
1

CloudDRN: A Lightweight, End-to-End System for
Sharing Distributed Research Data in the Cloud

Marty Humphrey, Jacob Steele, In Kee Kim

Department of Computer Science
University of Virginia

Charlottesville, VA USA

Michael G. Kahn, Jessica Bondy, Michael Ames

University of Colorado Anschutz Medical Campus
Aurora, CO USA

Abstract—The cloud has proven itself as a scalable
platform for Web-based applications. However, scientists
and medical researchers are still searching for a simple
cloud-based architecture that enables secure collaboration
and sharing of distributed datasets. To date, attempts at
using the cloud for this purpose generally view the cloud as
simply a pool of servers upon which to run their legacy
software. This approach fails to leverage the unique
platform capabilities of the cloud. In this paper, we
describe our Cloud Distributed Research Network
(CloudDRN). We leverage the cloud for availability,
reliability, scalability, and improved security as compared
to legacy distributed systems while still supporting site
autonomy. Our philosophy is to adapt commercial
software tooling that was originally designed for business
use-cases, thereby benefiting from the large built-in user
community. We describe our general architecture and
show an example of our system created to share
distributed clinical research data. We evaluate our system
in Amazon Web Services (AWS) and in Microsoft
Windows Azure and find that while each cloud achieves
similar financial cost, representative queries are 3.5x
slower on average in Windows Azure.

Keywords—distributed systems; cloud computing; data

I. INTRODUCTION

There has been significant interest in the cloud as a scalable
platform for Web applications. Reddit [1] and Pinterest [2] are
examples of the many applications that run on Amazon Web
Services (AWS [3]), and the cloud is a platform for Big Data
(Hadoop [4], MongoDB [5], etc.). However, much less effort
has been made to use the cloud as a platform for collaborating
on data produced and managed by different organizations,
irrespective of scale. To date, attempts at using the cloud for
this generally view the cloud as simply a new set of servers
comparable to those within the enterprise. This approach fails
to leverage the unique capabilities provided by the cloud such
as higher availability, higher reliability, scalability, and even
improved security as compared to legacy distributed systems.

Distributed data sharing was a significant focus of the Grid
[6], to varying degrees of success. Even in situations where
data was successfully shared across organization boundaries,
the barrier to entry was often quite high and the interface to
data was limited (e.g., GridFTP [7]). Many technical
challenges were identified and addressed to create the Grid
software, often via the creation of highly-specialized software
systems. However, with the advent of commercial cloud

technologies, the potential to adapt “commercial software
tooling” for scientific collaboration has never been greater and
scientists can focus on scientific hypotheses without being
required to be experts in software development and tooling.

In this paper, we describe the design and implementation
of the Cloud Distributed Research Network (CloudDRN), a
broad data sharing mechanism and policy framework for
research data. We have emphasized simple and effective
technology as the key to effective data sharing in the cloud.
The main supported use case is that a collection of
independent researchers are making their data available to
each other – all sites agree to a common data schema, each site
makes the decision regarding who gets to access its data, and
access to the data is primarily through a Web browser.

A fundamental issue is: Why a cloud-based system instead
of a distributed Internet-based system across the contributing
enterprises? Enterprise servers often have configurations that
are specific to the organization – there can be significant
heterogeneity in policy and mechanism across all servers,
greatly complicating the deployment, test, and run-time
behavior. For example, enterprises can have different firewall
rules and different patch/upgrade schedules. In contrast, cloud
servers can be relatively homogeneous, greatly simplifying
operation. Enterprise servers are often tasked with multiple
responsibilities – creating the potential for downtime,
increasing service latencies, and introducing security
vulnerabilities. Many of the technical/compliance barriers that
data be kept within the enterprises are being removed as the
cloud matures and achieves compliance certifications. A
downside to the cloud-based system is that a participating
enterprise must now have two sources of data: the original
data within the enterprise and the version that has been
exported. This creates the possibility of out-of-sync versions.
However, this can be addressed fairly easily via automated
daemons or scripts. Finally, while there are many compelling
reasons to collaborate over cloud-based servers, we have
designed CloudDRN to be inclusive – nothing technically
prevents an organization from participating in CloudDRN via
a server running within its enterprise.

The contributions of this paper are:

• We describe CloudDRN, for securely sharing research
data in a cloud – specifically created with the goal to
minimize the amount of “special-purpose” software

• We show how commercial tooling (in this case from
Microsoft) can be leveraged to meet non-commercial

Preliminary version. Final version to appear in 9
th

 IEEE International

Conference on eScience (e-Science 2013). Beijing, China.. Oct 22-25 2013.

