of single-element arrays 
containing strings, dates and other metadata. Managing 
scientific experiments require both metadata that describe 
properties of experiments and numeric data to represent the 
results. The example SciSPARQL queries in this paper 
illustrate the importance of this synergy. Furthermore, with 
our framework, array-structured data residing in SciDB can be 
made available using SciSPARQL queries, once an RDF view 
is defined in terms of the AQL interface language of SciDB.   

There have been several projects extending relational 
databases with array semantics. Lerner and Shasha [19] are 
generalizing the idea of arrays as ’ordered data’, and discuss 
the optimization opportunities of AQuery, an order-aware 
query language. Kersten et. al. [18] view arrays as relational 
tables, where dimension values comprise the primary key. 
They suggest an extension to SQL, called SciQL where basic 
array operations are defined. These systems introduce arrays 
on the schema level, while in SciSPARQL arrays are data 
instances. 

SciHadoop [11], as an extension of Hadoop’s Distributed 
File System (HDFS) [23], is another effort to facilitate 
scientific applications by managing array data efficiently. In 
Hadoop data is managed by utilizing the MapReduce strategy 
for writing fault-tolerant ’embarrassingly parallel’ batch 
programs. Since the actual distribution of data is formed 
regardless of its contents, it can be very inefficient for 
handling array data. To alleviate this SciHadoop implements a 
plugin for Hadoop which employs NetCDF to manage array 
data and also to help choosing the data distribution strategies. 
To achieve these results SciHadoop modifies the standard task 
scheduler. A customized array based query language is used to 
explicitly specify operations on the available data in each 
parallel Hadoop node (as the map function).  

ArrayStore [24] is another similar effort for enabling 
complex parallel array processing. It is a specialized storage 
manager and not built on top of any relational DBMS. The 
work includes an array partitioning strategy to gain better 
performance and also demonstrates how to define operators 
for efficient array access in neighboring array partitions 
during parallel processing. The whole system is written in 
standard C++. The article also presents a detailed performance 
evaluation based on different partitioning strategies together 
with different operators. 

Compared to the above-mentioned projects [11] and [24], 
we follow a different approach: storage distribution is handled 
entirely by a back-end system, and can be configured 
independently of the application. For example, nodes in 
Chelonia are autonomous and can be geographically 
distributed. We also provide a complete solution both for 



simple data types and massive numeric arrays, so it is fairly 
easy to analyze complex numeric data by writing declarative 
queries using SciSPARQL. The extensibility of SciSPARQL 
allows applications to run custom modules for advanced data 
analysis. Currently the technique we are using to store 
multidimensional numeric arrays in the relational database is 
based on an array chunk partitioning scheme. To speed up the 
interaction, on SSDM side we use array descriptor objects in 
memory and array proxy objects pointing to a back-end 
database to effectively accumulate array projection and 
transformation operations without physical access to array 
contents.  

III. SCISPARQL – SCIENTIFIC SPARQL 

A. Syntax and semantics 

SciSPARQL is an extended version of the W3C query 
language SPARQL 1.1 [7]. SciSPARQL extends SPARQL 
with syntax and semantics for accessing numeric arrays of 
arbitrary dimensionality, array slicing, projection and 
transposition, and the ability to connect and invoke foreign 
functions and define functional views. 

For example, using array slicing for selecting a matrix 
containing every second column of the original matrix bound 
to variable ?a is expressed as ?a[:,::2], and accessing every 
row of the same matrix is expressed as ?a[?i,:]. The latter 
expression also generates all corresponding bindings for the 
variable ?i used as row subscript. 

The slicing syntax is borrowed from Python, where 
lo:hi:stride values are specified for every dimension, any of 
the specifiers may be omitted, and ’:’ denotes a complete 
range in a dimension. Elements are enumerated starting from 
0, and elements corresponding to hi (the upper bound) are 
never included into the result. When projecting or selecting an 
element, a single subscript value is supplied instead of range, 
e.g. ?a[?i,?j]. 

One of the important features of SciSPARQL is the array 
aggregate functions, like array array_sum(?a) that returns the 
sum of all elements of a given array argument. Array 
aggregate functions operate over arrays, unlike SPARQL 1.1. 
where aggregate functions such as SUM() operate over bags. 
In SciSPARQL bag-oriented aggregate functions are 
overloaded to operate on arrays of uniform dimensionality, so 
using SUM(?a) in the SELECT clause will compute an array 
whose elements are sums of respective elements of all arrays 
bound to variable ?a within a query or grouped query values. 

