
Web-Based Manipulation of Multiresolution
Micro-CT Images

Lasse Wollatz, Simon Cox and Steven Johnston
Faculty of Engineering and the Environment

University of Southampton
United Kingdom

Email: L.Wollatz@soton.ac.uk

Abstract—Micro Computed-Tomography (µCT) scanning is
opening a new world for medical researchers. Scientific data of
several tens of gigabytes per image is created and usually requires
storage on a common server such as Picture Archiving and
Communication Systems (PACS). Previewing this data online in a
meaningful way is an essential part of these systems. Radiologists
who have been working with CT data for a long time are
commonly looking at two-dimensional slices of 3D image stacks.
Conventional web-viewers such as Google Maps and Deep Zoom
use tiled multiresolution-images for faster display of large 2D
data. In the medical area this approach is being adapted for high
resolution 2D images. Solutions that include basic image process-
ing still rely on browser external solutions and high-performance
client-machines. In this paper we optimized and modified Brain
Maps API to create an interactive orthogonal-sectioning image-
viewer for medical µCT scans, based on JavaScript and HTML5.
We show that tiling of images reduces the processing time by
a factor of two. Different file formats are compared regarding
their quality and time to display. As well a sample end-to-end
application demonstrates the feasibility of this solution for custom
made image acquisition systems.

I. INTRODUCTION

Images have always been important in medicine for diagnos-
tics. Medical instruments such as microscopes and µCT scan-
ners produce images that are several tens of gigabytes in
size. The increasing amount of data obtained provides new
opportunities for medical researchers but also poses challenges
in terms of data storage and retrieval.

In histology sections of in-vitro tissue-samples are stained
and analyzed under a microscope. The results coming from
such analysis are limited to one 2D sample of the extracted
tissue. Creating 3D data of the whole tissue using non-
destructive µCT prior to the sectioning allows to create a more
complete picture of diseases included in the tissue.

µCT data and resulting processed data need to be available
to medical researchers in an accessible and meaningful way.
One of the critical elements identified was fast previewing of
images, in order to allow researchers to decide which images
are worth analyzing before retrieving the full image data
from a remote storage onto their system for processing. As
mobile devices are of increasing importance in today’s world
and also within medicine, compatibility with mobile devices
becomes a key concern [1].

Fig. 1. Multiresolution tiled image - Each resolution level is four times the
size of the previous. Tiles are loaded from server for the current view only.

Sending full scale image over the web can take a long time.
It is therefore of advantage to save the image as small tiles
and only send those parts of the image which are required
(compare Fig. 1). It is important to balance the tile size
between amount of data to load from the server and amount
of server requests made [2].

If the user zooms out, the whole image is displayed on
the screen. As this means all the tiles need to be loaded,
the image is scaled to several different resolutions and tiled
at each of these resolutions. The result is a multiresolution
image as shown in Fig. 1. For images where the overhead from
multiple tile requests is too large, loading multiple resolutions
will still provide a faster response experience. The major idea
of the viewer is not to speed up the loading, but to limit the
amount of work which needs to be done. For non-medical
images, the display of very large images over the web by
the use of multiresolution tiled images is a well-established
method. Examples are Google Maps, where a satellite image
of the entire earth is displayed over various zoom levels with
individual tiles being loaded on demand, Deep Zoom, which
is based on Silverlight Plug-In, and Grid DataBlade by BCS,
which runs in Java [3], [4].

In the medical field the implementation of tiled image
viewers is also being established [5], [6]. These solutions are
limited to displaying images and do not support image filters.

The Multiresolution Image Viewer (MIV) [5], later
renamed to Brain Maps API, is an open source code for
displaying high resolution brain images. These images are
taken with microscopes, which have a very high resolution



compared to µCT. Even though microscopes only allow
to view a small part of the sample at high magnification,
methods exist to stitch these images back together to form
a complete image of the sample [7]. After being stitched
together, the image is converted into a multiresolution, tiled
image and stored in a predefined folder structure. Brain
Maps API loads and places the image tiles needed for the
current view and was extended by StackVis [8], which is
browser external, to enable the display of coarsely spaced
3D image stacks and 2D images with a birds-view perspective.