2

requirements (specifically related to sharing of
scientific/health data across organizational boundaries).

• We show how our general CloudDRN framework is
adapted to a particular use case of sharing of regional
clinical data (CloudCHORDS).

• We show a quantitative comparison of Windows Azure
[8] and Amazon Web Services (AWS [3]) for
CloudCHORDS. While each cloud achieves similar cost,
representative queries are 3.5x slower on average in
Windows Azure.

The rest of the paper is organized as follows. Section II
contains the related work. Section III enumerates our
requirements and assumptions. Section IV describes the
architecture of our system. Section V contains a case study,
CloudCHORDS. Section VI concludes.

II. RELATED WORK

There are many issues to be addressed when designing a
distributed data sharing network [9][10]. A key requirement is
the ability for separate organizations to independently
maintain their data.

A notable example of a distributed network for data
sharing was the cancer Bioinformatics Grid (caBIG) [11][12].
Running 2004 - 2011, caBIG was a virtual network of
interconnected data, individuals, and organizations designed to
enhance collaboration of cancer researchers. Overseen by the
NIH National Cancer Institute (NCI), the goal of caBIG was to
redefine how research is conducted, care is provided, and
patients/participants interact with the biomedical research
enterprise. caGrid [13][14] was the underlying service-
oriented architecture of caBIG. caGrid consisted of services,
toolkits, APIs, and applications, including:

• Community-provided services, such as Data Services and
Analytical Services

• Web Applications, such as the caGrid Portal
(http://cagrid-portal.nci.nih.gov/)

• Metadata Services, including EVS (the Enterprise
Vocabulary Services), the caDSR (the Cancer Data
Standards Repository, used to store data models as
common data elements); GME (the Global Model
Exchange service, used to store XML-based
representations of concepts); and the Index Service (to
register and search for specific services or service types)

• Client Applications, such as a workflow service and
Introduce (an “authoring toolkit” for caGrid services)

• Security Services [15], such as Authentication Services,
Dorian (for provisioning and federation of caGrid user
identities and credentials), GTS (the Grid Trust Service,
which maintains a federated trust fabric of all the trusted
credential providers in caGrid), and Grid Grouper [16] (a
service for group membership – typically used for
authorization decisions).

In many ways, caBIG motivates our CloudDRN project.
While caBIG had ambitious goals, many people believe that

caBIG was too complicated to be effective. For example, in
March 2011, the NIH NCI “Board of Scientific Advisors”
(BSA) produced a report (“An Assessment of the Impact of
the NCI Cancer Biomedical Informatics Grid (caBIG)” [17])
that was very critical of caBIG/caGrid--e.g., from the
executive summary: “… enormous effort was devoted to the
development of caGrid ($9.8M), an environment for Grid-
based cloud computing, but the WG did not find evidence that
it has empowered a new class of tools to ‘accelerate the
discovery of new approaches for the detection, diagnosis,
treatment, and prevention of cancer’ as envisioned.”
CloudDRN was created with many of the goals of caBIG in
mind while addressing the criticisms from the BSA report.

Much of the caGrid technology was used as the basis for
the Translational Research Informatics and Data-management
Grid (TRIAD [18]). While the goals of TRIAD are as
impressive as caBIG, many of the same criticisms of
caBIG/caGrid apply: most notably, because of the complexity
of the underlying software, the barrier to entry is arguably too
high for many organizations. The Biomedical Informatics
Research Network (BIRN) [19], similar to caGrid and TRIAD,
has a broad goal of enabling the sharing of biomedical
research data. BIRN has attempted to reduce the complexity
by grouping software into modular “capabilities”. CloudDRN
has been designed to be much more lightweight – requiring the
minimal software necessary to ensure collaboration.

III. REQUIREMENTS

In order to carefully establish the requirements of a cloud-
based distributed research network, we must first identify the
roles of the participants:

Role Description

Data User Person accessing the system for the purpose of
querying research data from participating sites.

Compliance
User

Person accessing the system for the purpose of
examining audit records.

Data
Administrator

Person(s) at data sharing sites responsible for
determining which data is made available from
their site, as well as site-specific access control
policies.

Node
Administrator

Person(s) at data sharing sites responsible for
technical configuration and maintenance of site-
specific data sharing technology.

CloudDRN
Administrator

Person(s) responsible for technical configuration
and maintenance of shared (i.e., non-site-specific)
data sharing technology.

The following architectural components are defined:

Component Description
Query Portal The query portal enables users to authenticate,

specify a query, select DRN nodes, and select the
output data format.

DRN Nodes A DRN node receives a query from the query
portal, authenticates the request, authorizes the
request, executes the query against its local data
source, and returns the data.