SciSPARQL is extensible with algorithms expressed in 
conventional algorithmic languages, like Python, Java, or C. It 
is possible to define both regular and aggregate functions. 

For example, the aggregate function 

DEFINE AGGREGATE mysum(?a) AS PYTHON ’mysum’; 

can be implemented in Python as 

def mysum(b): return sum([i[0] for i in b]) 

We believe that this kind of extensibility is vital for a query 
language to be adopted in the scientific community, where 
historically the information processing logic has been 

evolving in the context of algorithmic programming languages, 
and libraries of quite sophisticated solutions exist and play the 
role of de-facto standards. 

Another distinctive feature of SciSPARQL is functional 
views, which are user-defined functions expressed in terms of 
SELECT queries. This allows for building up libraries of 
SciSPARQL subqueries defining standard computation 
formulas or commonly used data retrieval tasks for further use. 
We define two such functions in Chapter VII, both for 
purpose of re-using the code, and encapsulating the argument 
to the second-order system function ARGMAX(). 

During query processing the functional views are expanded 
similarly to SQL views, in order to give the query optimizer 
greater freedom for finding the optimal order of execution. As 
a query language, SciSPARQL is declarative, optimizable, 
and terse. This means that most kinds of conditions and 
constraints on the data retrieved from a database can be 
expressed directly as algebraic equations. It is the 
responsibility of the DBMS to come up with an optimal 
execution plan, taking into account storage statistics, 
distribution, communication and computation time. Even the 
foreign functions can be associated with cost models used for 
query optimization. 

B. Scientific SPARQL Database Manager (SSDM) 

SSDM is our prototype system built on top of the object-
relational DBMS Amos II [22] providing a cost-based query 
optimizer, extensible type system, and foreign functions. 

We have extended Amos II with a new type representing 
numeric multidimensional arrays, NMAs. In SSDM arrays 
stored in main memory are represented by storage and 
descriptor parts. Most array operations, like slicing, projection, 
and transposition are implemented in terms of producing new 
descriptors for the same storage type, without copying or 
otherwise accessing array elements. A number of derived 
arrays, e.g. the ones representing the columns of an original 
matrix, share the same storage object in memory as explained 
in [8]. In section IV we also define array proxy objects that 
operate exactly as array descriptors but point to arrays stored 
in the back-end database instead. 

SSDM supports a stateless query-only interface for 
SciSPARQL, like most other SPARQL endpoints working as 
a basis for the Semantic Web. In addition a convenient 
interpreter-style session interface is provided, where 
SciSPARQL directives like DEFINE are available. There are 
also directives, like SOURCE() for batch execution of 
SciSPARQL scripts (typically consisting of function 
definitions), LOAD() for loading RDF data from files, e.g. in 
Turtle format, DUMP() for saving RDF data to Turtle files, 
and QUIT for ending the session. Any SciSPARQL function 
can be called as a directive, with results returned the same 
way as results of SELECT queries. 

IV. EXTERNAL STORAGE OF RDF WITH ARRAYS 

We have extended SciSPARQL Database Manager with the 
following features: 



 utilizing any relational DBMS with SQL support as 
back-end storage for RDF data including 
multidimensional numeric arrays; 

 representing stored arrays, their subsets and elements 
with array proxy objects; 

 retrieving array data in binary chunks, and effectively 
cache and reuse these chunks; 

 downloading and storing in indexed main-memory all 
metadata as RDF triples. In our e-Science applications 
the amount of memory required to store the metadata 
information represented by triples is several orders of 
magnitude smaller than the size of data in numeric 
arrays and therefore fits in main memory.  

A. SQL-based RDF storage schema  

To allow the stored amounts of numeric array data to scale 
beyond the capacity of main memory, we have defined a 
simple SQL-based storage schema, as shown on Fig. 1. The 
table representing the set of RDF triples is horizontally 
partitioned based on object type: URITriples, LiteralTriples 
and ArrayTriples. Sice URIs are commonly repeated in RDF 
datasets, we introduce a URI dictionary table, and store 
integer identifiers of URIs in all other places. 
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Fig 1. The SQL-based storage schema for RDF with arrays. 