In this paper we describe an implementation of a
multiresolution tiled image viewer based on the Brain
Maps API [5] that makes it possible to view images and
process them pixel based on low-performance devices within
web-browser. This improves the capabilities of existing
Web-PACS and the practical usability of remote data storage
for e-Health. Using Portable Network Graphics (PNG) image
tiles instead of commonly used Joint Photographic Experts
Group (JPEG or JPG) tiles, better results are obtained as
shown in section II. Requirements for speed improvement are
discussed in section III and an integration into an image server
as well as performance of the code are presented in section IV.

II. IMAGE FORMAT CONSIDERATION

Raw data can be stored in various ways, such as uncom-
pressed bits or in a file format like Tagged Image File Format
(TIFF). TIFF allows storing 16-bit or 32-bit data as well as
being able to store multiple images in one file. Compared to
raw data files, it also presents a standard for storing keywords
related to the image. As standard TIFF uses 4-byte pointers
it can only store file-sizes up to 4GB. Images larger than that
are stored as image stacks of several separate 2D TIFFs.

The tiles for the image viewer need to be stored in
a web-compliant format. Modern web-browsers support
only standard 8-bit images natively commonly JPG, Graphics
Interchange Format (GIF) and PNG but also Windows Bitmap
(BMP). GIF, which uses an 8-bit indexed color map, has
been replaced by PNG due to licensing restrictions [9]. PNG
provided 5% better lossless compression than JPEG for small
images. JPG can be seen as a standard file format for tiled
image viewers [2], [8], [10], [11] but server side solutions
also use their own multiresolution file formats or compression
methods [11], [12]. JPEG2000, which is increasingly popular
in medicine, applies partial lossy compression [13]. This paper
compares lossless compressed PNG and lossy compressed
JPG and as an uncompressed format BMP. Comparison is
made in terms of quality loss due to conversion and quality
loss due to compression as well as file-size.

Radiologists can discern 800 to 1000 Just Noticeable
Differences (JNDs) within one scene, corresponding to
800 to 1000 individual gray-shades. This means that a
10-bit image format with 1024 gray shades is a minimum
requirement for accurate display [14], [15]. A visible loss

Fig. 2. Quality of image for two possible conversions to 8-bit are compared:
The upper row shows the case of the histogram first converted to 8-bit and
then stretched, while the lower row shows the histogram first stretched and
then converted. The number of gray shades visibly reduces in the first case.

in intensity-resolution is therefore given independent of the
choice of file format for the tiling. The original images from
the µCT come at 32-bit but are reduced to 16-bit. This is
sufficient quality for medical purposes [16]. TIFF allows for
high resolution but standard image formats are based on 8-bit
integers for gray-scale ranging from 0 to 255. The difference
becomes noticeable if the displayed density range is changed
and the histogram stretched as illustrated in the top of Fig. 2.
A small improvement can be achieved, by partial clipping of
the original histogram to make better use of the limited 8-bit
palette if the original image uses only a small range of the
available gray-scales as shown at the bottom of Fig. 2.

Besides the quality loss due to conversion to 8-bit, the
compression-methods of the different image-formats play a
role. The different image resolutions vary by a scaling factor
of two, meaning that each zoom level contains only a quarter
of the pixels of the previous one. This means that in total
the tiled image will contain 4/3 the amount of pixels. The
overhead of having several files instead of a single one adds
to this. JPEG uses a 2D frequency transform to convert the
image into the frequency domain and only stores the most
important frequencies. This allows for much smaller file sizes
but less quality. PNG uses lossless compression and BMP
uses none or run-length encoding (RLE) compression only.
Fig. 3 shows the difference in terms of image quality. An
increased amount of artifacts for JPEG is visible. Lossless
formats do not show major differences to the original image,
even for large image scaling. The Root Mean Square (RMS)
of the difference between the different images and the original
TIF were computed for the selected tile. Both BMP and
PNG resulted in an RMS of 0.005 while converting the
image to JPEG and then tiling it gave a difference RMS of
0.0144 and tiling the image prior to the conversion one of
0.0134. Lossy JPEG compression reduced the image size of
the multiresolution image shown in Table I by a factor of 15
which is much less than reported for normal images. This is
mainly due to tiling and the increased amount of pixels of
the multiresolution image [17]. PNG achieved the expected



Fig. 3. Quality of JPEG compression compared to PNG based on a 20 by
20 pixel tile. Images on the left side result from the TIF being tiled and then
converted to the new file format. Images on the right have first been converted
and then cut into tiles. The JPEG images at the bottom show a lot of errors.