Local Data
Sources

The local data source contains the data to be
queried by the DRN node for a single institution.

3

Component Description
Authentication

and
Authorization

Authorities
(AAA)

An authentication authority is responsible for
certifying the identity of users accessing the query
portal and requesting data from DRN nodes. An
authorization authority controls the policy by
which to grant access to particular resources.
Different users/nodes might have different
authentication/authorization authorities, and there
is no requirement for a single centralized
authentication/authorization authority.

The overall architecture is shown in Figure 1. There are
multiple options for authentication and authorization, and the
best approach depends on the particular requirements of the
deployment. For example, it may not be necessary for the
individual nodes to perform an authorization/authentication
callout on every invocation – e.g., for efficiency/availability,
DRN nodes can choose to use cached credentials from within a
relatively small time window. Furthermore, what is actually
authenticated is not fixed in the architecture: for example, some
DRN nodes architecture might choose to authenticate a human
making the particular request whereas in other deployments the
DRN nodes might authenticate that the query portal is making
the request (and the query portal has authenticated the human
making the request).

It is not necessary to co-locate the DRN node with its
associated “local data source”. The local data source could be a
separate service in the cloud (as in our CloudCHORDS system
described in Section V), or the local data source could be a
network-accessible server within the local enterprise (thereby
eliminating the need to copy the data into the cloud). The local
data source could be embedded in the DRN node, although this
is not recommended for reliability reasons.

The following are high-level requirements for the Query
Portal component.

Requirement Description
User

Authentication
The Query Portal must enable the user to
authenticate (e.g., with a name and password or
with a user certificate from a trusted authority).

DRN node
Authentication

The Query Portal must authenticate that it is
interacting with trusted DRN nodes.

Menu-driven
Queries

The Query Portal must provide common queries
from a menu interface, enabling the user to select
the query, specify required parameters, and execute.

Arbitrary
Queries

For less common queries, the Query Portal should
provide the user with the ability to specify arbitrary
filter criteria for queries. Ideally, the entire richness
of SQL JOIN and WHERE clauses would be
represented is possible.

Data Source
Specification

The Query Portal must enable users to optionally
select the specific data sources (i.e., DRN nodes) to
be accessed when a query is executed.

Data Format
Specification

The Query Portal must enable users to select
whether return data will be displayed on screen
and/or be made available as a file download in a
common format, such as CSV or XML.

Auditing /
Reporting

In some situations, the Query Portal must track and
report all attempted queries and their status.
Typical audit data include user, timestamp, query,
success/failure codes, and results payload size.

 The following are high-level requirements for the DRN
Node components.

Requirement Description
Secure

Communication
Communication between the Query Portal
and the DRN node must be secured by high-
strength TLS/SSL encryption.

Query/User
Authentication

Before considering a query request, the DRN
node must ensure that the query is authentic –
either by authenticating that it came from the
trusted query portal or by authenticating the
user.

User Authorization Before executing a query request, the DRN
node must ensure that the user is authorized
to receive the data specified in the query. One
option is to authorize a user based on group
membership; however, participating sites
should not be required to use this if they
prefer to manage authorization through other
means.

Auditing The DRN node must maintain a complete
audit list of queries and result statuses.
Information stored should include the query
requestor, time stamp, query requested, and
result status information, such as
success/failure, number of rows, etc.
(Specific data returned need not be stored.)

DRN Node
Management

Tool(s)

The DRN node must include a user interface
that enables a site-level administrator to view
and configure security configuration
information and audit tables.

 The following are high-level requirements for the Local
Data Source components.

Requirement Description
Secured Access The local data source must be secured to

prevent access by any means other than the
DRN node. If the DRN node and its
corresponding data source are not co-located,
proper authentication and transport security
must be ensured.

Common Data
Model and

Terminology

The local data sources for each DRN node
must be of the same data model and
terminology to enable querying all data
sources with a single query.

Local Data
Population

The local data source will be populated via
ETL and/or data entry processes at each
individual site and will be updated
periodically in accordance with specific
project requirements.

 The following are high-level requirements for the
Authentication and Authorization Authorities (AAA). Note
that it is assumed/required that all interactions with the
Authorization component are first authenticated (either the
query portal, the DRN node, or the user, depending on the
context and/or the particular deployment). Within the system,
cloud Virtual Private Networking (VPN) technology can be
considered as necessary to enhance security.

4

Figure 1: Architecture of a Cloud Distributed Research Network

Requirement Description

Secured Access Interaction with the AAA must be secured with
high-strength TLS/SSL encryption.