We also introduce the LongString table with an arbitrary-
length TEXT field to store literal values beyond the limit of 
32 characters, and the ArrayChunk table with a BLOB field to 
store binary chunks of numeric arrays. Arrays are identified 
by auto-incremented arrayid values, and chunks with chunkid 
values, unique within the scope of an array. The element type, 
number of dimensions ndims, and the sizes of the first four 
dimensions of an array are explicitly stored in the ArrayTriple 
table. For arrays of higher dimensionality the shape 
information is stored as a sequence of (ndims-4) integer values 
in the beginning of the first chunk. 

B. Array proxy objects 

A special kind of descriptor is used when accessing large 
arrays stored in relational back-ends or external repositories 
such as Chelonia. For each reference to an external array an 
array proxy is created that stores all information necessary to 
retrieve the array. When using an SQL back-end, this 
information includes a unique array identifier, dimensions, 
and range. For Chelonia this is database name, task identifier, 
variable name, shape, and range information. As with the in-

memory descriptors mentioned above, an array proxy 
representing a derived array is computed as the result of 
applying array operations over original array proxies, without 
accessing the external repository. Typically each application 
of such array operations leads to a smaller derived array. A 
derived array is retrieved ’lazily’, i.e. as late as possible, when 
returning it as a result or passing it to an external algorithm for 
numeric processing. 

The chosen approach enables the streaming of array data 
into memory, and applying the computations at reasonably 
low granularity. A really large array cannot be put into 
memory in its entirety, however, the operations of interest, 
like summing up or averaging, can be performed row-by-row 
or column-by-column. A SciSPARQL query includes the 
expressions specifying what parts of the array need to be 
retrieved per operation, as shown in section VII A. These 
queries are executed in such a way that they retrieve one array 
piece at a time, and completely avoid accumulating massive 
intermediate results. 

V. CHELONIA STORAGE SYSTEM 

The Chelonia storage system [20] is a joint effort of the 
NorduGirid collaboration [5]. It has been developed with the 
next generation components of Advanced Resource Connector 
(ARC) middleware [1] under the knowARC project [3]. 
Chelonia is a service-oriented storage system originally 
designed to manage data on geographically distributed storage 
nodes. The design goal was meeting the requirements ranging 
from simple data sharing to the support for scientific analysis. 
Being part of the ARC middleware, Chelonia provides 
flexible data accessibility for the grid jobs running under ARC.  

A.  Architecture 

The architecture of Chelonia is based on four core services, 
Bartender; front-end of the system, Librarian; catalog service, 
A-Hash; metadata store and Shepherd; service running at the 
storage node. The system architecture ensures scalability, 
efficiency, and ease to deploy and maintain. [20] describes its 
features and architectural details whereas [2] documents 
technical aspects of the system. 

The extended version of Chelonia operates on top of 
MySQL DBMS, and defines a generic schema shown on Fig. 
2, typically used by the scientists to store experimental data. It 
features Experiment and Task entities, and Variables, that 
might have different types and values corresponding to 
different tasks. 

 

Fig. 2. ER-diagram of Chelonia storage schema 

The storage types supported are character strings, integer 
and real numbers, and the multidimensional arrays of numbers. 
Chelonia is highly optimized for storing and querying large 



arrays, and provides transparent array chunking: the SQL 
queries passed to Chelonia Bartender service are translated to 
address physical data on the storage nodes, and if array range 
is provided in a query, only the corresponding array chunks 
will be accessed. 

B. Integration  

In the current architecture Chelonia works as a distributed 
storage manager for BISTAB data and the access from SSDM 
is provided through a wrapper interface. The aim is to provide 
a flexible and scalable solution for data analysis. Chelonia 
provides the scalable and distributed storage of scientific data 
and SciSPARQL enables data analysis through queries. 

Chelonia exposes interfaces accessible by SOAP over 
HTTP(S) requests and provides access to arrays, subarrays, 
and simple values. The stored data is presented as RDF triples 
inside SSDM and becomes queryable with SciSPARQL and 
accessible to the foreign functions. 

