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Abstract—Scientific data volumes have been growing expo-
nentially. This has resulted in the need for new tools that enable
users to operate on and analyze data. Cyberinfrastructure tools,
including workflow tools, that have been developed in the last few
years has often fallen short of user needs and suffered from lack
of wider adoption. User-centered Design (UCD) process has been
used as an effective approach to develop usable software with
high adoption rates. However, UCD has largely been applied for
user-interfaces and there has been limited work in applying UCD
to application program interfaces and cyberinfrastructure tools.
We use an adapted version of UCD that we refer to as Scientist-
Centered Design (SCD) to engage with users in the design and
development of Tigres, a workflow application programming
interface. Tigres provides a simple set of programming templates
(e.g., sequence, parallel, split, merge) that can be can used to
compose and execute computational and data transformation
pipelines. In this paper, we describe Tigres and discuss our
experiences with the use of UCD for the inital development
of Tigres. Our experience-to-date is that the UCD process not
only resulted in better requirements gathering but also heavily
influenced the architecture design and implementation details.
User engagement during the development of tools such as Tigres
is critical to ensure usability and increase adoption.

I. INTRODUCTION

The data being produced at experiment facilities and within
other large science collaborations is at a size and complexity
that requires analyses to occur near the data. This change
threatens to make data analysis at these high-performance
computing (HPC) facilities the domain of a few experts.
Cyberinfrastructure tools and more specifically Workflow tools
enable easy access to analysis for all collaborators.

Many excellent workflow and scripting systems have been
built in the past to enable capture of high-level scientific
computing flows. However, the adoption of these tools has
been significantly less wide-spread than hoped and has resulted
in a large plethora of tools available online. Workflow tools
adoption have suffered from complex interfaces, the need to
learn new languages, the difficulty with running persistent
services (i.e., workflow engine) at HPC centers. Thus, we
believe that we need a different approach to addressing the
usability and technical challenges of developing a workflow
tool.

The Tigres (Template Interfaces for Agile Parallel Data-
Intensive Science) project attempts to address these problems
with two innovative methods in workflow design. First, we
believe that a user-centered design (UCD) process is essential
to actively engage the user and incorporate their feedback
in the workflow tool development. Second, Tigres provides

a programming library for workflow tools that can easily
integrate with current scientist tools and does not run or
rely on persistent services for execution. In recent years, the
need for active engagement of users in the development of
eScience tools has been recognized [4]. User-centered design
processes have been heavily used in eScience projects for
user-interfaces [5]. However, there has been no prescribed
methodology on the user engagement process for e-Science
application programming interface design and development.

In this paper, we describe the use of user-centered design
process in the initial design and development of the Tigres
project. Specifically, in this paper, we make three contributions.

e  We describe the process that we used in Tigres for
user-centered design for APIs

e  We describe the impact of the process on the design
and implementation choices in Tigres.

e  We outline guidelines for conducting the initial user-
centered design process for similar software tools and
APIs.

The rest of the paper is organized as follows. We discuss
related work in Section II. We describe the UCD process we
use in Tigres in Section III. We describe the results and impact
on the Tigres architecture and implementation in Section IV. In
section V, we discuss the implications of using user-centered
design process and present our conclusions and future work in
Section VI.

II. RELATED WORK

In this section, we review related work in user-centered
design for APIs, workflow tools, programming models and
tools.

User Centered Design for APIs. Little research has been
done on the process of API design itself. In 2006, Joshua
Bloch proselytized the importance of good APIs [8], providing
general guidelines for API design. Since that time, others have
written about the application of API design to Ul compo-
nents [20] and Web interfaces [24], which generally agree
with Bloch’s guidelines. In addition, there have been a few
studies that focused on testing and evaluating the usability
of APIs [31], [32]. Steven Clarke advocated the employment
of User-Centered Design techniques and introduced a “cogni-
tive dimensions framework™ to make quantitative comparisons
between alternative designs [13]. In addition to laboratory
usability tests, Farooq and Zirkler employed the use of API
peer reviews, which are light weight, group based usability
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evaluations performed by other API developers [19]. Although
we appreciate and use Bloch’s guidelines, we are focused, like
Clarke, on evaluating the API directly with the users. Our
study is distinct from previous research in that it applies User-
Centered Design techniques to the design of Tigres APL

In 2009, several researchers in API usability organized
a workshop at CHI (ACM Conference on Human Factors
in Computing Systems), the summary of which showed that
much work is still needed in understanding the types of
APIs and the use cases involved [16]. The (relatively rare)
software engineering books on API design focus on general
and language-specific advice for the design process and not
on evaluating usability [29], [33].