System-Wide
Scope

The AAA must either contain the necessary
account information for users directly
(centralized) or must know which services to
contact for account information (distributed)

User Self-
Registration

For particular sites that do not mandate their own
local AAA authority, users must be able to
register their own accounts with the AAA. (Note:
Registration of an account does not grant access
to any DRN resources.)

User Account
Management

For particular sites that do not mandate their own
local AAA authority, the AAA must enable users
to change their own password and deactivate their
account as required.

User Password
Management

For particular sites that do not mandate their own
local AAA authority, the AAA should enforce
best practices for user password management.

Arbitrary
Groups

The Authorization component must allow
authorized individuals to create arbitrary groups.
Each DRN node can choose to accept or not
accept membership in such a group as the basis
for an authorization decision..

Owner-based
Maintenance

Group owners must be able to add and remove
users to the groups they own.

IV. IMPLEMENTATION

In this section, we describe the details of our
implementation of CloudDRN. We believe that maintainability
and upgrade of CloudDRN is an important design criteria that
has been overlooked in similar projects in the past. That is,
many projects can be difficult to support year-after-year due to
the cost of maintaining custom software understood by only a
few programmers. Therefore, we have looked to commercial
software tooling as our first choice for implementing our
architecture. We believe that if a company is supporting an
enabling technology, and there is a sufficient community that is
using this technology, then CloudDRN could benefit by using
the technology as the company releases updates in response to
bug reports and feature requests from the broader community.

Simply, in our opinion, scientific communities should look to
commercial industries more. This is especially true for cloud
computing. We have chosen to use Microsoft technologies,
specifically because they are well-supported for the two
candidate public Infrastructure-as-a-Service (IaaS) clouds:
Amazon Web Services and Windows Azure. As described
below, we leverage several Microsoft technologies, including
SQL Server, Microsoft Visual Studio, and the Microsoft Web
server (IIS). We also discuss the financial cost of using these
technologies in this section and Section V.

A. DRN Node and Local Data Source

In a cloud environment, a good approach for storing
information in a database is to use a cloud SQL service – e.g.,
Windows Azure SQL Database [20] or Amazon Web Services
RDS [21]. These data sources are managed independent of the
VMs that might exist to serve the DB data via Web services or
REST services (such as the DRN Node). In other words, the
data is not contained within a single VM, which might be
subject to catastrophic failure and thus data loss. Multiple
options exist for these SQL servers, varying on size, cost,
performance, etc. The right configuration can be selected for
the data, with the ability to migrate to a new configuration as
the situation warrants. SQL Server 2012 was chosen (this is
the only option for Windows Azure, but RDS also supports
MySQL and Oracle). We use Microsoft SQL Server 2012
Management Studio Express as the means to populate and
otherwise interact with the data (the “Express” version is free
and can be used if the data is less than 10GB [22]).

Each DRN node provides Web-based access to the data via
two separate services. The first service is a secure REST-based
service (Microsoft WCF Data Service, which uses the Open
Data Protocol [23]). Typical clients of this REST-service
benefit from the relatively clean and simple service interface
(e.g., see Figure 2, which shows a secure browser-based direct
interface to a back-end SQL DB). The second service is a
SOAP-based service that provides secure, custom method
handlers. For example, in the CloudCHORDS application that
we describe in the next section, custom SQL stored procedures

Query

portal

Data user

Data user

Data user

AAA #1

Authentication and
Authorization Authorities

DRN

node
AAA #n

Local data source

DRN
node

DRN

node

Local data source

Local data source

Cloud

(e.g., AWS, Azure)

SQL

SQL

SQL

5

are exposed in this section service via a minimal amount of
additional service code. A key aspect of the two services is
support for interoperability (i.e., SOAP and REST provide a
foundation for building client applications based on python,
Java, PHP, etc.)

Figure 2: Browser Interface to a DRN Node (Odata)

Communication between the local data sources and their
respective REST/SOAP service (DRN Node) are secured by
SSL channel encryption. Furthermore, the SQL Server cloud
instances have their firewalls set to only allow communication
from the associated DRN node (and a node upon which a
Node Administrator is executing). A DRN node is listening
only on an HTTPS-enabled port.

B. CloudDRN Authentication and Authorization

While arguably caBIG/caGrid as a whole was too broad to
accomplish its goals (in particular, the core data-sharing
services were very complicated), the authentication and
authorization components were architected to function outside
the caBIG effort. As such, we have chosen to use these two
components in CloudDRN. Note that within CloudDRN the
use of these technologies is modular as well, allowing us to
plug-and-play new technologies in their place.

