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Abstract

DNA@Home is a volunteer computing project that aims to use Gibbs Sampling for the 

identification and location of DNA control signals on full genome-scale datasets. A fault tolerant 

and asynchronous implementation of Gibbs sampling using the Berkeley Open Infrastructure for 

Network Computing (BOINC) was used to identify the location of binding sites of the SNAI1 

(Snail) and SNAI2 (Slug) transcription factors across the human genome. Genes regulated by Slug 

but not Snail, and genes regulated by Snail but not Slug provided two datasets with known motifs. 

These datasets contained up to 994 DNA sequences which to our knowledge is largest scale use of 

Gibbs sampling for discovery of binding sites. 1000 parallel sampling walks were used to search 

for the presence of 1, 2 or 3 possible motifs using small, medium, and full size sets of these 

sequences. These runs were performed over a period of two months using over 1500 volunteered 

computing hosts and generated over 2.2 Terabytes of sampling data. High performance computing 

resources were used for post processing. This paper presents intra and inter walk analyses used to 

determine walk convergence. The results were validated against current biological knowledge of 

the Snail and Slug promoter regions and present avenues for further biological study.

I. Introduction

This paper presents new results from DNA@Home1 [1], which uses BOINC [2] to provide 

massively scalable computing power to search for transcription factor binding sites (or 

1http://csgrid.org/csg/dna
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motifs) in large datasets. DNA@Home implements an asynchronous version of the Gibbs 

Sampling algorithm which performs parallel sampling walks using volunteer computing. 

DNA@Home performed parallel Gibbs sampling runs over a two month time period which 

varied in the number of motifs searched for and the dataset size used. The aim was to 

identify motifs related to the SNAI1 (Snail) and SNAI2 (Slug) genes. Each run had 1000 

parallel sampling walks and the largest dataset contained 994 regions of DNA. This resulted 

in over 2.2 Terabytes of sampling data which was analyzed using high performance 

computing (HPC) resources. To our knowledge, this is the largest scale use of Gibbs 

sampling for de novo transcription factor binding site discovery.

A. The Gibbs Sampler

The Gibbs Sampler used by DNA@Home executes many walks in parallel. Each walk 

represents a run of the sampler with a different starting position. As a walk progresses it 

takes a number of steps. Each step is a move in a Markov Chain Monte Carlo (MCMC) 

walk. After a certain number of steps, a super-step, the resulting distribution is reported to 

the server, previous steps are forgotten and the current position is used to restart the walk 

(see Figure 1).

With Gibbs sampling the randomly chosen starting point biases the result of the sampler. To 

overcome this bias a certain number of steps, or a burn-in, should be discarded. The burn-in 

might be significantly larger than a super-step, and is dependent on the dataset and 

parameters to the Gibbs sampler (which include how many motifs are being searched for, 

what type of motifs they are, and how many nucleotides long the motifs are). The burn-in 

needed is similar for each walk though there are some outlier walks which do not converge 

as quickly. Burn-in must be completed before a valid sample set is generated. A larger 

super-step provides a better sample and will make burn-in easier to detect. A smaller super-

step requires less computation per volunteer computing job.

Convergence detection algorithms can be used to determine burn-in for a walk. Ideally the 

distribution generated at each super-step will approximate a stationary distribution, meaning 

that additional steps will not significantly alter the distribution. After burn-in is complete the 

sampler should converge and the next result of the sampler should be valid. At this point, No 

further steps are required and computation can cease. It is worth noting that some datasets 

and input parameters will not converge.

