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Abstract—Commercial cloud providers are increasingly offer-
ing high performance and GPU-enabled resources capable of
facilitating e-Science applications. However, the limitations of
a public cloud’s internal network performance are well docu-
mented and can lead to the decision to use dedicated infrastruc-
ture over cloud resources for scientific applications. This paper
explores the potential for improvement in the performance of e-
Science applications on public clouds through the examination of
the network in more detail. We introduce health indicators and
evaluate various tomographic techniques for their ability to infer
information regarding the network connection between instances.
We also propose and formulate a set of health markers and
health metrics to efficiently assess the network over time in order
to make informed deployment decisions. Finally, we evaluate
our work through a real-world medical image reconstruction
application.

I. INTRODUCTION

Cloud computing provides convenient, self-serviceable and
cost-effective infrastructure services to users. A key restriction
for the adoption of the cloud as an e-Science platform has
been the performance of the network connecting provisioned
instances. He et al. [1] demonstrate that the cloud’s compu-
tational resources are capable of executing e-Science applica-
tions and even state that applications with low inter-process
communication suffer little to no performance degradation
when compared to dedicated HPC clusters. In addition, the
majority of existing research into the execution of e-Science
applications on public clouds took place prior to the inclu-
sion of specialized compute instances by commercial cloud
providers [2]. However, most research still suggests workloads
with significant degrees of communication are more suited for
dedicated HPC infrastructure [3], [4].

Although dedicated infrastructure is still the platform of
choice for data- and compute-intensive e-Science applications,
many research and education projects are finding success
with commercial cloud resources. The Magellan initiative [5]
explores the cloud model for the purpose of scientific and data-
intensive applications. The authors find cloud environments
useful for applications that require customizable software
stacks and have minimal communication and I/O characteris-
tics. Lifka et al. [6] survey uses of public clouds and identify
many projects from over 25 scientific domains, ranging from
engineering to the arts and humanities, that benefit from the
cost-effective computing platform. In another example, the
first author of this paper investigated the ability to create

a scalable, on-demand medical image reconstruction service
for proton computed tomography (pCT) on Amazon Web
Services (AWS) [7]. That work compares the cloud service
against a dedicated HPC cluster and found that the data
distribution phase in the cloud took significantly longer than
on the dedicated HPC infrastructure. The network performance
of the cloud solution was identified as a key contributor to
the performance discrepancies between the cloud and HPC
infrastructure solutions.

This paper explores the ability for network tomography
to identify network properties and characteristics of a public
cloud, and then apply the inferred information to the deploy-
ment of e-Science applications. Network tomography is the
processes of deriving internal network information by sending
and monitoring packets as they travel between two end points.
End-to-end probes can be used to infer the condition of a
network at a fine grain level, identifying bottlenecks, Round-
Trip-Time (RTT) and loss [8]. By measuring the delay incurred
by a probe between two end points, congested links that incur
long queuing delays, can be detected [9].

Our work investigates network tomography techniques to
better understand opaquely provisioned cloud networks and
infer both the network load and relative proximity of in-
stances. With this information, we introduce and formulate
health markers and health metrics to compare the network
performance of instances. We use the pCT project as a test
case to evaluate the potential benefit of utilizing sub-clusters
selected on the basis of health score. In the pCT project test
case, instances participating in a pCT image reconstruction are
selected based on their locality with the shared file system.

This paper is organized as follows: we discuss related
work in Section II and then introduce an overview of our
network health diagnostics and metrics in Section III. Sec-
tion IV introduces our AWS testbed and presents our baseline
measurements from which our health diagnostics were derived.
We then apply our system to a real-world e-Science medical
imaging application (pCT) in Section VI, followed by a
discussion of our results in Section VII. Finally, we present
our conclusions in Section VIII.

II. RELATED WORK

Many diagnostic tools, such as traceroute, rely on the
cooperation of link-layer components [10], yet commercial
cloud providers often obfuscate their network, rendering such
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tools ineffective or disabling them entirely. In 2004 Tsang
et al. [11] presented Network Radar, a novel tomographic
technique based on RTT that does not require the cooperation
of receivers. The work does not require multicast routing
capabilities, synchronized clocks, or the capability to capture
measurements at both the sending and receiving hosts. Instead,
Tsang’s work uses RTT measurements captured from TCP
SYN and SYN-ACK segments to determine the delay variance
of a shared network.