Authentication within CloudDRN is based on a
combination of username/password and certificates (PKI). The
caGrid authentication service (Dorian) is open-source and can
be downloaded and deployed for the particular CloudDRN
instance (or reused from another deployment – for example, in
the CloudCHORDS system we describe in the next section, we
use the caGrid Training Grid server [24] for account
registration, login, etc.) Users acquire a valid credential
(certificate and private key) by running our .NET-based
authentication client (Figure 3) that runs on a Windows-based
machine. Other authentication clients exist for other common
platforms. This credential is automatically used by the Web
browser when accessing the CloudDRN Query Portal. To
simplify without compromising security, this credential is only
used as the basis of authenticating to the Query Portal – it is not
used to authenticate to the CloudDRN nodes. The CloudDRN
nodes authenticate to the Query Portal node via SSL, and the
Query Portal authenticates to the CloudDRN nodes either via
SSL or via username/password (over SSL). All interaction with
the Query Portal are logged (authenticated user, action).

Authorization in CloudDRN is based on group membership
and is provided via the caGrid component Grid Grouper [16].
Similar to Dorian, Grid Grouper is open-source and can be

downloaded and installed for a particular CloudDRN.
Authorized individuals can create new groups, add/remove
members, etc., via a Web browser. In our experience, our
interactions with Grid Grouper have been very fast, so we have
chosen to perform an authorization call-out on every service
request in the Query Portal. That is, without compromising
security, there is no authorization call-out from the CloudDRN
nodes to the AAA components (instead, relying on the
authenticated connection from the Query Portal to the
CloudDRN nodes).

Figure 3: Acquiring a credential for use in CloudDRN

C. Query Portal

The query portal highly leverages Microsoft ASP.NET
technology running on the Microsoft Web Server technology,
IIS. The rendering is based on HTML5, providing cross-
platform/mobile support. Figure 4 shows a simple example of
this query portal, adapted for the CloudCHORDS system
described in the next section. The top of the Web page allows
the user to select the sites from which to query, and the rest of
the screen contains a list of custom searches. The right side of
Figure 4 shows the results (CSV download is also supported).

Figure 4: CloudDRN Web Portal

Visual Studio is used to construct the portal. As shown in
Figure 4, the portal facilitates specialized queries based on the
particular back-end data (not shown is the general SQL
interface). Visual Studio provides a wizard to create the proxy
code to the CloudDRN SOAP service; a configuration file of
the Query Portal page contains the static enumeration of the
URLs for the CloudDRN SOAP services. Synchronous and
asynchronous proxies are automatically generated (e.g.,
minimum latency is achieved by issuing requests concurrently
to multiple DRN nodes and then asynchronously receiving
results).

6

V. EVALUATION

In this section, we evaluate our CloudDRN approach in
light of requirements developed by Colorado Health
Observations Regional Data Service (CHORDS) [25]
CHORDS is a collaboration between several affiliated research
and health care organizations in the Colorado region. Its
purpose is to establish and maintain technical and policy
infrastructure required to facilitate regional data sharing. In
CHORDS, a small number of participating clinics have agreed
to share a subset of patient encounters. Each encounter
produces a number of different data records internally. Each
record is reviewed internally for release – if released, the data
is de-identified and then transformed into a schema that has
been agreed-upon by the CHORDS collaboration. The primary
use-case envisioned is a doctor or clinician wishing to find
patterns within a particular geographic region.

We demonstrate the technical feasibility of a cloud-based
data sharing collaboration. These positive technical results are
currently being used as input for design discussions for a
number of different systems whose ultimate deployment
depends on issues beyond technical – most notably social and
compliance issues. For purposes of this paper, the
implementation of the CloudDRN architecture to the CHORDS
requirements is referred to as CloudCHORDS.

The collaboration has already created the data schema
(tables: death, demographics, diagnosis, encounters, lab,
pharmacy, procedures, and vitals). Furthermore, for a number
of reasons including to enhance security, general queries are
not supported – instead, a small number of well-defined queries
are supported (with the possibility of adding new queries as
necessary). Notably, in CloudCHORDS, we have specifically
included queries that we found difficult to implement in
caBIG/caGrid due in part on its reliance on a custom (non-
SQL) query language [26]. The customization of CloudDRN
that is necessary for CloudCHORDS is therefore:

1. If the SQL query is relatively simple, then the CloudDRN
REST service can be used.

2. Otherwise, the SQL query can either be expressed
programmatically within the CloudDRN SOAP service or
via a SQL stored procedure. Based on a template provided
in CloudDRN, a public method must be added to the
CloudDRN SOAP service.

3. The CloudDRN Query Portal must be modified to support
the user interface and the interactions with the CloudDRN
nodes.