While convergence is a useful tool for determining when a single walk has completed, it 

does not guarantee that the walk has a good distribution of samples that completely 

represents likely motifs, as it may have converged to a local optima. By using multiple 

walks, it is possible to discover additional motifs by settling into different local optima. This 

provides a more global picture of the sampling space. Results show that analyzing distances 

between parallel walks can provide a good picture of whether or not the walks have 

converged, and if they have converged to local optima or global optima.
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B. Biological Significance of Snail and Slug Motifs

The Snail family of Zinc-finger transcription factors, SNAI1, SNAI2, and SNAI3 are highly 

conserved across vertebrates [3]. The Snail1 (Snail) and Snail2 (Slug) transcription factors 

bind to the subset of E-box motifs (CAGGTG/CACCTG) present at gene promoters, and 

recruit co-factor complexes to alter gene expression [3]. By changing expression of genes 

such as E-cadherin, which helps cells adhere to one another, Snail and Slug trigger loss of 

cell-cell adhesion, and hence cellular movement. This caused cells to change their shape and 

migrate, a phenomenon called Epithelial-to-Mesenchymal Transition or EMT [4]. EMT is 

essential for proper embryonic development, but is also responsible for tumor invasion and 

metastasis [4]. While Snail and Slug have several functions in common, they yet appear to 

have distinct gene targets [5], [6], which potentially has implications in their distinct roles at 

different stages of cancer metastasis. The molecular basis for the distinct regulation and 

binding affinity of downstream target genes by Snail and Slug is still currently unknown.

II. Related Work

Lawrence et al. [7] discusses how to apply Gibbs Sampling to motif finding. The effect of 

differing random start sites on converge rate is described. Lawrence claims that larger 

datasets provide a better pattern model which improves the power of the Gibbs sampler.

A. Dataset Size

Table I relates the dataset analyzed by DNA@Home to other work (note that ChIPMunk is 

not a Gibbs sampler). As described in Kulakovskiy et al. [8] many of the existing Gibbs 

Sampling motif discovery tools are not suited to processing the wealth of data provided by 

Next Generation Sequencing (NGS) data sources. Techniques like Chromatin 

Immunoprecipitation combined with sequencing (ChIP-Seq) determine where proteins bind 

on the genome, and can provide thousands of sequences with more than 1000 base pairs in 

each sequence. The size of the problem set and the efficiency of Gibbs sampling causes 

many approaches to reduce the dataset significantly so that it can be run on the available 

pool of hardware in a reasonable amount of time. DNA@Home overcomes these challenges 

through massive parallelism and volunteer computing. Kulakovskiy compares the efficiency 

of Weeder Pavesi et al. [9], Gibbs Sampler Lawrence et al. [7] and MEME Suite Bailey et 

al. [10]. Kulakovskiy also discusses the efficiency of cERMIT [11] an algorithm which 

takes advantage of the properties of ChIPSeq and HMS [12] which reduces the stochastic 

sampling set size and selects the alignment variable chauvinistically.

Kulakovskiy provides ChIPMunk which is suited for work on significantly larger scales than 

many of the previous Gibbs Sampling algorithms. ChIPMunk addresses the increased 

problem space created by ChIPSeq data. However, ChIPMunk is not a Gibbs Sampling 

algorithm. It is a greedy optimization using several heuristics which are specific to ChIPSeq.

Narlikar et al. [13] provides PRIORITY, a Gibbs Sampling algorithm which uses knowledge 

of transcription factor binding sites to use an informative prior probability. PRIORITY is 

shown as an improvement over AlignACE [14], MEME [10], MDscan [15] (a positional 

weight matrix approach), and CONVERGE [16].
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Similarly to Kulakovskiy and Narlikar, Che et al. [17] provides BEST which compares 

multiple motif finding programs: AlignACE [14], Biorprospector [18] and MEME [10].

Liu et al. [18] discusses the Gibbs Sampler, BioProspector. Liu describes methods to 

validate that meaningful motifs were found. BioProspector was run on 60 sequences of 800 

base pairs. Liu discusses methods to improve on Lawrence's Gibbs Sampler by replacing the 

mixture model with a threshold sampler to account for relationships among input sequences. 

A third order Markov background model is used to take advantage of the larger dataset.

Chen et al. [19] provide W-AlignACE, a Gibbs Sampling method using an improved 

positional weight matrix. Chen compares W-AlignACE to AlignACE [14] and MDSCan 

[15].