Tomographic methods can be broadly classified as either
loss- or delay-based. Loss-based methods are focused on
identifying congested links within a network by observing
packet loss. Duffield et al. [12] and Coates and Nowak [13]
present tomography techniques employed to identify lossy
links using unicast probes between two end points. However,
loss-based mechanisms are becoming less effective due to the
reliability of modern connections, especially with light loads.
Thousands of probes must be measured before a one percent
loss rate can significantly effect end-to-end performance of a
link [14].

Coates et al. [14] present a novel probing scheme which
extends delay-based unicast, end-to-end measurements, called
Sandwich probing. This probing scheme is designed to mea-
sure path delay without the requirement of a synchronized
clock. Sandwich probing works by sending and recording the
delay of two smaller packets which are separated by a single
large packet. The delay induced by the large packet can be
captured through the difference in RTT of the smaller packets.

Previous work to explore a public cloud network has
been conducted by Battre et al. [15]. Their work investigates
methods to infer the network topology within opaque cloud
infrastructure. The authors use a testbed of 64 Xen VMs to
explore and evaluate both loss-, and delay-based, tomography
techniques. The results indicate loss to be less effective,
and even find that when evaluating using the Robson-Foulds
metric, RTT outperforms Sandwich probing. Our work extends
this research by evaluating a number of additional network
health indicators and investigating their performance with a
real-world e-Science application.

An example of research that utilizes network information
within a cloud is CMPI. CMPI, presented by Gong et al. [16],
is a network-aware implementation of MPI designed for cloud
environments. The research investigates optimizing MPI’s
collective communication algorithms, such that they utilize
network performance information. The authors find Amazon’s
EC2 to have significant network performance unevenness,
where performance is not symmetrical between virtual ma-
chine pairs. The work proposes using simplified latency and
bandwidth matrices to evaluate network performance, and
use the derived information to optimize the Broadcast and
Reduce, and Gather and Scatter operations. The work results
in optimizations of between 13% and 38%, compared to that
of MPICH2. CMPI exemplifies the potential opportunities
that are available within the cloud when applying network
information to applications.

III. HIGH LEVEL VIEW OF OUR WORK

We have adopted and extended the concept of health metrics
from the second author’s prior work, Reich et al. [17], [18],
in which the overall health of a service container was charac-
terized in order to make service deployment decisions. In this
paper we apply the health metric concept to the public cloud
domain and extend the concept with health markers and indi-
cators along with network tomography – in order to infer the
properties and characteristics of provisioned cloud instances.
Calculating health metrics based on the network performance
an instance is experiencing provides a mechanism to evaluate
and compare instances and inform decisions regarding cloud
workload deployment.

To evaluate the network health between two instances we
devise a set of health indicators. In this context, a health
indicator is a method of gathering information regarding
the network performance between two instances. Although
Amazon has an integrated health service for EC2 instances,
its capabilities are limited to identifying instances becoming
unresponsive. We devise a range of health indicators to thor-
oughly observe the network and identify performance prop-
erties. The health indicators use multiple network protocols
and customizable attributes, such as varying payload size and
probe frequency.

To use the information gathered from health indicators,
we formulate a set of health markers. A health marker is a
lightweight and easily computable diagnostic, used to gauge
the change in performance of the network across probing
cycles. Markers are used to quickly establish the degree to
which the network performance changes over a period of time
and when necessary, prompt the reassessment of the overall
health score for an instance.

A health metric is an aggregation of selected health indicator
measurements. A set of health metrics are weighted and
combined to compute an overall health score for an instance,
providing a high-level opinion on the performance of an
instance with respect to its peers. A health score gives a
basis to compare instances against one another by normalizing
health indicator measurements across each instance that the
host is probing. When computed, a health score gives a local
perspective of the load every other instance in the environment
is experiencing, and facilitates the selection of healthy clusters.

In order to investigate the properties of the network and
formulate health markers and health metric weights, we have
deployed the health system over a testbed of regular AWS
instances.