TABLE I
SIZE OF TILED IMAGES COMPARED TO THE ORIGINAL UNTILED TIF.

Image Orig. TIF Tiled JPG Tiled PNG Tiled BMP

Sample 1 (32-bit) 8.13GB 138MB 855MB 2.89GB
Sample 2 (16-bit) 7.09GB 265MB 1.79GB 5.01GB
Sample 3 (16-bit) 60.8GB 2.1GB 9.53GB 21.1GB

compression ratio of a factor of 3 [18].
If the increased amount of data transfer results in an

unacceptable delay of page display, then PNG cannot be
used for the tiled images. Otherwise it is preferred, as the
quality is much greater. If the original data is several tens
of gigabytes in size the larger overall data size of PNG
compared to JPG-tiles has no major significance.

III. SPEED CONSIDERATION

The speed of web-sites is a major issue [19]. Server, network
and coding related improvements were explored in order to
ensure short website response times.

The processing/ rendering of the images occurs on the client
side. For comparison an AJAX based loading of the images
was implemented allowing for server side image processing
but was much slower than the client-side processing through
pure JavaScript. This agrees with the observations regarding
Deep Zoom that server side image generation is slow as it
increases the load on the server [20].

In order to decrease the page loading time, the JavaScript
routines called on start-up were reduced to a minimum. The
image loads on a comparatively small zoom level to keep the
number of image files transferred on page load low. For further
speed-up the code was modified to reduce the amounts of time
tiles were recomputed and loaded. A differentiation was made

between the case of tiles needing to be updated and the case
where the tiles visible might have changed. In the first case
all the tiles need to be recomputed. This occurs if the user
changes the image manipulation parameters. The second case
requires checking which tiles are within the field of view and
loading those, while removing the ones that moved out of the
displaying area. This event needs to be triggered whenever the
zoom-level is changed, or the image is panned.

A low-resolution thumbnail was placed behind the tiles
to allow quick orientation while higher resolution images
are loading. To create a better feeling of responsiveness, the
thumbnail is always loaded before the tiles and placed in the
background. Tiles will then appear on top of the low resolution
image, as they are processed. In case of quick scrolling through
the dataset, the low resolution image loads much quicker than
the tiles and improves the user orientation in the 3D stack.

Another change was made in the amount of slices the user
goes through: it was made dependent on the zoom level and
the angle of mouse-wheel movement. At higher magnification
the user moves only a single slice at a time, while at low
resolution he can move 20 images at once. This way it gives
the feeling of moving through the image more quickly, while
reducing the number of that need to be loaded.

IV. RESULTS

A sample website was built using Webmatrix 3 and PL-
upload. If the server receives new images, a message is sent
to a queue hosted on Azure which defines the image path.
A Python script on the server checks the queue frequently
for outstanding messages and creates the image tiles in a
subdirectory of the original image. It also creates a header
file for the image viewer that contains information about the
overall 3D image. The viewer requests that file using AJAX.
The pixel values and dimensions are mapped back to the
density of an object using the header file. The user can select a
Hounsfield unit (HU) range to display within the boundaries of
the scanned HU values. By adding the queue request into the
uploading process and linking the content request of the Image
viewer to the systems database, this viewer can be added to
an existing web image server.