Workflow tools. Workflow tools have been developed to repre-
sent and run scientific processes in a distributed environment.
In the last decade, various workflow tools such as Galaxy[22],
Kepler [3], Taverna [26], Pegasus [18], Triana [12], Swift [36],
Trident [7], Makeflow [10] have been developed, that allow
users to compose their applications and services into a logical
sequence. The Condor DAGMan [14] uses the graph represen-
tation to manage dependencies between jobs and hence acts as
a meta-scheduler for jobs submitted to a Condor system.

CloudWF [38] and Oozie [1] are workflow systems for
cloud that are built on top of Hadoop. These tools enable
users to chain multiple MapReduce jobs but do not support
any additional patterns. Spark [37] framework introduces a
data abstraction called resilient distributed datasets to address
a large set of programming patterns while maintaining the
scalability and fault-tolerance properties of MapReduce.

Tigres differs from these tools as it is a workflow library
rather than a workflow system. Tigres provides a template
abstraction in existing programming languages and uses a
scientist-centered design process to track the design of the API.

Programming models and tools. The idea of capturing com-
mon programming patterns itself is not new to scientific and
HPC environments. Various works have proposed patterns [35],
[6], [11], programming models [23], shared-memory model
standards [15]. However, the idea of using templates in a
programming API or tool has not been explored before.

MapReduce [21] was introduced by Google to handle the
terabytes of data-per-day generated by Internet applications.
The MapReduce programming model is based on the idea
of achieving linear scalability by using multiple computers.
Our earlier evaluation shows that while MapReduce might
be a useful model to handle large-scale parallel data analysis
of Internet data, it has significant gaps for general scientific
workflow [28], [17]. Tigres builds on the ideas provided by the
MapReduce programming interface to capture a wider range
of scientific workflows.

III. DESIGN PROCESS FOR TIGRES API

Figure 1 illustrates the design process used in Tigres.
The process is divided into four stages a) API design b)
API implementation c) advanced execution semantics and, d)
optimizations. At each stage in the process, we engage with
the users to validate and refine the design and implementation
as well as set project priorities. In this paper, we describe our

Design

£

Scientist-Centered API

Optimizations | Design Process Implementation

Execution
Environment

Fig. 1: Tigres Scientist Centered Design Process. In Tigres, we
engage with the user at each stage of the tool development.

first usability study and how it influenced the the design and
implementation of the API and Execution stages.

The User-Centered Design (UCD) process has emerged
as a successful approach to user interface and software de-
velopment. It is based on a recognition that the usability of
the end product is critical to the success of software. UCD
accomplishes this by focusing on the needs and goals of the
intended users and defining a process by which this can be
studied [30]. The formalized UCD process can be summarized
in three steps: (a) user needs analysis; (b) design prototyping;
and (c) user testing.

The nature of eScience projects (e.g., agile requirements,
smaller user teams) makes it difficult to apply the classical
UCD approach. We have noted several considerations and
challenges in employing the classical UCD approach for
scientific applications. For example, the user population for
a science application is typically relatively small, often tens
and at most thousands, compared to a commercial application.
In addition, design of scientific interfaces often requires an
immense amount of domain knowledge and must encapsulate
goals and work practices that are in flux. As a result, trying
to “understand the users” requires more time and resources
than is typically practical for science projects, leading to po-
tentially faulty and unreliable user models. We have found that
identifying a few key representative users from the scientific
community to serve as archetypal users, in lieu of developing
classic personas, is the most effective way to inform the design.
We work very closely with these domain experts to understand
the needs and environment, and develop tight feedback loops
with them.