IV. TESTBED AND CLOUD PERFORMANCE BASELINES

We deployed a testbed of regular AWS on-demand in-
stances, of types t1.micro and m3.medium, to observe baseline
AWS cloud performance characteristics. A series of tests
involving various tomographic probes was conducted using
the testbed. The testbed utilizes two availability zones in
order to document the perceived effect of data traversing the
network. The tests were run in a round-robin process from
each instance, where every five minutes each instance would
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Fig. 1. The frequency of ICMP packet RTTs over different periods of time on a logarithmic scale.

communicate with every other instance in the environment.
The probing schedules were deliberately offset in an attempt to
reduce the interference caused by multiple hosts concurrently
recording measurements on specific hosts. The test was run
over the course of one week to thoroughly examine properties
relating to recurring events, such as how work hours across
the globe influence perceived network health.

ICMP echo requests are a typical method used to measure
the latency between hosts. The jitter, or variance in latency,
within a link can be established by collecting RTT probes over
a sufficient period of time. In order to establish the influence
packet size has on network characteristics, we have used echo
requests with different payload sizes.

Figure 1 shows the volatility of the network by depicting
the variation in ICMP RTT probes over different periods of
time. Each image contains the frequency of RTT probes with
payloads of size 64, 512 and 4096 bytes on a logarithmic
scale. The figure shows the distribution of probes contains a
significant number of high RTT values, over each period of
time. This demonstrates the high degree of volatility that a
regular instance exhibits.

Over a one day time period it can be noticed that the
variation in performance occurs over sufficiently long periods
of time to effect the performance of an application. The
findings show that the performance of a link can deteriorate
for periods of hours, rather than in short intermittent bursts.
An example of this is shown in Figure 2, where the average
hourly RTT between two instances, for various ICMP packet
sizes, is collected and displayed for an individual day. The
figure demonstrates that the performance the of 4096 and 512
byte packets are relatively slow during the beginning of the
day and gradually improve to a lower latency. These results
are consistent with other measurements granularities and are
reflected by the observations from multiple instances. These
findings support our objective of monitoring the change in
network performance and reacting to it, as they persist for
meaningful lengths of time.

In order to further understand the network performance be-
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Fig. 2. The hourly average RTT for different packet sizes between two hosts.

tween various instance types and across availability zones we
conducted a series of bandwidth measurements. The measure-
ments involve transferring as much data as possible between
two instances within a ten second time span. The results
found significant bursting characteristics for TCP transfers.
Figure 3 shows the average throughput over the ten second
time span between various instance types, where links across
availability zones are denoted by -AZ. The figure depicts the
presence of substantial throttling and probable profiling of
data transfer within the AWS network. The throttling differs
between instance types, where t1.micro instances achieve a
relatively high throughput of approximately 200Mb/s for the
first four seconds of a transfer before being throttled to approx-
imately 80Mb/s. Similarly, the m3.medium instances achieved
an initial throughput of almost 1000Mb/s for approximately
one second before being throttled to slightly over 200Mb/s.
From this data it appears that the instances are granted a
burst throughput rate for approximately the first 1000Mb of
data being transferred. Additional tests with cluster compute,
cg1.4xlarge, instances demonstrated a sustained throughput
of approximately 8000Mb/s within an availability zone, and
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Fig. 3. The average throughput between medium and micro instances within
and across an availability zone.

a sustained 2000Mb/s connection across zones. The cluster
compute instance types did not appear to be subjected to the
same throttling techniques and were most likely achieving their
maximum available throughput.

These findings demonstrate two interesting properties that
support our goal of utilizing network information for e-Science
application deployment. Firstly, the network performance ex-
hibited by instances is significantly volatile and can easily
change in excess of 50% over a short period of time, affecting
the performance of communication between instances. The
performance fluctuations persist for sufficiently long periods
of time to make action regarding them meaningful. If the
network variance was only observable for a short period of
time (for example, on the order of seconds), the volatility
of the network would render any deployment optimizations
ineffective as the network performance could change many
times during execution. However, our results indicate that this
is not the case. In some examples, the degraded performance
of an instance can be observed from multiple hosts for periods
of hours.