In SSDM an RDF view of Chelonia is generated where 
tasks and experiments are mapped to RDF subjects, names of 
variables to RDF predicates, and values (including arrays) to 
RDF objects. This is achieved with a call to the SciSPARQL 
directive 

CheloniaExperiment(namespace, db, experiment_name); 

where db is the name of the Chelonia database being mapped, 
and experiment_name denotes the experiment that will be 
available as RDF triples enhanced with arrays. The prefix 
namespace is used in all queries during the session. This 
exposes the application-level schema for BISTAB to 
SciSPARQL queries.  

When a dataset is connected, the metadata about all tasks 
and their respective variables gets downloaded and cached 
inside SSDM. In RDF terminology, this becomes a cache of 
all subjects and all subject-property pairs. Query joins of triple 
patterns are not executed by Chelonia, so most of the pattern-
matching job is done in the SSDM in-memory database 
containing the cache. Only object values are retrieved from 
Chelonia. 

It should be noted that the current interface to Chelonia is 
read-only. In the BISTAB application discussed in this article, 
the experimental data is loaded into Chelonia using a separate 
shell script. 

V. URDME – AN APPLICATION FROM SYSTEMS BIOLOGY 

a) Stochastic reaction-diffusion kinetics: Simulation of 
reaction kinetics is frequently used to study the dynamics of 
regulatory biochemical pathways inside the cell. Key 
regulatory macromolecules, such as transcription factors or 
messenger RNAs, are often present in few copies, rendering 
the dynamics stochastic in its nature. This so called intrinsic 
noise is a factor that needs to be accounted for when studying 
cellular regulatory pathways since it can be expected to have a 
profound impact on the regulatory mechanisms. For example, 
some network motifs make the pathways more robust to 
molecular fluctuations [25]. 

In a discrete stochastic setting, the most common modeling 
framework is continuous-time discrete-space Markov 

processes. Statistically correct realizations of the process can 
be generated using kinetic Monte Carlo (kMC) methodology, 
such as the Stochastic Simulation Algorithm (SSA) [16]. To 
introduce spatial heterogeneity in the models, the 
computational domain is discretized into non-overlapping 
mesh cells, and diffusion is modeled as discrete jump events 
along the edges of the mesh. Recent computational studies 
have highlighted scenarios where both spatial and stochastic 
effects are essential to explain the behavior of the system [15], 
[13]. 

Analysis of the behavior of a spatial stochastic model for 
different input parameters would benefit from a systematic, 
observationally driven approach in which statistical 
approaches from e.g. machine learning and bioinformatics 
would be applied to the simulated data in order to discover 
input combinations where the model displays interesting 
behavior. In its simplest form, such an analysis could consist 
of aggregation of the full time series data to a set of 
biologically significant scalar or vector quantities, followed by 
the application of clustering algorithms to find groups of input 
cases displaying similar behavior. Such an approach is 
currently limited by the existing infrastructure, and would 
benefit greatly from integration with database solutions that 
simultaneously support knowledge discovery in databases and 
online selection and post-processing through queries, in our 
case SciSPARQL queries. 

b) The URDME framework: BISTAB is implemented using 
the URDME framework for stochastic simulation of reaction-
diffusion processes on unstructured meshes [12], [14]. It relies 
on the scientific computing environment MATLAB as a front-
end, while the core simulation routines are implemented as 
stand-alone C programs. Another third party software, Comsol 
Multiphysics, is used to provide a modeling environment for 
the geometry and to provide unstructured mesh generation. If 
used interactively, URDME behaves much as a MATLAB 
toolbox. It is designed to provide flexibility for the applied 
users in terms of (biochemical) model design, execution and 
post-processing via e.g. customized MATLAB scripts. Given 
a description of the chemical reactions (in the form of C code) 
and of the geometry (in the form of a Comsol .mph file), the 
URDME MATLAB layer creates all necessary data structures 
and serializes the model to an input file in .mat format. 
URDME then compiles an executable specific to the model 
under consideration, launches the simulation, and then imports 
the output data back into the MATLAB interface. 