For the last six years, we have been employing the con-
densed User-Centered Design approach to software develop-
ment for eScience projects [27]. We refer to our User-Centered
Design approach as Scientist-Centered Design (SCD). The
SCD approach does not use formal user models but key
scientific users are identified and actively engaged through a
formalized methodology at every stage of the software design
and development life cycle. The project has been used in
the following projects: the Supernova Factory, Particle Data
Group particle information system, Energy Tracker, Knowl-
edge Base (KBase), Carbon Capture Simulation Initiative,
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Advanced Light Source user portal, and AmeriFlux.

UCD process. The UCD process starts out similar to the tradi-
tional software development approach where user requirements
are gathered, to better understand the typical use scenarios.
In the traditional software design process, the requirements
drive the design and implementation of a completely functional
prototype. Instead, using this methodology, the user require-
ments drive a conceptual design phase which results in a “non-
functional” low-fidelity design prototype. The design prototype
is used to engage users in a usability study for feedback. In
designing this low-fidelity prototype, designers may ask scien-
tists to help brainstorm about design considerations and ideas,
in a form of participatory design. The prototype is evaluated
using usability studies, a methodology where users are asked
to engage with the system through a well-defined set of tasks.
This activity allows the design team to get valuable feedback
about usage models and interpretation of functionality without
investing too much time in actual development. The feedback
from the initial User-Centered Design process is distilled into
a list of usability issues and can be prioritized based on Jakob
Nielsen’s usability severity ratings [25]. This process leads to
development of the first functional prototype. The functional
prototype is used to engage users to get additional feedback
and the process continues. The user engagement in every
stage helps the design and development team to translate user
requirements to concrete design decisions. The process also
helps identify project priorities at every stage in the design
and life cycle of the project.

Tigres first usability test. We first piloted the API test using
friendly users, two programmers and one web developer. The
process of testing the API went through several refinement
iterations (discussed in Section ??). Subsequently, we ran the
API tests with three scientists.

The artifacts used for the Scientist-Centered Design process
were APl documentation and example code snippets. The
prototype API was written in a pseudo-code format to enable
feedback on style of the interface. Each test participant was
given a small workflow problem to solve. The participant was
given 15 minutes to review the documents. The workflow
problem was broken down into smaller chunks. Each par-
ticipant was asked to write pseudo-code for the chunk from
the workflow problem. We used Google docs, a collaborative
document writing tools that allowed us to interact with the
participants actively. We asked the participants to “think out
loud” while performing the test, offering no guidance to the
participants unless they were unable to complete the task. The
participants could at any time “compile” and run the code, and
the test givers would verbally return back any compilation or
run-time errors.

We used two criteria during the tests to measure the
experience a) we noted places where the user had difficulty
with the tasks and/or understanding the documentation b) we
also tracked the total time of the test. Between each test
session, we used the results of the test to iterate on the
prototype API and refine our testing process. As noted earlier,
very little guidance is given in the literature on how to conduct
a usability study for APIs. So, we adapted the methods used
to test graphical user interfaces to test the APL

At the conclusion of the test, we held follow-up interviews

to discuss the APIL In all of the usability studies, the test
participants felt that they had a good sense for how Tigres
works, how the API would be used, and how the Tigres
templates might be used in their own work. More importantly,
the usability tests provided the right amount of context for the
test participants to have more detailed discussions about how
they would like to use Tigres in their work.

IV. TIGRES

The Tigres project [2] is developing reusable templates that
enable scientists to easily compose, run, and manage collabora-
tive computational tasks. Tigres provides a simple set of tem-
plate abstractions for describing scientific analysis pipelines.
Designed as a library in existing programming languages,
Tigres allows users to easily include the workflow concepts
within their programs. The templates present the scientists with
constructs that provide easy interfaces to common workflow
patterns. Underneath the scripting interfaces Tigres has an
ecosystem which transparently invokes needed provenance
collection, data access, and data movement optimizations.

Computational pipelines have become an integral part of
the scientific discovery process in science domains. We are
working with pipelines for image processing (Advanced Light
Source experiments and cosmology telescope observations),
DNA sequence assembly ( Joint Genome Institute), uncertainty
quantification (Carbon Capture Simulation Initiative), multi-
scale modeling (carbon flux monitoring), dynamic computa-
tions (materials discovery and gamma ray background cap-
ture).