V. NETWORK HEALTH

A diagnostic system has been implemented to deploy the
health indicators over a set of instances. The system utilizes
AWS APIs to provision and load instances with a specific
Amazon Machine Image (AMI) that is capable of performing
the diagnostic tests. A client and server are automatically
deployed on each instance, and can connect to a shared
database. The client iterates through each known host and
conducts a series of indicator measurements. An Amazon
Relational Database Service (RDS) instance maintains the list
of active instances and the data acquired from each probe.

Deploying the health indicators over a set of instances

for a prolonged period of time enables health markers to
be defined and used. A diagnostic health marker is used to
identify symptoms of an instance with degrading network
performance. Each marker is an easily computable test to
recognize performance changes and prompt the reassessment
of the overall health scores for instances in the environment.

Health metrics provide a normalized mechanism to evaluate
instances against one another. Health metrics are formulated
through an evaluation of health indicators and their ability to
detect network load. Each indicator is taken into account and
normalized with the other connections being monitored before
being aggregated with predefined weights. The aggregate of
the health metrics gives a health score for an instance and
enables the direct comparison of instances and therefore the
selection of healthy clusters.

A. Health Indicators

The performance of an instance can vary over time due
to the network load both itself and surrounding resources are
experiencing. A set of health indicators have been selected and
are evaluated with respect to their ability to reliably observe
performance fluctuations, and influence the health score of a
target instance. Although Amazon provides a health service,
its role is to identify when instances become unresponsive.
Our health indicators are capable of monitoring fine-grained
latency and throughput variations as well as capturing timeout
occurrences.

The delay-based tomographic indicators utilize ICMP, UDP
and TCP, with the goal of establishing load by observing
variations in RTT and measuring jitter in the network. A range
of packet sizes and varying frequencies of sending have been
used to identify the effect of queuing in the network.

Spot instances are often used to reduce the cost of ap-
plication deployment on AWS and are prone to becoming
unresponsive. When a bid for a spot instance is exceeded,
the resource is reallocated to another user. For this reason,
timeouts have been incorporated as indicators as it is critical
to identify unresponsive instances.

Throughput indicators and Sandwich probing, first presented
by Coates et al. [14], have also been selected. Sandwich
probing measures the delay incurred by a small packet travers-
ing a network when preceded by a large packet. This is
accomplished by sending two small packets separated by a
time d with a larger packet immediately preceding the second
packet. By measuring the time between the arrival of the two
packets, d′, the difference between d and d′ can be obtained
to infer the delay caused by the large packet.

Consideration to Sandwich probing packet sizes is required
when implementing the probing scheme. The maximum trans-
mission unit (MTU) for t1.micro and m3.medium instances
being 1500 bytes, the large packet has been set to 1500 bytes.
However, AWS supports jumbo frames for cluster compute
instances types, allowing packet sizes of up to 9001 bytes to
be used when probing cg1.4xlarge instances. Thus we have
selected a small packet size of 64 bytes, and large packet size
of 1500 bytes for the AWS regular instance implementation.
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B. Health Markers

Health markers have been employed to set lightweight
diagnostic values which are used to identify degrading network
performance. Five health markers have been selected and
implemented in order to notify the diagnostic system of signif-
icant variations in network performance. These health markers
each represent a quantifiable value related to a specific goal
gathered from a protocol between two hosts. The following
describes the implementation details of each health marker.
The decisions regarding the point at which a marker is trigged
has been established through experimental analysis in order
to identify targets which are only triggered when a significant
degree of volatility or degradation is detected in the network
connection.

• Timeout A timeout marker is used to raise a notification
when an instance becomes unresponsive. This health
marker requires consensus from more than one indicator
on the unresponsiveness, or lack of response within five
seconds, of another instance.

• ICMP An ICMP health marker combines each of the
three packet sized RTT measurements and compares them
with the standard deviation from the previous round of
probes. The marker is triggered when 20% of the current
round’s measurements exceed the standard deviation of
the previous round.

• UDP The UDP based health marker employs UDP RTT
and Sandwich probing. The RTT is gathered from 1024
and 64 byte probes and the standard deviation from the
previous round is used to infer degradation. Sandwich
probing measurements are used to trigger a notification
when a 50% increase in delay is observed, implying the
effect of queuing in the network is significant.