The raw output from a simulation with URDME is a time 
series, or trajectory, with the number of molecules of each 
species recorded in every cell in the mesh for each output time 
point. It thus resembles the output of most partial differential 
equation (PDE) solvers, such as those based on the finite 
element method. An important difference from most standard 
PDE applications is that, since each run provides only one out 
of many possible realizations of the stochastic process, it is 
typically necessary to gather many independent trajectories 
into ensembles to form a basis for statistical analysis. 
Frequently, some model parameters such as the kinetic rate 
constants or diffusion constants are undetermined by 



biological experiments or known with low precision. It is 
therefore necessary to conduct “parameter sweeps” in order to 
tune model parameters to an experimentally observed 
behavior, or to study the robustness of the model to changes in 
the input. A computational experiment may thus require the 
generation of tens or hundreds of thousands trajectories. The 
computational cost to generate the ensembles is large, but 
each realization can be simulated independently of the others. 

c) Post-processing: The large amount of output data 
generated by URDME for a typical computational experiment 
poses a big challenge, both in terms of storage requirements 
and in terms of infrastructure for post-processing. While 
output data could be aggregated to e.g. mean values at the 
time of simulation, a computational experiment will likely 
require many different post-processing queries, and many of 
them will not be known in detail at the time of generation of 
the data. It is hence desirable that raw simulation output be 
persistent at least for the duration of a modeling project. The 
earlier solutions were based on either storing simulation 
output files locally on the user workstation, or transferring 
them to a central URDME server when they need to be 
accessed in the computation [21]. In the first case, hardware 
will likely limit high-throughput analysis of the model, and in 
the second case, the performance of the system will be limited 
by the data transfer cost. A more general approach with lazy 
access to a data repository through queries, as one described 
in the previous sections, is desired. 

d) Model problem: The BISTAB dataset is a model of a 
bistable system [13], and was one of the first models used to 
demonstrate the use of spatial stochastic simulation in 
computational systems biology. For some parameter 
combinations, the system will be globally bistable, and for 
other combinations the proteins will self-organize in local 
areas of higher concentrations, leading to loss of global 
bistability. The BISTAB dataset consists a parameter sweep of 
1900 realizations, where each realization is a file containing 
the result of a simulation with randomly chosen parameters. 
Processing this dataset and analyzing the biochemical model’s 
behavior for the different parameter combinations requires 
both compute intensive post-processing of the time series data 
and the ability to manage and filter the post-processing results 
based on metadata such as parameter values.   

e) Example queries: To demonstrate the utility of the 
proposed system we have applied it to run a number of 
different queries that are representative of the kind of array 
slicing and aggregate functions that are frequently needed as 
primitives in more complex post-processing routines. These 
queries often constitute the data-intensive part of the post-
processing workflow, where the complete dataset is mapped 
to derived quantities of biological interest in a lower 
dimension. The queries we consider in this paper are: 

• Q1: Compute the number of molecules over the whole 
spatial domain of a certain species as a function of time. 

• Q2: Compute the number of certain species at a certain 
time point for all the realizations that have kinetic rate 
constants in a certain range. 

• Q3: Retrieve the identifier of the trajectory that resulted in 
the maximal result for Q2. 

The operation in Q1 is typical for visualization of the 
realizations and is for example needed to produce the time 
series plots in [13], [15]. While simple array slicing and 
aggregate functions like that done on a single matrix in Q1 
can be expressed easily and efficiently in a scripting language 
such as MATLAB, already simple queries such as Q2 and Q3 
will place the responsibility for managing all the many 
different files and their properties on the user of the URDME 
application, while SSDM uniformly manages all data and 
metadata. With the traditional approach the management and 
analysis of e.g. large parameter sweeps quickly becomes 
tedious when metadata is stored separately and may be a 
bottleneck that limits the productivity of the user. We show 
how the system efficiently combines the utility of a database 
to select subsets of the data based on the metadata describing 
the experiments in terms of a high-level declarative language 
capable of expressing array operations. 

VII. RESULTS AND DISCUSSION 

A. SciSPARQL queries for the BISTAB experiment 

We have developed a database schema for the BISTAB 
dataset, as described by the ER-diagram shown on Fig. 3. It is 
used both for generating an RDF dataset to be stored in SSDM 
with a relational database backend, and for defining an RDF 
view over the scientific database stored in Chelonia.  