For example, in CloudCHORDS, there is a requirement to
search for diagnoses within a particular range. To customize
CloudDRN to support this search, the following stored
procedure is added to each cloud SQL Server instance:

create procedure sp_SearchDiagnoses
@DXLow varchar(6), @DXHigh varchar(6)
as

set nocount on

select demographics.patid,

demographics.birth_date, demographics.gender

from demographics join diagnosis on (demographics.patid = diagnosis.patid)

where diagnosis.dx between @DXLow and @DXHigh

This custom search is then made available in the CloudDRN
SOAP service:

public IQueryable<CHORDSModel.sp_SearchDiagnoses_Result>
SearchDiagnoses(String dxlow, String dxhigh)
{
 CHORDSModel.CHORDSEntities context = new
 CHORDSModel.CHORDSEntities();

 return
 context.sp_SearchDiagnoses(dxlow, dxhigh).

AsQueryable();
}

Note that Visual Studio automatically generates most of the
data types shown in the code above via its Entity Framework
connection to SQL Server (including cloud SQL Server). We
believe a particular strength of CloudDRN – and verified via
CloudCHORDS – is the minimal amount of custom code
required. We found that most of the time creating
CloudCHORDS was spent focusing on the user interface of the
Query Portal, rather than the back-end service connections.

We evaluated two implementations of CloudCHORDS:
One entirely in Windows Azure and one entirely in Amazon
Web Services. The two deployments are similar, as we use
Windows Server 2012 in both of these IaaS clouds. Therefore,
we compare the two deployments on performance and cost. To
simplify the evaluation, we defined 3 participating
organizations, and each organization has an identical back-end
database (describes in Table 1). Each organization has its own
SQL Server cloud resource and its own CloudDRN node. Each
organization independently manages the CloudDRN node (i.e.,
an organization’s security credentials are not known to the
other organizations). We focused on eight representative
queries end-users would make in the CloudCHORDS system.

Table 1: CloudCHORDS Database

Table Rows
Death 2276
Demographics 2000
Diagnosis 164922
Encounters 87460
Lab 81699
Pharmacy 15167
Procedures 215099
Vitals 21618

We deployed our system into each cloud using the least-
expensive virtual machines (on-demand instances) and least-
expensive cloud database service, as shown in Table 2. We
believed that as long as performance was reasonable, minimal
cost was important.

 Table 2: Cloud computing and storage elements

 AWS Windows Azure
Virtual
machine

Micro (up to 2
shared cores,
613MB, $0.02/hr)

Extra Small
(shared core,
768MB, $0.02/hr)

SQL
Server
2012

Express (Micro,
$25.55/month)

SQL DB Web (up
to 5GB DB,
$9.99/month)

7

We deployed all elements of CloudCHORDS into the same
region within each cloud (we used the “Northern Virginia”
region for AWS and the “East US” region for Windows
Azure.) To minimize experiment timing variations, we ran the
client Web Browser from a separate VM within the same
region as CloudCHORDS. Table 3 contains the results. For
each of the eight queries, we show the volume of data returned
(rows, cells, total number of bytes in the returned CSV) and the
duration (average and standard deviation) over 10 queries
executed immediately after each other. This should be
considered the best-case time (particularly because these are
the smallest VMs, they are subject to performance latency upon
being reawakened after going idle). The experiment was
performed multiple days and at different times during the days
to affirm general behaviors. These results show that both cloud
systems provide reasonable performance – for example most
queries in the AWS-deployed CloudCHORDS have the result
in less than 1 second after hitting the “submit” button on the
Web browser. From the data in Table 3, we can see that the
minimal Windows Azure-deployed CloudCHORDS is on
average 3.5x slower than the comparable minimal AWS-
deployed CloudCHORDS.

Table 3: Durations of Query Portal operations

Description Data

AWS Windows
Azure

Diagnosis range 15732 / 47196
(633KB)

1359ms /
98ms

7060ms /
99ms

Diagnosis like 14232 / 42696
(573KB)

1157 / 168 5946 / 119

Linking
encounters

3189 / 19134
(156KB)

695 / 125 2190 / 98

Diagnosis range
with date range

5118 / 15354
(205KB)

498 / 113 2136 / 41

Linking
encounters with
date range

1074 / 6444
(54KB)

383 / 145 759 / 51

Diagnosis range
with multiple
date ranges

4314 / 12942
(173KB)

467 / 106 1999 / 36

Pulling labs for
patients

411 / 3699
(36KB)

405 / 9 754 / 35

Diagnoses
within n days

906 / 3624
(60KB)