• TCP The TCP health marker monitors the time required
to establish a TCP connection between two instances as
well as the RTT achieved through the connection. The
standard deviation from the previous round is used to
establish threshold times, which when exceeded triggers
the marker to raise a diagnostic notification.

• Throughput The available throughput between two in-
stances is measured over a ten second period. A health
marker has been established to identify when the total
throughput over the ten second period drops below a
longer term threshold.

C. Health Metrics

A health metric has been formulated for each individual
network protocol and typically aggregates the information
gathered into a normalized value. Each health metric computed
for an instance is normalized with the other instances a host
is monitoring, providing a relative health for each network
protocol.

An overall health score is computed by combining each of
the individual health metrics through weighted aggregation.
The weights associated with each health metric have been
selected through a statistical evaluation in order to give each

marker meaningful influence to the overall health score. The
overall health score, H − All, of an instance gives the
host a mechanism to directly compare each instance in the
environment and select healthy nodes to perform workloads.

The ICMP health metric (denoted by H− ICMPij) priori-
tizes packet size from largest to smallest, with heavier weights
given to the larger payload measurements. The health metric
computes the ICMP score by averaging the RTT of each
packet size, and normalizes it against the average RTT of it’s
respective size for each instance the host has probed during a
round. Eq 1 shows the calculation of the ICMP health score
where S = {64, 512, 4096} is the set of packet sizes being
used as probes and Pij

s

represents a set of probes from host i
to j of size s where s ∈ S. Ais denotes the set of the average
ICMP probe measurements sent by host i, of size s, to every
other host in the environment. Finally a weight (denoted by
ωs) is associated with each packet size, such that larger packets
are given more influence than smaller packets.

H − ICMPij =
∑

s∈S

avg(Pij
s

)−min(Ais)

max(Ais)−min(Ais)
× ωs (1)

The UDP health metric (denoted by H−UDPij) normalizes
the average RTT values and the average delay measured from
Sandwich probing to evaluate the link between instances i and
j. The two RTT values and the Sandwich probing delay are
measured by the UDP health indicator and are combined with
weights giving more influence to larger packets. The Sandwich
delay is given an equal weighting to the RTT measurements
to give influence to the delaying properties of the network.

The TCP health metric (denoted by H − TCPij) is
computed in a similar fashion and normalizes the average
connection time and RTT through the connection during a
measurement period. Each value is then combined with equal
weighting to provide a relative health score of the connection
ij.

The throughput health metric (denoted by H − TPij)
incorporates the total amount of data transferred over the ten
second measurement period with the variance in throughput
during each one second interval. These values are individu-
ally normalized and then combined with equal weighting to
construct the throughput health score.

An associated weight is required for each health metric in
order to aggregate the metrics to compute an overall health
score. For each health metric we employ the variable selection
technique to a linear regression model from the complete
data set and rank metrics with the strongest influence on the
aggregate health score [19], [20]. Based on trace data collected
from AWS from 29 April 2014 (10:45:16) to 6 May 2014
(14:24:27) we use the forward step analysis on Eq. (2) to rank
the influence of health metrics on the health score. Starting
from Step 4 in Table I, we add one health metric per step and
calculate the corresponding Akaike Information Criteria (AIC)
measure and p-values.
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H −ALLij ∼

H − TPij +H − ICMPij +H − UDPij +H − TCPij

(2)

Lower values of the AIC signify stronger influence of the
health metric in the regression while the p-values indicate
confidence in health metric influence on the health score. In
Table I for example, using the sole metric H−TCPij , the step
analysis at Step 1 yields an AIC of 106.842 and corresponding
p-value of 0.00609, adding marker H − UDPij reduces the
AIC to 90.221 but increases the resulting p-value to 0.00752.
The reduced confidence in the regression at Step 2 is expected
due to collinearities in metrics H − TCPij and H −UDPij .
We reason that the predictive power of the throughput metric is
captured by both H−TCPij and H−UDPij thus weakening
the H − TCPij metric in the forward step analysis.

Step Health metric AIC p-value
4 H − TPij 216.311 0.04126
3 H − ICMPij 98.227 0.00587
2 H − UDPij 90.221 0.00752
1 H − TCPij 106.842 0.00609

TABLE I
FORWARD STEP ANALYSIS OF HEALTH METRICS.