B. Burn-In and Other Problems in Gibbs Sampling

There are many methods that can be used to determine the burn-in period and convergence 

rate of a MCMC algorithm. Brooks et al. [20] has identified the following classes of 

methods for assessing convergence and determining burn-in in Gibbs Sampling: variance 

ratio, spectral, empirical kernel-based, regeneration and coupling, and semi-empirical 

methods that use Eigenvalue bounds. The Kolmogorov-Smirnov two sample statistic is a 

spectral method which can be used to test the null hypothesis of stationarity.

Jensen et al. [21] discuss finding motifs using Gibbs sampling when multiple motifs are 

present in the dataset. Jensen uses an annealing approach to shift the sampler to avoid being 

stuck in local maxima. The size of the shifts decreases over time according to a heat 

function.

Woodward et al. [22] discusses problems with slow mixing and poor or nonexistent 

convergence of Gibbs sampling when used to detect motifs in genomic data containing 

multiple motifs. In Woodwards case, convergence rate decreased as the length of DNA 

sample increased.

III. Implementation

A. Generating the Dataset

To generate the dataset, genes from a list generated by global gene expression microarray 

analyses by Dhasarathy et al. [6] were used. In this experiment, Snail and Slug were 

independently expressed in human MCF-7 breast cancer cells, in a time course over four 

days. The genes that were uniquely regulated by Snail or Slug (both up or down) over the 

four days were compiled into a list, with overlaps being merged. This generated two lists of 

genes unique to Snail or Slug regulation. The gene sequence were obtained at an interval of 

-500 to +500 base pairs from the transcription start site from the UCSC human genome 

browser (hg19) [23].

The initial sequence dataset used to generate the ranked list of genes for this experiment 

were taken from the Encode project at UCSC [23]. The track used was wg En-code Open 

Chrom Chip Mcf7 Pol2 Serumstim Raw Data Rep1. This track was chosen due to prior 
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work which centered on Snail and Slug representation with regards to RNA Polymerase II 

(Pol II) binding. The entire Snail dataset contains 1422 genes, while the entire Slug dataset 

only contains 412. Three different size FASTA files were generated for each dataset: small, 

medium, and large. The datasets are illustrated in Table II.

The Gibbs Sampler takes a FASTA file containing the sequences that define the genes 

across the generated intervals. To generate the FASTA files a workflow was developed 

which takes sequenced data in FASTQ format and assigns each individual sequence a 

unique coordinate based on the sequence of human hg19 genome annotation using Bowtie 

[24], converts it to BedGraph format for display and verification, associates the display data 

with gene intervals, filters for overlapping genes, and ranks the genes based on the number 

of matching reads. The Bowtie To Bed Graph conversion software and CPPMatch ranking 

software were provided by Adam Burkholder of the National Institute of Health [25].

B. Gibbs Sampling Configuration

The Gibbs Sampler was configured to search for 1, 2, or 3 motifs six nucleotides in length. 

This was done to examine how the number of motifs present in the dataset effects how 

quickly the parallel walks converge. There are six datasets, three for Slug and three for 

Snail. Those runs represent the different number of genes used in each dataset. The Snail 

and Slug datasets were run independently. For each run, 1000 independent walks were 

created. Within a run each walk had the same dataset and started with a random initial 

starting sample and a different random seed. A super-step size of 10000 steps was used. 

After each super-step the resulting empirical distribution was stored for off-line calculation 

of the convergence rate and a new super-step was started from the current position with a 

new random seed.

C. Checking for Convergence

The Kolmogorov-Smirnov two sample statistic was used to test the null hypothesis of 

stationary distribution. Each time a walk was restarted, samples were reported for the last 

super-step of the walk. These samples represent the empirical distribution of that period. The 

test generated two values, a maximum distance between distributions and a probability that 

two distributions were generated from the same source distribution. The test sorts the sample 

to create the distribution function and then compares the distribution with the previous 

distribution.