200 / 93 430 / 19

To evaluate the cost of running CloudCHORDS in each
cloud, we separately consider the cost to each participating
organization (responsible for the CloudDRN VM and the
cloud SQL) as well as to the overall collaboration (responsible
for the CloudDRN Query Portal). In CloudCHORDS, the
authentication server and the authorization server was run by
the caGrid organization (NIH/NCI) at no-cost and is thus not
considered here. Similarly, any manipulation of the data
source (e.g., via SQL Server management studio) is at little or
no-cost as well (either run via a machine within the enterprise
or run on the CloudDRN VM). Table 4 shows the monthly
cost for a participating site. Note that the cost for AWS
includes the cost to persist the domain name of the
CloudCHORDS node – while not strictly necessary, it is very

convenient. We acknowledge that the participating
organization may wish to periodically shutdown (to be
restarted later) the node, so we include the cost for persistent
domain names in both situations. Windows Azure domain
names are persistent at no-cost. Note also that because the
Query Server is within the same region, there are no
bandwidth costs.

Table 4: CloudCHORDS cost per organization

 AWS Windows Azure

Compute: 1
smallest VM to
serve site’s data

$14.60 ($0.020/hr) $14.60 ($0.020/hr)

Storage: 1 smallest
SQL Server

$25.55 ($0.035/hr) $9.99

Persistent DNS
names

$0 when running;
$3.65 ($0.005/hr)
when not running

--

Bandwidth:none -- --
total $40.15 $24.59

Table 5 shows the cost to the overall collaboration to run
the Query Portal and to service queries across the Internet.
Note that the bandwidth costs are based on 100 of each query
per month, further assuming the same parameters and a CSV
download. In reality, these costs could vary greatly. Note
however that AWS and Windows Azure have similar
bandwidth cost structure so the price is likely to be similar.

Table 5: Overall shared CloudCHORDS cost

 AWS Windows Azure

Compute: 1 smallest
Web portal

$14.60
($0.020/hr)

$14.60
($0.020/hr)

Storage: none -- --
Persistent IP
addresses

$0 when running;
$3.65 ($0.005/hr)
when not running

--

Bandwidth: traffic
to Web browsers

$22.56 $22.08

Total $37.16 $36.68

Overall, we believe that these results show that either
AWS or Windows Azure is a compelling platform for
CloudCHORDS. While the financial cost of Windows Azure
is slightly less, we believe that both are inexpensive options
that deliver good performance. Furthermore, we believe
perhaps the most significant benefit of CloudCHORDS could
be an aspect that we could not easily quantify – the ease at
which to deploy and maintain the cloud-based DRN nodes.

At this time, we do not see a compelling reason to run a
single CloudCHORDS across both clouds (e.g., to avert a
possible permanent catastrophic failure of one of the clouds,
which is highly unlikely). Managing a cloud deployment is
similar in principle but idiosyncratically different in practice in
AWS and Windows Azure, and it is perhaps most productive
to choose one cloud technology to focus on. Both clouds have
ample redundancy mechanisms and can be dynamically
reconfigured to meet performance challenges.

8

VI. CONCLUSION

The cloud is increasingly being used to hold data and to
process data, but it is yet to really be used as a platform for
securely sharing data. In this paper, we have described
CloudDRN, a minimal yet end-to-end framework that
leverages commercial technologies to securely share scientific
and clinical data. The key to our approach is to rely on SQL as
the technology by which to store and manipulate data and then
to expose this data via SOAP services and REST services. We
have shown how CloudDRN can be used for CHORDS, a
distributed data sharing collaboration for clinical data. Amazon
Web Services and Microsoft Windows Azure were shown to be
compelling platforms, providing good performance at minimal
costs.

In the future, we plan to incorporate high-availability
mechanisms into CloudDRN. In particular, we will leverage
AWS monitoring and auto-scaling mechanisms, along with
Elastic Load Balancing (ELB), to provide both a high-
availability platform as well as a responsive, scalable platform.
We also plan to address an additional requirement for
CloudDRN, which is to provide finer-grain control over both
structured and arbitrary queries. For example, organizations
might wish to defer queries until manual inspection – either
before or after hitting data sources. For example, while it is
anticipated that collaborating organization have performed a
careful analysis prior to making data available in CloudDRN,
we acknowledge that some organizations may want the
additional safeguard of further holding back data until it can be
precisely determined which information would be given to the
particular client. It is a challenge to hold back queries,
asynchronously notify appropriate authorizers that they are to
inspect queries, and to asynchronously notify end-users when
their queries have been released. We also plan to pursue
Windows Azure Active Directory as a cloud-based alternative
to our current authentication and authorization mechanism.