We have shown the relative significance of each health metric
and their respective statistical interpretations, however, this
analysis must be framed within a networking perspective. We
discuss the effect of each health metric on the health score and
how the health score aids decision making in selecting cloud
instances.

D. Health Score

The timeout of an instance is critical to identify and makes
other health metrics irrelevant. Therefore, the overall health
metric incorporates timeout values by setting the health score
of zero, or H − ALLij = 0. However, if no timeouts
are identified, and an instance is considered operational, the
overall health metric is computed as seen in Eq 3. From the
variable selection analysis, we noted that the marker H−TPij

is weaker than the remaining markers. Moreover, throughput
is one of the key metrics in service level agreements in AWS
specifications. Thus, the weight of 0.4 is chosen for marker
H − TPij to prioritize throughput over latency. Each of the
individual metrics are normalized against the other connections
in the system and aggregated together with weights.

H −ALLij = 0.4×H − TPij +

0.2×H − ICMPij +

0.2×H − UDPij +

0.2×H − TCPij (3)

This work can be extended to establish a global perspective
of the network health as a whole. However, when considering

the pCT application as an example e-Science workload, the
deployment location of the shared file system is pivotal to the
performance of the data distribution phase of reconstruction.
Due to the data-intensive nature of the pCT workload, it is
essential to base execution in proximity to the data.

VI. PROTON COMPUTED TOMOGRAPHY

The pCT project is a real-world e-Science scenario that
we have employed to evaluate the effectiveness of the health
information that can be inferred from a public cloud. pCT
is a medical imaging modality and was developed to acquire
high accuracy images for proton therapy applications [21]. The
pCT modality is based on tracking the change in trajectory
of protons as they pass through a target. Because protons
passing through different mediums travel in non-straight paths,
optimization techniques that are often applied to other imaging
modalities cannot be applied to reduce data. This causes pCT
image reconstruction to be both data- and compute-intensive,
and can require up to 100GB of data, or two billion proton
histories, to be processed. A pCT reconstruction is primarily
comprised of four stages, data distribution, computing cuts and
margins, most likely path (MLP) calculation and an iterative
linear solver.

Karonis et al. [22] have developed parallel MPI codes
that enable large, two billion proton history, images to be
reconstructed within ten minutes on a dedicated HPC cluster.
A detailed explanation of each pCT reconstruction phase is
also presented their work. The first author’s previous work
re-purposed these codes to construct a scalable, on-demand,
pCT reconstruction service that operates over AWS [7]. The
cloud-based pCT reconstruction solution leverages a shared
Gluster [23] file system to distribute the data to each working
process. The previous work found the data distribution phase
of pCT reconstruction to take significantly longer on the cloud
service when compared to dedicated HPC infrastructure. For
small 131 million history reconstruction over 20 instances,
the data distribution phase took 25.8% of the total execution
time. When deployed over 120 instances, the data distribution
phase accounted for 38% of the total execution time for a
two billion history reconstruction. The data distribution phase
scaled accordingly to the number of instances being used [7].

To explore the potential of network inference and our
health metrics, in this paper we have deployed the cloud-
based pCT reconstruction software and a Gluster file system
in conjunction with our network health diagnostic system. The
health-aware pCT reconstruction experiment was deployed
over fifteen GPU enhanced cluster compute instances, known
as the cg1.4xlarge instance type. The instances were provi-
sioned from two separate availability zones within the US-
East region. The pCT codes were used to reconstruct a 131
million proton history image over eight instances, utilizing two
processes per instance to match each available GPU.

Three clusters of instances have been selected to investigate
the usefulness of the health information. These clusters consist
of instances with the highest, lowest and a random set of health
scores, and have been used to compute pCT reconstructions.
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Because the pCT codes rely on a centralized, shared, file
system, the health metrics have been calculated with respect
to the instance maintaining the GlusterFS brick. Figure 4
depicts the inferred distance of each instance from the shared
file system, using health scores to weight edge lengths. The
topological distribution of each instance is not considered in
this figure.