The test is appropriate for testing Gibbs Sampling convergence for several reasons. The test 

is non-parametric, it does not assume a particular known distribution. This is an advantage 

because the empirical motif distribution is unknown and unlikely to fit a common 

probability distribution. Transformations of the values being tested will not affect the result, 

therefore using larger super-step sizes will make the results more accurate without distorting 

them.
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IV. Results

A. Gathering Results with DNA@Home

The results for this work were gathered over a period of approximately 2 months using the 

University of North Dakota's Citizen Science Grid2, of which DNA@Home is a subproject. 

The number of simultaneously volunteered hosts participating in the project averaged 

around 1650 during this period. Near the end of this period, the BOINC Charity Team 

selected the project for an event which resulted in a burst of an additional 400-500 compute 

hosts in February. As of March 2015, DNA@Home and the Citizen Science grid has had 

over 1500 users provide over 4100 compute hosts for the project. In total, 18 runs were 

made looking for 1 to 3 motifs using Snail and Slug datasets of small, medium, and large 

sizes (see Table II). These runs generated over 2.2 TB of sampling data. Convergence rates 

for individual walks are examined in Section IV-B, convergence of the entire parallel 

sampling walks is discussed in Section IV-C and a discussion and validation of the motifs 

found is presented in Section IV-D.

B. Intrawalk Analysis and Burn-In Detection

The burn-in period was well defined for runs that converged. As illustrated by Figure 2, the 

small dataset converged for the case of one motif for both datasets. However, the probability 

sample standard deviation (PSSD) remained around 10% so those results were marked as 

unstable. Runs with 2 or 3 motifs did not converge for the small datasets. Their probability 

consistently hovers around 20% for all runs with a PSSD of around 35%. Figures for the 

remaining small runs are not included. The number of motifs searched for affects the rate of 

convergence. For 1 and 3 motifs all of the medium and large runs converged by 20000 steps. 

The two motif runs show that using more genes improves the rate of convergence. While 

this may seem counterintuitive, this is in agreement with the claims of Lawrence et al. [7] 

that convergence rates of Gibbs sampling increase with more sequences.

1. Analysis of the One Motif Runs: Figure 2 shows a comparison of the one motif 

results for Snail and Slug. The small Slug datasets both show signs of convergence. 

However the high PSSD draws the quality of this data into question. The consistent 

presence of near zero probabilities also suggests that these results are not stable. 

The medium dataset satisfies burn-in and converges in under 20000 steps. The 

minimal PSSD and consistently high minimum probability suggest that all of the 

walks have converged.

2. Analysis of the Two Motif Runs: Figure 3 shows the results from searching for two 

motifs at once. This shows that using a larger dataset improves the rate at which the 

walks converge. In both the Slug and Snail two motif medium cases, the walks do 

not immediately converge. Instead of the convergence seen in the first 20000 steps 

in the other results for all numbers of motifs, this data shows that while the average 

probability of convergence is very high, the sample standard deviation is not 

reduced until much later. In the case of the Slug medium data the standard 

2http://csgrid.org
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deviation isn't reduced until 200000 steps. The Snail dataset sees the reduced 

standard deviation at 130000 steps. In both cases the large dataset performs better.

3. Analysis of the Three Motif Runs: Figure 4 shows that for Slug the medium size 

dataset converges quickly at around 40000 steps. However the stability of that 

convergence is brought into question by the fluctuating standard deviation. Again, 

using the large dataset for Slug improves the quality of the result.

C. Interwalk Analysis

Convergence rates for the parallel sampling walks as a whole were tested. Those tests 

proved to be extremely computationally expensive. The sampling datasets ranged from 

around 20 GB for the runs with one motif on the small number of sequences, to over 500 GB 

for the runs with three motifs on the large number of sequences. To compare the distance 

between each walk at every super-step a parallel analysis tool was developed using C++ and 

MPI which utilized HPC resources. A Beowulf HPC cluster with 32 dual quad-core compute 

nodes (for a total of 256 processing cores) was used. Each compute node had 64 GB of 

1600-MHz RAM, two mirrored RAID 146-GB 15-K RPM SAS drives, two quad-core 

E5-2643 Intel processors which operate at 3.3 Ghz, and ran the Red Hat Enterprise Linux 

(RHEL) 6.2 operating system. All 32 nodes within the cluster were linked by a private 56 

Gb InfiniBand FDR 1-to-1 network. The code was compiled and run using MVAPICH2-x 

[26] to allow highly optimized use of this network infrastructure.