We strongly believe that the key to the broad adoption of
Tigres will be design of an API that naturally integrates into
the scientific computational pipeline development process and
does not pose a high cost of adoption. The Scientist-Centered
Design process, is enabling us to work closely with a variety
of scientists from different domains to prototype and test
our templates and their specification before committing to an
implementation. These use cases each pose unique challenges
in the area of parallel processing, data management, and
provenance and our design process enables us to productively
engage with the user groups in the design of the interface.

The user-centered design process has provided substantial
advantage to the Tigres project development path. Our first
usability studies have significantly impacted the design of Ti-
gres including fundamental decisions such as implementation
language, form of the API, priorities, and understanding of the
features needed. The process has been vital to deciding project
priorities. Additionally, it provided key insights on the process
as it needs to be applied to eScience tools. In this section, we
summarize in detail the Tigres design and implementation and
its context describe our experience with using UCD.

A. Design Goals

The goal of the Tigres project is to develop a light-weight
framework that can be used by scientists in their own software
implementations. We used the initial interviews in the UCD
process to guide our design goals.

Easy Composition. Typically, workflow tools have specialized
languages that often have a learning curve. In contrast, Tigres
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(b) Parallel template

(a) Sequence template

(c) Split template

(d) Merge template

Fig. 2: Execution behavior of the four basic Tigres templates.

is designed to be a library in existing programming languages.
The Tigres API is invoked at run-time, similar to MPI (Mes-
sage Passing Interface). The implementation of the templates
needs to handle the work composition and parallelism needs
of the scientists, while remaining concise.

Scalability. Tigres needs to handle large-scale data-intensive
workflows that are becoming increasingly common in sciences
from cosmology to bioinformatics. These workflows have a
number of challenges: expensive data movement, extensive
monitoring, and fault-tolerance. In addition, the desktop de-
velopment environment must scale to running on large-scale
HPC systems.

Light-weight Execution. Pipelines built using Tigres need to
be deployed and executed on shared HPC resources. Therefore,
Tigres needs to avoid depending on persistent services, akin to
the approach of MPI applications on current HPC resources.

B. Templates

We interviewed representatives from groups to better un-
derstand their general programming proficiency, their work
culture, and types of workload. Through interviews with
scientists we stepped through typical computational pipelines
and discussed their development and production environments.
As a result of these interviews, we identified that Tigres’
API needs to support four templates (sequence, parallel, split
and merge, shown in Figure 2). Task inputs and outputs can
be simple types, complex objects, or references to external
data sources such as files or databases. The results from the
execution of a template can be used in a subsequent stage of
the workflow or directly by the application. New tasks and
templates can be defined or executed at virtually any part of
the application code.

These four templates, according to our results, cover the
basic needs of many scientific computational pipelines. Other
workflow patterns can be built using a combination of these
patterns [34]. In addition, we learned the user might need pro-
gramming language constructs (e.g., loops) in their workflows.
Since, our approach is a library in an existing language, users
are able to directly leverage these constructs in the existing
language.

In addition to the templates, the interviews identified three
key areas that were important to our users. First, that there
was a need to support the Tigres API in both Python and C.
Our initial plan was to support the API only in Python but
this would have limited its applicability in HPC environments.
Second, the ability to seamlessly scale from the desktop to
supercomputers was important to our users so the API needed
to be usable in those environments.

Template

operates on

| !

TaskArray InputArray

is array of Is array of

definition includes
input type J

v

InputValue <

InputType

Fig. 3: Concepts used in the Tigres API and their relationships.

C. Template Concepts

Figure 3 shows the concepts upon which the Tigres API
is built. A Template takes a TaskArray, that is a collection
of tasks to be executed together, and an InputArray with the
corresponding inputs to the tasks. The elements in a TaskArray
form a collection of tasks that need to execute either in a
sequence or in parallel.

Each Task definition includes the InputTypes that defines
the type of inputs that the task takes. The InputArray is a
collection of InputValues. InputValues are the values that are
inputs to the task and its types match what is defined in the
InputTypes. InputValues are passed to the task during execution
and not included in the task definition. This allows for reuse
of task definitions and late binding of actual data elements to
the workflow execution, as desired by our users.