The average result of multiple pCT reconstructions over
each group has been computed and represented in Figure 5.
The figure demonstrates a distinct advantage to leveraging
the proximity of instances when deploying the application.
Improvements in performance can be seen during the data
distribution phase and during execution of the linear solver.
The inclusion of health information resulted in the data
distribution phase taking, on average less than half as long
as that of the least healthy group of instances. Similarly, the
cuts and margins phase has been reduced as it requires data
to be communicated between the instances, whereas the time
required to compute the MLP is consistent between clusters as
little data is transferred. Due to the small number of instances
being used to pCT reconstruct the 131 million history dataset,
the computationally intensive linear solver accounts for the
majority of the reconstruction time. Over eight nodes, the
linear solver accounts for between 80% and 85% of the
reconstruction time. Where as over the larger cluster sizes
utilized in our prior work, the linear solver accounted for less
than 55% of the execution.

VII. DISCUSSION

The performance observed from the regular instance test bed
demonstrated that each of the health indicators are capable
of identifying network fluctuations. The volatile nature ex-
hibited by the network connecting regular instances provoked
significant variations in all of the health indicators that we
measured. An evaluation of the variance observed by the
health indicator measurements were used to rank the influence
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Fig. 5. The average time required for phases of pCT reconstruction by
various health score clusters.

of health metrics and contributed to the weights used when
computing the overall health score. Counterintuitively, the
throughput health metric was identified as less influential than
other metrics in the forward step regression analysis. However,
when considering the cluster compute environment, throughput
variations were more drastic than regular instance tests. In
order to reflect the requirements of data-intensive e-Science
applications, throughput was assigned a higher weighting than
other indicators when computing health metrics.

Diagnostic health markers have been established from these
variations in order to prompt reassessment of the overall
network health. Due to the noisy nature of the regular instance
test bed, an initial set of threshold-based markers frequently
responded to network fluctuations. However, the cluster com-
pute 10-Gigabit Ethernet connection is far less volatile and
resulted in less notifications being raised by the health markers.
In order to operate more effectively, the health markers need to
adapt to the environment in which they are executing. Lower
tolerances and the inclusion of more historic data is needed to
fine tune the markers over various platforms.

The health metrics provided an effective method to compare
and evaluate instances against one another. The metrics oper-
ated successfully in both environments, and have demonstrated
the ability to improve the data distribution performance of pCT
reconstructions. Although the difference in cluster compute
instance health scores is most apparent between availability
zones, the health metrics were accurate enough to consistently
identify low performance cluster compute instances within a
zone.

Although the advantages of using the health information
are significant when considering small scale executions of
the pCT application, the results are unlikely to scale linearly
with the application performance for larger reconstructions.
The previous work to initially construct the cloud-based pCT
reconstruction service identified additional overheads, in part
responsible for the performance deterioration as the applica-
tion scaled [7]. Thus, we do not believe the improvement to
two billion history reconstructions will be as significant as the
131 million history reconstructions that have been examined.
Further investigation is required to establish the effect of health
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information on the application as it scales.

VIII. CONCLUSION

Public clouds are opaque and limit the ability to exploit
data locality. Our work aimed to improve the viability of
performing compute- and data-intensive scientific research
over public cloud resources. To this end, we have investigated
and evaluated the ability of various tomographic tools to infer
network properties and establish the performance an instance
is currently experiencing. Our work has identified a number of
properties of public clouds, such as the variability in network
performance, and sustained nature of performance fluctuations
that an instance undergoes. A diagnostic system has been
constructed to monitor the network health between a set of
instances. Diagnostic health markers have been established
to efficiently report significant changes within the network,
and health metrics have been formulated to calculate a com-
parable health score for each instance, that is indicative of
their current network performance. Finally, we have utilized
the real-world e-Science medical imagining application, pCT.
We have deployed the pCT work over various subsets of
instances, determined by health scores, and found considerable
advantages to employing health information during application
deployment.

Our future work aims to further investigate the potential of
network health to further facilitate e-Science in the cloud. We
plan to evaluate additional tomographic techniques, as well as
establish our own in order to further identify the features of
the network between two public cloud instances. Additional
research is required to explore the effect health information
can have on larger scale pCT reconstruction. We also aim
to investigate methods of visualizing the information that is
inferred from the tomographic measurements. Finally, we aim
to incorporate the inferred network information into a cloud
scheduling service and explore whether further benefits can be
applied to real-world e-Science applications.
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