Randomized sampling was required to calculate these results in a reasonable amount of 

time. Figures 5, 6 and 7 display the minimum, average, median, and maximum distance 

between each walk in a random sample of 100 walks at each super-step and were generated 

over a period of two days using the HPC cluster. The distance between any two walks was 

calculated as the average difference in the number of samples at each position within the 

sequences for each motif.

Similar to the interwalk comparison, runs with two motifs take significantly longer to 

converge than those with 1 or 3 motifs, which essentially converge within the first super-

step. Also, comparing the interwalk distance of the parallel sampling walk provides another 

strong measure with which to determine if the individual walks have converged to different 

local optima or if there is a consistent global optimum across all walks. For runs with high 

maximum distances and low average and median distances, groups of walks would have 

converged to different regions. For runs with high maximum, median and average distances, 

walks would have converged to many different regions without grouping together. For runs 

with low maximum, average, and median distances, all the walks grouped to a similar 

region. Generally runs with low average and median distances would generate enough 

parallel walks to get an appropriate sampling across all possible optima, while runs with 

high median and averages, would require either more sampling walks or motifs to be sure all 

regions of the search space are sampled correctly (e.g., the large Slug and Snail datasets with 

one motif).
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D. Motif Validation and Analysis

The top ten motifs for Snail and Slug from each walk in the large datasets that were 

represented in greater than 10% of walks, and that occurred with greater than 10% frequency 

and which contained the Snail or Slug binding site sequence (also known as the ‘E-Box’ 

sequence, CAGGTG or CACCTG) within the combination of the reported motif and its left 

and right neighbors were examined. Tables III, IV, V, VI, VII, and VIII display the number 

of walks containing the motif, percentage of time the position was sampled, the gene symbol 

and chromosome(chr2 is chromosome2 for example), start of the region, end of the region, 

motif location offset from the start, five nucleotides before the motif, the motif in capitalized 

letters, five nucleotides after the motif, and if it contained the E-Box motifs. If multiple 

motifs were found for a sequence then multiple motifs were returned for that sequence. No 

motif was reported for a sequence if none of the motifs overcame the minimum percentage.

Several of the genes that had the E-box in their promoter regions were known targets or 

predicted targets. For example, Claudin-7 (CLDN7) as seen in table VII, a cell membrane 

protein, was shown to be regulated by Snail binding to its promoter E-box sequences by 

Ikenouchi et al. [27]. The gene desmoplakin (DSP) as seen in table VII, which is a known 

target of Snail according to Ohkubo et al. [28], was also identified as possessing E-box 

sequences. Another gene, ESRP2, while not identified as a direct target of Snail or Slug, 

does contain E-box sequences that can be bound by a protein called Zeb1, which performs 

similar functions to Snail and Slug according to Gemmill et al. [29]. This implies that Snail 

or Slug could possibly bind to the ESRP2 sequence in certain contexts as seen in Tables VI, 

VII and VIII. Snail binds to E-box sequences at the ESRP1 gene promoter and represses it 

according to Reinke et al. [30]. While none of the Slug targets have been currently identified 

as direct targets, the data helps to pinpoint potential genes for validation by experimental 

approaches to discover novel ways of gene regulation. Overall, using gene regulation data 

from the microarray lists and then searching for E-box sequence motifs in those gene 

promoters, can be used to predict which of these are regulated by direct binding of Snail and 

Slug. Once validated, these genes could serve as future therapeutic targets for drug delivery 

or biomarkers for cancer metastasis.

V. Conclusions and Future Work

This paper presents the use of the DNA@Home volunteer computing project to search for 

transcription factor binding sides around genes related to the Snail and Slug family of Zinc-

finger transcription factors. Utilizing over 1500 volunteer computing hosts for a period of 

two months, 18 different parallel Gibbs sampling runs were performed with varying 

parameters on datasets with up to 994 DNA sequence regions. To our knowledge, these 

present the largest scale use of Gibbs sampling for de novo detection of transcription factor 

binding sites.