For speed evaluation, the time to respond (TTR) and the
time to display (TTD) were recorded. The average times are
presented in Table II. The TTR defines the time it took to
display a preview after a user input, while the TTD describes
the amount of time it took till the full resolution image
was displayed. In general TTD was 3 to 4% faster for JPG
compared to PNG but 25% to 60% faster than for the untiled
image. For low zoom levels, the TTD new image slices
averaged at 90fps for panning only required loading a selection
of new tiles and was even faster (around 6ms). On mobile
devices, the advantage of JPG over PNG is much clearer with
16 to 45% speed improvement. Loading and editing the full
image on a mobile device took 16 seconds on average but was
decreased to 4 seconds by tiling. Due to the multiresolution
loading the TTR is much lower at 63ms for a workstation and



TABLE II
TTR AND TTD USING DIFFERENT FILE FORMATS. TTD THE UNTILED

PNG ON THE TABLET WAS NOT RECORDED, AS THE BROWSER
APPLICATION CRASHED BEFORE COMPLETING THE REQUEST.

Device Browser Average Average TTD [ms]
TTR [ms] JPG PNG BMP Untiled PNG

PC Opera 32 1401 1456 1530 3514
PC IE 20 1613 1633 1643 5013
PC Firefox 94 2962 3056 3025 3975
Mobile Opera 354 2478 3060 3734 20436
Mobile Firefox 239 5855 6988 8611 11429
Tablet Safari 465 6835 7481 8194 —

a fifth of a second for the mobile phone. The average speed
of displaying different size images did not differ as expected.
The reduction to equal sized tiles allows massive scalability
not only in two but also in three dimensions. Results are shown
for Opera, Firefox (FF) and Internet Explorer (IE).

Comparing PNG and JPG, differences in compression and
speed are negligible. For the given medical applications, PNG
was the better choice due to the lower quality of JPG.

For the test, the zoom level was set to ensure a maximum
number of images were loaded. Speed was measured from the
point of user input to the point of image displayed. It was
ensured that images were not cached. These were the worst
conditions possible and this is reflected in the results.

The server was hosted with IIS on Windows 8 and the
times recorded on a Windows 7 (both 16GB RAM) with
Opera 28, the results were compared to FF 35 and IE 11. Each
request required 38 tiles to be loaded. Mobile speeds were
recorded on a Samsung Galaxy Duos (Android 4, 645MB
RAM, FF & Opera, 8 Tiles to load) and iPad (iOS 5, Safari,
20 Tiles to load) using Wi-Fi with VPN. The image loading
time fluctuated massively, especially on slower devices. As
this was not tested in an isolated environment, the workload
on both - server and client - was not constant.

V. CONCLUSION

Advances in the application of µCT in e-Health lead to
growing amounts of data requiring organization and remote
viewing. Viewing should not be dependent on browser-external
solutions, as this limits the compatibility. Multiresolution im-
ages can avoid these limitations. We created an image viewer
and manipulator for 3D CT data and showed that it can be
implemented into an existing system. We demonstrate the
feasibility of this method for medical applications in several
aspects: a) Using lossless compressed image formats does
improve the overall speed of the viewer compared to untiled
approaches; b) Basic requirements including pixel based image
processing of medical image viewers can be implemented into
a web-viewer; c) These features do not restrict the usability
of the system for mobile or low-performance devices; d)
Using JavaScript and HTML5 these functionalities can be
implemented for all main browsers.

In the future we plan to extend the support of input
formats and reformatting options to create an image server
for practical use. For that we would like to explore direct
integration of DICOM as well as security aspects of the
transmission of medical images over the web.

REFERENCES

[1] P. T. Johnson, S. L. Zimmerman, D. Heath, J. Eng, K. M. Horton, W. W.
Scott, and E. K. Fishman, “The iPad as a mobile device for CT display
and interpretation: diagnostic accuracy for identification of pulmonary
embolism,” Emerg. Radiol., vol. 19, no. 4, pp. 323–327, Aug. 2012.

[2] L. Gerhard, A. Szoforan, and R. Nickolov, “Scalable mutable tiled multi-
resolution texture atlases,” U.S. Grant 8 385 669, Feb. 26, 2013.

[3] C. Crichton, J. Davies, J. Gibbons, A. Tsui, J. Brenton, C. Caldas, and
L. Morris, “Deep Zoom and touch screen for tissue microarray image
scoring,” in Proc. of ICSE, vol. 70, no. 2003. ACM Press, 2008, pp.
217–243.

[4] C. Pendleton, “The world according to Bing,” IEEE Comput. Graph.,
vol. 30, no. 4, pp. 15–17, Jul./Aug. 2010.