REFERENCES

[1] Reddit: “The Front Page of the Internet”. http://www.reddit.com

[2] Pinterest. http://pinterest.com

[3] Amazon Web Services. http://aws.amazon.com

[4] Apache Hadoop. http://hadoop.apache.org/

[5] MongoDB. http://www.mongodb.org/

[6] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the

Grid: Enabling Scalable Virtual Organizations. International

Journal of High Performance Computing Applications. Volume

15 Issue 3, August 2001. Pp 200-222.

[7] GridFTP. http://www.globus.org/toolkit/docs/latest-

stable/gridftp/

[8] Microsoft Windows Azure. http://www.windowsazure.com/en-
us/

[9] J. C. Maro, R. P., J.H. Holmes, B.L. Strom, S. Hennessy, R.

Lazarus, J.S. Brown. Design of a Distributed Health Data

Network. Ann Intern Med. 2009;151.

[10] J.S. Brown, J.H. Holmes, K. Shah, K. Hall, R. Lazarus and R.

Platt. Distributed Health Data Networks: A Practical Guide and

Preferred Approach to Multi-Institutional Evaluations of

Comparative Effectiveness, Safety, and Quality of Service. Med

Care 2010;48: S45–S51.

[11] National Cancer Institute cancer Biomedical Informatics Grid

(caBIG) Public Information Site. http://cabig.cancer.gov/

[12] National Cancer Institute cancer Biomedical Informatics Grid

(caBIG) Community Website. https://cabig.nci.nih.gov/

[13] J. Saltz, S. Oster, S. Hastings, S. Langella, T. Kurc, W.

Sanchez, Kher M, Manisundaram A, Shanbhag and P. Covitz.

caGrid: design and implementation of the core architecture of

the cancer biomedical informatics Grid. Bioinformatics. Vol. 22

no. 15 2006, pages 1910–1916.

[14] S.Oster, S. Langella, S.Hastings, D. Ervin, R. Madduri, T. Kurc,

F. Siebenlist, I. Foster, A. Shanbhag, P. Covitz, and J. SaltzJ.

caGrid 1.0: A Grid Enterprise Architecture for Cancer Research

AMIA Annu Symp Proc. 2007; 2007: 573–577.

[15] S. Langella, S. Oster,S. Hastings, F. Siebenlist, J. Phillips, J., D.

Ervin, and J. Saltz. The Cancer Biomedical Informatics Grid

(caBIG) Security Infrastructure. In AMIA annual symposium

proceedings (Vol. 2007, p. 433). American Medical Informatics

Association.

[16] Grid Grouper. http://www.cagrid.org/display/gridgrouper/Home

[17] NIH NCI “Board of Scientific Advisors” (BSA).An Assessment

of the Impact of the NCI Cancer Biomedical Informatics Grid

(caBIG).

http://deainfo.nci.nih.gov/advisory/bsa/bsa0311/caBIGfinalRepo

rt.pdf

[18] P. Payne, D. Ervin, R. Dhaval, T. Borlawsky T, and A. Lai.

TRIAD: The Translational Research Informatics and Data

Management Grid. Appl Clin Inform. 2011 Aug 17;2(3):331-44.

[19] K. G Helmer, J. L. Ambite, J. Ames, R. Ananthakrishnan, G.

Burns, A. L Chervenak, I. Foster, L. Liming, D. Keator, F.

Macciardi, R. Madduri, J.-P. Navarro, S. Potkin, B. Rosen, S.

Ruffins, R. Schuler, J. A Turner, A. Toga, C. Williams, and C.

Kesselman. Enabling collaborative research using the

Biomedical Informatics Research Network (BIRN). J Am Med

Inform Assoc 2011;18:416-422 doi:10.1136/amiajnl-2010-

000032

[20] Windows Azure SQL Database.

http://www.windowsazure.com/en-us/manage/services/sql-

databases/

[21] Amazon Relational Database Service (Amazon RDS).

http://aws.amazon.com/rds/

[22] Microsoft Corporation. Features Supported by the Editions of

SQL Server 2012. http://msdn.microsoft.com/en-

us/library/cc645993(v=SQL.110).aspx

[23] Open Data Protocol. http://www.odata.org/

[24] caGrid Portal (training grid). http://cagrid-

portal.nci.nih.gov/web/guest

[25] Colorado Health Observations Regional Data Service
(CHORDS) http://risr.org/projects/CHORDS

[26] M. Humphrey, J. Li, and N. Beekwilder. Publication and

Consumption of caBIG Data Services using .NET. Concurrency

and Computation: Practice and Experience, vol 22, num 7 (Dec

2010): 2313–2322. doi: 10.1002/cpe.1599