These runs generated over 2.2 Terabytes of sampling data, which was analyzed using a HPC 

cluster to determine statistics about the distances between the parallel sampling walks. This 

information provides insight as to how well these runs were performing sampling in terms of 

convergence regions of local optima or a singular region of a global optima. This is valuable 

information for determining how many motifs to search for, if the burn-in period has 
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completed, and if the runs have generated enough samples to provide a reliable distribution 

of likely transcription factor binding sites. The use of parallel sampling walks allows Gibbs 

sampling to be performed at much larger scales and to more quickly gather samples.

This work provided a large scale example of the capabilities of DNA@Home, and there are 

plans to incorporate the various metrics utilized in the analysis of this sampling data into a 

web based user interface for project scientists. Further, there are plans to open DNA@Home 

up to external researchers, allowing them to submit their own FASTA files to perform their 

own Gibbs sampling runs.
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Fig. 1. 
This figure presents how DNA@Home performs parallel Gibbs sampling. Arrows represent 

workunits, or volunteer computing tasks, where hosts receive an initial state with depth x, 

Sx, and report a final state with depth y, Sy. Workunits have fixed walk lengths (in this 

Figure, 1), however the runs described in this work had walk lengths of 10000. When a walk 

completes its burn-in period, samples are taken. Processors can join and leave, restarting 

from walks of previously left processors.
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Fig. 2. 
One Motif Kolmogorov-Smirnov Analysis after Burn-In. Top row: Slug shows improved 

convergence rate as the dataset size increases. Bottom row: Snail similarly converges sooner 

for larger datasets. In the Kolmogorov-Smirnov graphs, the top subgraph represents a y-log 

view of the average largest difference between super-steps. The solid line is the mean, the 

dash-dot line is the minimum, the dashed line is the maximum, and the shaded region is the 

1st standard deviation. The lower subplot shares the same legend however y values now 

range between 0 and 1. The lower subplot represents the probability that the current super-

step was generated from the same distribution as the previous super-step
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Fig. 3. 
Two Motif Kolmogrov-Smirnov Analysis. Top row: Slug shows instability for the small 

dataset and slower convergence of the large dataset vs the one motif runs. Bottom row: Snail 

also shows instability for the small dataset however Snail converges more quickly than Slug. 

The two motif runs do not converge as quickly as the 1 or 3 motif runs. However once 

converged the two motif runs on the large Snail dataset do not show the repeated low 

minimums in the probability section that the other motif groupings show.
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Fig. 4. 
Three Motif Kolmogorov-Smirnov Analysis. Top row: Slug is unstable for the small dataset. 

The rate of convergence is similar to the one motif results for the medium and large datasets. 

Bottom row: Snail is unstable for the small dataset and converges sooner than Slug for the 

medium and large datasets.

Zarns et al. Page 14

Proc IEEE Int Conf Escience. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
This figure presents the minimum, average, median, and maximum distances between a 

random sample of 100 walks after every super-step for the one motif runs. Interestingly, for 

a medium number of intergenomic regions, the distances between the walks are the smallest. 

For the small set, the average and median distances stay low, but the high, maximum 

distances suggest some instability. For the large set, it becomes obvious that one motif is not 

sufficient, given the consistently high average and maximum distance between walks.
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Fig. 6. 
This figure presents the minimum, average, median, and maximum distances between a 

random sample of 100 walks after every super-step for the two motif runs. Some of the 

medium and large intergenomic region have a noticeably longer time to convergence. The 

distances between walks stays similar for all size datasets.
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Fig. 7. 
This figure presents the minimum, average, median, and maximum distances between a 

random sample of 100 walks after every super-step for the three motif runs. In contrast to 

the one motif runs, the distance between walks showed a decrease in distance with the larger 

datasets, suggesting that there were better matches for more motifs in the larger dataset 

sizes.
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