D. Tigres API

Table I summarizes our key results with respect to the
APIL. Our API has three main categories a) Input definitions
b) Task definitions and, c) Templates. The results from the
usability study roughly fell under two categories i) changes
that were made during the initial usability study phase ii)
features or changes that affected the first functional prototype
(implementation phase).

An example of a change resulting from the process is that
our initial API started with different names for InputTypes,
InputValues and ..Array. These names were confusing for
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TABLE I: Impact of the process on the Tigres API with severity ratings [25]. The issues that were fixed during the user-centered
design phase are marked as Fixed. The issues are rated as 0 -Don’t think it is a usability problem, 1 - Cosmetic usability problem,
2 - Minor usability problem, 3 - Major usability problem,, needs to be fixed, 4-Catastrophic usability problem, needs to be fixed.

Other issues were fixed in our first implementation.

Individual ch

Tigres API after usability testing

Group-level ch

InputTypes ( name, types| ] )

Initially was called parameter_list (3-

InputValues ( name, values[ | )

Fixed) Unsure how implicit data parallelism will work (0),
Initially was called data_list (3- Unsure if user needs to specify O/P/s (0)
Fixed)

InputArray ( name, input_values| ])

Initially started with set and renamed
to arrays (3-Fixed)

Make name optional (1), Support language arrays (2),

Task ( name, type, impl_name, input_types, env)

Confusion over impl_name (1)

Make name optional (1), Use of language-supported

TaskArray ( name, task[ | )

arrays rather than a new type(2)

Sequence ( name, task_array, input_array )

(2)

Allow users to not specify depen-
dency when it is a simple sequence

Dual syntax for dependency (3)

Parallel ( name, task_array, input_array )

Was initially called DataParallel and
it was not clear if it would handle
dissimilar tasks (1-Fixed)

Split ( split_task, split_input_values, task_array, task_array_in )

The difference between task and task
array was striking here (1)

Merge ( task_array, input_array, merge_task, merge_input_values)

Started with calling it Synchroniza-
tion (2-Fixed)

our study participants. Although, the study participants were
able to determine what they referred to with minimal or no
help, the early users in our study all expressed confusion
over the names. The design team proposed a name change
during the usability study phase and the new names were more
easily understandable to the study participants and resulted in
a better outcome. Additionally, the names of the templates
were adjusted to address some of the questions raised by the
study participants. For example, DataParallel was renamed
to Parallel to reflect that it was able to handle dissimilar
tasks.

The pseudo-code language neutral approach in the usability
study was a little difficult for our users, who are all program-
mers. The users requested that the final API should support
language-specific optimizations to coding (e.g., array types
in Python, optional parameters). Tigres attempts to support
an API that can be easily ported to other languages while
still allowing language specific optimizations for programming
ease.

APIs that support User interacts with a
the user layer thin API layer to

User API define the elements of
their workflows

J_L Logging: Create, find

and view monitoring
information.

Core API

li State Management
Maintain the the state
of the Tigres program
and coordinate task
execution

Monitoring

Execution Management

I_|

Work is executed with the
chosen execution mechanism
(Desktop, Cluster, HPC Batch
Scheduler...)

Fig. 4: Tigres architecture. The user API is supported internally
by the Core API. The core API interacts with the state
management layer which in turn interacts with the execution
management layer. All components interact with the monitor-
ing component.

E. Dependency Syntax

There were two key issues that were identified as critical to
be resolved during the implementation phase. First, the initial
prototype had two different ways to specify dependencies - be-
tween the tasks in the workflow and and between the templates.
The users used the task dependency approach while chaining
templates as well, which highlighted that we need to have
a single approach to specifying and managing dependencies.
Second, users were very interested in simplifying the workflow
specification for simple cases. For example, in simple sequence
templates where each task depends on the previous task, there
was a request to allow users to not explicitly specify the
dependency.

We paid special attention to the dependency syntax in our
first implementation which was entirely possible only due to
the usability tests. The PREVIOUS syntax was standardized
for all types of dependencies. Additionally, we paid special
attention to implicit handling of data dependencies. We provide
a short hand for splitting iterable output among parallel tasks
(i.e., PREVIOUS.i indicates that in a set of parallel tasks the
i-th task should get the i-th output from PREVIOUS task).
We gave the users extended functionality that allows them to
define specific dependencies such as getting the n-th output
for the task name X (i.e., PREVIOUS.X.i[n].