Once mapped dataset is accessible as the default RDF 
graph for SciSPARQL queries during the session, i.e. the 
queries do not need a FROM clause when addressing this 
dataset. In the BISTAB schema, all values are contained in 
properties of Experiment and Task instances. There are 1900 
task instances currently stored in Chelonia. To test SQL-based 
storage, we use a sample of 100 instances. 

The performance evaluation uses a relational database 
backend. We furthermore show the possibility to run the same 
SciSPARQL queries against a Chelonia native repository for 
scientific data mapped to RDF.  
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Fig 3. Entity-relationship diagram of BISTAB dataset 

The time series being the result of an URDME simulation 
are stored in the matrix U, containing a row per mesh cell per 
species type, and a column per time point (Fig. 4). The 
number of cells (Ncells), species (Mspecies), and the time 
values for every time point (tspan vector) are part of 



Experiment metadata. The values of the species names A, B, 
E_A, and E_B are used to access rows corresponding to these 
species types.  

Together with each U matrix, a set of simulation 
parameters k_1, k_a, k_d, and k_4 are stored. Since the 
simulation is stochastic, several different results per parameter 
set can be generated, and the realization number is used to 
distinguish between them. 
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Query Q1: Compute the sum of all species  A over all 
mesh cells in the experiment as a function of time for the 
trajectory matrix U of task Task1. Q1 always selects one 
matrix, associated with Task1, and aggregates the information 
on species of type A, effectively accessing 12.5% of the 
matrix elements in the database. This query is representative 
of a frequently occurring use case; to reduce the data of an 
individual sample point to e.g. plot the 3D spatial data as a 1D 
aggregated time series.   

First, we define a function total_species(U, species, 
mspecies) that sums up the given species type in U, applying a 
vector sum to the corresponding rows. Every simulation cell 
occupies mspecies rows in U: 

DEFINE FUNCTION total_species(?U ?species ?mspecies) 
AS SELECT (SUM(?U[?i]) AS ?res) 
    WHERE { FILTER (mod(?i, ?mspecies) 
                   = ?species-1) }; 

The variable ?i will be bound to all possible subscripts 
in ?U constrained by the filter expression. Every mspecies row 
is retrieved, and a (scalar) sum is computed over the elements 
of respective columns, as shown on Fig. 4a. If we think about 
the same data as a 3D array, with the ’species’ and the ’cells’ 
dimensions unnested, each summed-up subset can be 
represented as a slice, shown on Fig. 4b. 

Query Q1 can now be formulated as 

SELECT (?tspan[?j] AS ?t) 
       (total_species(?U,?a,?mspecies)[?j] AS ?sum_A) 
 WHERE { :Task1 :U ?U ; 
                :inExperiment ?experiment . 
         ?experiment :A ?a ; 
                     :MSpecies ?mspecies ; 
                     :tspan ?tspan }; 

The variable ?j joins the possible subscript values for 
elements of the ?tspan vector with those of a vector returned 
by total_species(). The WHERE clause specifies triple 
patterns used to extract (1) the U matrix associated with the 
experiment task instance named Task1, (2) the corresponding 

experiment instance (property inExperiment), and (3) other 
metadata associated with the experiment. The query returns 
pairs of (timepoint, sum) that can be directly used for plotting 
the wanted function of time. 

Query Q2: Select the sum of all species A for time point 
10s for all trajectory matrices U with parameters k_a and k_d 
in given ranges. Q2 selects just one column of a matrix, and 
the column index ?j by looking up the tspan vector for the 
time point of interest. There can be many tasks falling into the 
specified parameter range.  

SELECT (array_sum(?U[?a-1::?mspecies,?j]) AS ?res) 
 WHERE { ?task :U ?U ; 
               :k_a ?k_a ; 
               :k_d ?k_d ; 
               :inExperiment ?experiment . 
         ?experiment :A ?a ; 
                     :MSpecies ?mspecies ; 
                     :tspan ?tspan . 
         FILTER (?tspan[?j] = 10 && 
                 1.0E8 <= ?k_d && ?k_d <= 1.0E9 && 
                 50 <= ?k_a && ?k_a <= 90 ) }; 

This query sums up only one column with index ?j 
expressed by the constraint tspan[j]=10.  The SELECT 
expression sums up elements in one column and every 
mspecies row (grey in Fig 4a). Since we are interested in only 
one time point of the trajectory, here we do not use a vector 
sum as we do in function total_species(). 