[5] S. Mikula, I. Trotts, J. M. Stone, and E. G. Jones, “Internet-enabled high-
resolution brain mappingand virtual microscopy,” Neuroimage, vol. 35,
no. 1, pp. 9–15, 2007.

[6] E. J. C. Arguiñarena, J. E. Macchi, P. P. Escobar, M. del Fresno, J. M.
Massa, and M. A. Santiago, “Dcm-Ar: a fast Flash-based web-PACS
viewer for displaying large DICOM images,” in Proc. of EMBC. Buenos
Aires: IEEE, 2010, pp. 3463–3466.

[7] B. Appleton, A. P. Bradley, and M. Wildermoth, “Towards optimal image
stitching for virtual microscopy,” in Proc. of DICTA’05. Queensland,
Australia: IEEE, Dec. 2005, pp. 44–51.

[8] I. Trotts, S. Mikula, and E. G. Jones, “Interactive visualization of
multiresolution image stacks in 3D,” Neuroimage, vol. 35, no. 3, pp.
1038–1043, Apr. 2007.

[9] J. Miano, Compressed Image File Formats: JPEG, PNG, GIF, XBM,
BMP. Addison-Wesley Professional, 1999.

[10] C. K. Chui and H. Wang, “System and method for tiled multiresolution
encoding/decoding and communication with lossless selective regions of
interest via data reuse,” US Grant 09/999,760, Jun. 7, 2005.

[11] W.-K. Jeong, J. Schneider, S. G. Turney, B. E. Faulkner-Jones, D. Meyer,
R. Westermann, R. C. Reid, J. Lichtman, and H. Pfister, “Interactive
histology and of large-scale and biomedical image and stacks,” in IEEE
T. Vis. Comput. Gr., vol. 16, no. 6. IEEE, 2010, pp. 1386–1395.

[12] M. J. Gormish, E. L. Schwartz, A. Keith, M. Boliek, and A. Zandi,
“Lossless and nearly lossless compression for high-quality images,” in
Proc. of Very High Resolution and Quality Imaging II, vol. 3025. SPIE,
Apr. 1997, pp. 62–70.

[13] D. A. Clunie, “Lossless compression of grayscale medical images:
effectiveness of traditional and state-of-the-art approaches,” in Proc. of
Medical Imaging, G. J. Blaine and E. L. Siegel, Eds., vol. 3980. San
Diego, CA: SPIE, Feb. 2000.

[14] H. R. Blume and E. Muka, “Hard copies for digital medical images:
an overview,” in Proc. of Color Hard Copy and Graphic Arts IV, vol.
2413. San Jose, CA: SPIE, Feb. 1995.

[15] R. A. Robb, Biomedical Imaging, Visualization, and Analysis. John
Wiley & Sons, 2000.

[16] A. E. Scott, D. M. Vasilescu, K. A. D. Seal, S. D. Keyes, N. M. Mark,
J. C. Hogg, I. Sinclair, J. A. Warner, T.-L. Hackett, and P. M. Lackie,
“Three dimensional imaging of paraffin embedded human lung tissue
samples by micro-computed tomography,” PLOS ONE, vol. 10, no. 6,
Jun. 2015.

[17] R. Norcen, M. Podesser, A. Pommer, H.-P. Schmidt, and A. Uhla,
“Confidential storage and transmission of medical image data,” Comput.
Biol. Med., vol. 33, no. 3, pp. 277–292, May 2003.

[18] P. Cosman, R. Gray, and R. Olshen, “Evaluating quality of compressed
medical images: Snr, subjective rating, and diagnostic accuracy,” in Proc.
of the IEEE, vol. 82, no. 6. IEEE, Jun. 1994, pp. 919–932.

[19] D. Gehrke and E. Turban, “Determinants of successful website design:
relative importance and recommendations for effectiveness,” in Proc. of
the HICSS-32, vol. 5. Maui, HI, USA: IEEE, Jan. 1999, p. 8.

[20] J. Prosise, “Wicked code: Taking Silverlight Deep Zoom to the next
level,” MSDN Magazine, vol. 24, no. 7, p. 90, Jul. 2009.