FE. Architecture and Implementation

Tigres has five major components in a layered architecture:
User API, Core API, State Management, Execution Manage-
ment and Monitoring (Figure 4). The layered architecture
was largely influenced by the usability studies. First, without
usability studies, the development team would have initially
worked on the execution management and then built a user API
that focused on the execution semantics. Also, in the execution
semantics we would have first focused on the HPC system
execution and not focused on the desktop use case. Second, it
was possible to build the desktop version of Tigres within a
couple of weeks since the user API was very clear.

The user interacts with the thin User API to define the
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TABLE II: Monitoring API. The monitoring API was devel-
oped based on feedback from the usability studies

init (tigres-destination, user-destination)
set-log-level(level) enumeration FATAL upto TRACE
write(level, name, key-value pairs)

check(type, names)

find(name, key-value-pairs)

elements of their workflows, log messages and monitor their
program execution. The core API is a collections of interfaces
that support the User API with graphing, creating tasks, man-
aging task dependencies and running templates. Also, since
monitoring was mentioned as a key element by our users, we
paid special attention to the monitoring API in the system.
Monitoring is used by most other components to log system
or user-defined events and to monitor the program with a set
of entities for querying those events.

State management encompasses different management as-
pects of the workflow. For instance, it validates the user input
to confirm they result in a valid workflow both prior to start
as well as during execution. It transforms the Tigres tasks into
Work units that are then handed off to execution management.
The state management layer also provides monitoring and
provenance capabilities. It maintains state as each template is
invoked and integrity of the running Tigres program.

The execution layer can work with one or more resource
management techniques including desktop, cluster and HPC
systems. In addition, the separation of the API and the exe-
cution layer allows us to leverage different existing workflow
execution tools while providing a native programming interface
to the user. In the execution layer, a user’s configuration is
used to determine the execution mechanism. Tigres currently
multiple exection mechanisms including local thread and pro-
cess, cluster and HPC batch queues. Tigres does not start any
specific services to manage the execution. The user program
launches the specific tasks and once the tasks are completed,
the next step in the program is executed.

Our implementation has been heavily influenced by the
usability studies. Our implementation faithfully implemented
the user API that was tested, only making changes where
the usability studies indicated improvements were needed. We
wrote tests for user scenarios from the usability studies that
has helped test our codebase and ensure consistency.

G. Monitoring API

The usability studies indicated that real-time and user-
defined monitoring schemes were very important to the users.
The users desired the monitoring capabilities even for simple
workflows. Thus, this would increase the use of templates, and
help offset the initial programming effort required to use the
templates. Table II shows the resulting monitoring API in our
implementation.

V. DISCUSSION

We argue that user-centered design process should be an
integral part of all eScience research and development tools.
The process is very important to enable adoption of eScience
tools developed. In this section, we summarize our experiences

and provide some guidelines that will allow other projects to
apply the techniques.

Design Process. The process of usability testing for the API
is challenging. The process went through several refinement
iterations. The usability study needs to be comfortable for
the user. In our first pilot study, we asked the user to code
the problem on a white board. We quickly found that coding
on the whiteboard was unnatural and tedious. Moving to a
Google doc on the participants own laptop greatly improved
their comfort level. Also, for some of the tasks, some initial
code was given, to reduce some of the tedium of having to
repeat writing the same lines of code. Breaking down the
problem into subtasks improved the general understanding of
how to approach the API, although it also introduced some
constraints in the programming solution that wouldn’t normally
exist. In terms of incorporating changes, we differentiated
between typical user preferences versus general usability issues
by using feedback from multiple users into account before
making changes.

Impact on development cycle. The scientist-centered design
process adds an upfront cost in the development cycle, since
the initial usability studies delay the start of the develop-
ment cycle. However, well-conducted usability studies reduce
the development time as well as result in a better product,
analogous to how good software engineering practices can
impact the outcome of software practices [9]. We observed
the following from Tigres: a) the first stub implementation took
about two weeks to create rather than an estimated few months
b) design and development priorities and decisions were more
easily resolved based on results from the studies.