Query Q3: Find the task that has the maximal total 
population of species A or B for any time point. Q3 is an 
example of typical batch processing job. It makes a complete 
(unselective) sweep across all U matrices in the dataset, 
computes aggregated statistics for each matrix, and identifies 
the task that has received the maximum score.  

We will need a helper function max_AB_sum(task), 
aggregating the vectors returned by different calls to 
total_species(): 

DEFINE FUNCTION max_AB_sum(?task) AS 
SELECT 
   (max(array_max(total_species(?U,?a,?mspecies)), 
        array_max(total_species(?U,?b,?mspecies))) 
   AS ?res) 
 WHERE { ?task :U ?U ; 
               :inExperiment ?experiment . 
         ?experiment :A ?a ; 
                     :B ?b ; 
                     :MSpecies ?mspecies }; 

For each matrix U two vectors are computed: summing up 
the populations of species A and B and returning their 
maximum. The function is similar to Q1 and Q2 in the triple 
patterns involved, but the ?task instance is now the function’s 
argument. This allows us to apply the second-order function 
ARGMAX() to express query Q3: 

SELECT (ARGMAX( max_AB_sum ) AS ?maxtask); 

This query applies max_AB_sum() to all possible bindings 
of variable ?task to task instances – computed by the triple 
patterns inside max_AB_sum(). The argument corresponding 
to the maximal function result is returned, and can be further 
queried for properties, e.g. parameters of the trajectory. 



During the query execution A and B rows are accessed and 
summed up separately, and referenced by separate array 
proxies. Since the chunks contain two rows each, the chunk-
level caching prevents double retrieval of the same chunks. A 
very small cache, capable of storing 25% chunks of a matrix, 
completely eliminates the problem. The matrices are accessed 
one at a time, so that the chunk cache is automatically 
refreshed (according to LRU replacement strategy) when 
function max_AB_sum() proceeds to the next task. 

B. Setup and data loading 

We have deployed both SSDM and the backend database 
on a single HP Compaq 8100 workstation with Intel Core i5 
CPU @ 2.80 GHz, with 8Gb RAM and running Windows 
Server 2008 R2 Standard SP1. 

The parameters (metadata) of the BISTAB experiment and 
each simulation were collected into a Turtle file, enhanced 
with links to binary data files (in standard MATLAB .mat 
files) containing the experimental results (U matrices). We 
used a dataset consisting of 100 realizations of U matrices, 
each about 71.5 MB, containing an integer element for each of 
(11107 cells 8 specie types   201 time points). 

As SQL back-end we experimented with two different 
DBMSs accessed via JDBC: MySQL 5.6.10 and Microsoft 
SQL Server 2008 R2. The back-ends are configured to use 
small chunks of 1608 bytes each, so that a chunk contains two 
successive rows of a U matrix. This amounts to 44 428 chunks 
per matrix, and 4 442 801 array chunks in total (one chunk 
stores tspan). 

To evaluate different data loading methods, we compared 
the performance of naive one-by-one insertion of each chunk 
with loading the complete dataset at once using the bulk-
loading facility of the DBMS. The results are shown in Table 
1. In case of bulk loading, the system first has to prepare a set 
of bulk-load input files to be sent to the bulk-loader. Here the 
data to be loaded into each table in our general relational 
storage schema for RDF (Fig 1) needs one or several prepared 
input files. If the data to be bulk-loaded into a table is larger 
than allowed by the OS (8 GB in our setting), the system splits 
the bulk-load input into several files. 

TABLE 1. DATA LOADING TIMES FOR 100 MATRICES 

task MySQL 
MS SQL 
Server 

Preparing files for bulk-loader 980 s 82 s 

Bulk loading 1 543 s 1 275 s 

Total 2 523 s 1 357 s 

Naïve one-by-one insertion 7 577 s 7 827 s 
 

The bulk-loading into MySQL is slower since its bulk-
loader requires text-based input. Here the array chunks are 
represented in hexadecimal form and the preparation work 
includes converting the binary data into hexadecimal 
representation. The gain is still a factor three compared with 
inserting the chunks one a time, mainly because incremental 
updates of internal DBMS structures in the latter case. 

MS SQL Server allows bulk-loading binary files. Preparing 
these files becomes simply moving binary data from memory. 
The bulk-loader does not have to do any parsing. This is 
therefore the fastest option.  

C. Query execution 

Once the data was loaded into SSDM with its connected 
relational backend RDF storage, we ran the queries Q1 - Q3 
and measured the execution time and the number of resulting 
tuples emitted. Our experiments on smaller datasets showed 
that all queries take practically constant processing time per 
matrix. As a comparison, we also made MATLAB scripts to 
perform the equivalent computations on a set of 
(uncompressed) binary .MAT files. Since MATLAB stores 
the matrix elements as floating-point numbers, the size of data 
it is reading from disk is in the best case twice bigger than the 
data we retrieve from a relational database, which explains 
why MATLAB is sometimes slower. 

Table 2 shows "cold cache" run times where all data reside 
on disk before the query is executed: 

TABLE 2. QUERY EXECUTION TIMES (IN SECONDS) WITH COLD CACHE 

task 
U 

matrices 
results MySQL 

MS SQL 
Server 

MATLAB 

Q1 1 201 1.748 2.15 1.826 

Q2 36 36 80.703 44.512 30.042 

Q3 100 1 187.073 192.365 133.279 
 
We can see that on smaller amounts of data our system 

slightly outperforms MATLAB with .MAT files. All results 
fall within same order of magnitude, which proves that the 
benefits provided by our solution combine with quite 
competitive performance. 

Table 3 shows "warm cache" results, obtained by repeated 
runs of the same query. There are three cache levels involved: 
OS-level file cache, DBMS-level query cache, and SSDM-
level array chunks cache. Due to massive amounts of data 
processed, Q3 does not benefit from any of these, and the 
results are same as in Table 2. In contrast, for Q1 there is an 
interesting case possible when all the data processed fits 
entirely into the SSDM cache, so the DBMS is not accessed at 
all; it only runs in the background, consuming some system 
resources. This particular case is shown as Q1*. 

TABLE 3. QUERY  EXECUTION TIMES (IN SECONDS)  
WITH WARM OS/DBMS LEVEL CACHE 

task 
U 

matrices 
results MySQL 

MS SQL 
Server 

MATLAB 

Q1 1 201 0.434 0.526 0.157 

Q1*  1 201 0.138 0.152 N/A 

Q2 36 36 63.542 13.378 1.203 
 
Here we can see that the SSDM cache is faster than the OS-

level cache utilized by MATLAB. However, Q2 reads just a 
single column from every matrix, but it has to retrieve the 
same amount of chunks from DBMS. This makes it 
significantly slower than a system without chunking per row, 



which is currently used in the current SSDM. Single-column 
access can be regarded as particular worst case for row-based 
array storage, as the useful data load is relatively small for the 
array retrieval operations. 

VIII. CONCLUSION 

In this article we have presented the architecture of SSDM 
providing the SciSPARQL language front-end to access 
scientific data stored in a relational database back-end. Two 
widely-used SQL DBMSs were used as alternative choices for 
the back-ends. Using the system’s extensibility we also used 
the Chelonia system as an example of interfacing a back-end 
e-Science data repository. We demonstrated the strengths of 
our system by applying it to datasets from a highly data-
intensive application from systems biology. The SSDM 
system was shown to provide a scalable storage mechanism 
with efficient data analysis capabilities to the scientific 
application. By formulating as SciSPARQL queries typical 
real world post-processing tasks arising in the use of the 
URDME framework, we showed that the system is capable of 
addressing non-trivial online data analysis tasks with 
competitive performance. The queries presented for the 
URDME framework illustrate how other applications that 
need interactive data analysis can access the data in terms of 
declarative SciSPARQL queries combining metadata and 
massive numerical data in order to accelerate the application 
workflow. Our solution is thus adequate to support upcoming 
data-intensive scientific applications and to build 
comprehensive systems for managing scientific information. 

Future work includes development of distribution and 
replication strategies for data-intensive scientific and 
engineering applications. Different kinds of query processing 
and optimization techniques for such an architecture should be 
developed. Architectures providing more direct file access, 
completely transparent to SciSPARQL queries, are another 
important direction of our research. The discussion of 
different partitioning strategies in [11] [24] opens up another 
direction for possible future work. 
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