Team. Our design and development team usually consists of
at least one usability and user interface design expert and
one software engineer who together conduct interviews, run
usability studies, and brainstorm about design ideas, with the
designer taking the lead on all three areas. We believe that
involving the software engineer in the SCD process allows the
engineer to begin work on the infrastructure, keeping in mind
implications that the design and needs represent, and helps the
engineer prioritize which features to implement, based on the
strongest user needs.

Adoption. We believe that the active and constant participation
of scientists in the process helps ensure adoption in the long
run. Our user group is eager to know about the development of
Tigres and test future releases. We have found that scientists
are not often able to fully describe their needs and goals,
and this is because their needs, goals, and even their methods
are constantly shifting. Constant communication is the design
process is required, and early prototypes of design provide
context needed for scientists to verbalize or even formulate
their needs. In addition, much of the software needed for
scientific work takes the form of expert systems, and it is not
often possible to transfer all the domain knowledge needed.

Managing feedback. The user-centered design process is not
an exact science. It is critical that the team doesn’t offer
too much direct unsolicited guidance during the usability
study. Additionally, it is important to interpret the results
carefully. To help manage this, we propose using schemes
like the severity rating to classify and prioritize usability study
issues. An important consideration when working directly and
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closely with scientific users relates to managing expectations.
Scientists may expect that all of their suggestions appear in the
design, but the designers need to weigh the preferences of any
given scientist against the data collected about the user base
as a whole. Feedback from scientists should inform the design
but not necessarily drive it. Even when scientists contribute
design ideas in the form of participatory design, there should
be an understanding that the designer is the arbiter regarding
what elements appear in the prototype.

Guidelines for Other Projects. We provide high-level steps
that other eScience projects can use to engage with scientists
during the design phase for eScience projects with similar
APIs.

1) It is critical to identify early in the project the scientists
who will serve as representatives of the intended audience
of the tool.

2) The team must understand the work practices, work goals,
what the scientists would like to achieve, and current
similar tools. This can be accomplished by interviews and
participant observation (i.e., watching them work).

3) Develop high-level usage scenarios that accomplish work
goals.

4) Develop a low-cost prototype that is believed to address
the work goals identified in step (1). In the case of a
graphical user interface, this may take the form of a paper
prototype or a quick clickable prototype. API prototypes
can take the form of a document describing the function
definitions. Documentation and example code aid in early
usability tests.

5) Conduct a usability study with a select group of users
using the following guidelines. Determine the testing
medium that will be comfortable for the users to use. For
example, Google docs was commonly used by all our test
participants.

a. Preparation time: Allocate a few minutes for the test
participant to absorb the material and scenario when
testing an APIL.

b. Scenario: Ask users to work through the scenario,
”thinking out loud”.

c. Feedback: Provide feedback on demand but do not
intervene unless a participant cannot continue with the
exercise. The feedback provided should be minimal
and guide the scientist towards the solution rather than
provide the solution. Use creative methods (e.g., a
human compiler) to recreate an environment close to
what the users will experience when using your tool.

d. Follow-up. The study should be followed up with an
open discussion. The discussion should cover aspects
of the tests the users felt comfortable with. Addition-
ally, ask followup questions to see whether the material
was understandable and if the participants can see
themselves using it for their work

e. Results. The usability test results should be evaluated
and used to determine if a redesign is required and/or
prioritize project priorities appropriately.

6) Repeat the prototyping and testing cycle, increasing in the
fidelity/functionality of the prototype at each iteration.

VI. CONCLUSION AND FUTURE WORK

This paper presents Tigres and the design process that
has influenced the initial design of Tigres. The key benefits
of the approach to-date include: a significant reduction in
misunderstood requirements, an improved understanding of the
software capabilities needed, and less time spent developing
software that will never be executed (only develop capabilities
that can be used through the interface).

Tigres has greatly benefited from the user-centered design
process. The process has enabled us to improve nomenclature
of the concepts and API structure early in the design and
shortened the initial development cycle.

In the next usability study of Tigres, we plan to include
the prototype implementation of Tigres. The goals of the next
study would be to evaluate the use of the API, graphing,
monitoring and execution semantics.
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