
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enhanced Usability of Managing Workflows in an Industrial Data
Gateway

Citation for published version:
McGilvary, GA, Atkinson, M, Gesing, S, Aguilera, A, Grunzke, R & Sciacca, E 2015, Enhanced Usability of
Managing Workflows in an Industrial Data Gateway. in Proceedings of the 1st International Workshop on
Interoperable Infrastructures for Interdisciplinary Big Data Sciences. pp. 495-502.
https://doi.org/10.1109/eScience.2015.62

Digital Object Identifier (DOI):
10.1109/eScience.2015.62

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 1st International Workshop on Interoperable Infrastructures for Interdisciplinary Big Data
Sciences

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. May. 2024

https://doi.org/10.1109/eScience.2015.62
https://doi.org/10.1109/eScience.2015.62
https://www.research.ed.ac.uk/en/publications/20998ccd-c373-49f5-b82a-fbc4b1418e57


Enhanced Usability of Managing Workflows in an Industrial Data Gateway

Gary A. McGilvary∗, Malcolm Atkinson∗, Sandra Gesing†, Alvaro Aguilera‡, Richard Grunzke‡ and Eva Sciacca§
∗Edinburgh Data-Intensive Research Group, School of Informatics, The University of Edinburgh

Email: gary.mcgilvary@ed.ac.uk
† Center for Research Computing, University of Notre Dame, Indiana, United States

‡ Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Germany
§ INAF-Osservatorio Astrofisico di Catania, Italy

Abstract—The Grid and Cloud User Support Environment
(gUSE) enables users convenient and easy access to grid
and cloud infrastructures by providing a general purpose,
workflow-oriented graphical user interface to create and run
workflows on various Distributed Computing Infrastructures
(DCIs). Its arrangements for creating and modifying existing
workflows are, however, non-intuitive and cumbersome due
to the technologies and architecture employed by gUSE. In
this paper, we outline the first integrated web-based workflow
editor for gUSE with the aim of improving the user experience
for those with industrial data workflows and the wider gUSE
community. We report initial assessments of the editor’s utility
based on users’ feedback. We argue that combining access to
diverse scalable resources with improved workflow creation
tools is important for all big data applications and research
infrastructures.

Keywords-workflows; gateways; gUse; usability

I. INTRODUCTION

A plethora of mature workflow systems has evolved that
support diverse workflow concepts and workflow languages
with different strengths and focus on different areas of work-
flow processing. As well as requiring appropriate workflow
concepts for their applications, a user community has to
evaluate four other requirements: a) its usability for all
members of their community in their work context; b) its
availability, with respect to licensing terms and cost; c) its
anticipated long-term support, e.g. via an active open-source
community; and d) its ability to deal efficiently with the
scales of data, computation and concurrent use required.

The majority of users in the context of the project VAVID
[1] have no previous exposure to the kind of HPC systems
used to power big data analysis. Consequently, the main
preference regarding usability has been for a web-based
graphical user interface enabling intuitive creation, editing,
submission and monitoring of workflows without the need
for programming or installations on the users’ side. The
aspects of scale most critical in the VAVID project are
large amounts of data to be processed and a requirement
to access high-performance computing infrastructures. The
third aspect has been that it should be free of charge also for
companies since the project partners are partly from industry.
Last but not least, a robust security concept is paramount
given the sensitive nature of the industrial data.

gUSE with its flexible web-based user interface WS-
PGRADE consists of web services for the workflow manage-
ment exploiting local clusters as well as diverse distributed,
grid and cloud infrastructures via the “DCI bridge” [2] and
accessing various distributed data systems via the “Data
Avenue” [4]. With these mappings to diverse computing
resources and as open source software, gUSE fulfills the
requirements for the second, third and fourth criteria for
the selection of a workflow system. The usability of WS-
PGRADE has been found sufficient except for the process
of creating workflows.

With the WS-PGRADE system prior to the work reported
here, users had to create workflows in three stages, one
of which required the use a particular graph editor. This
editor is a Java Web Start application and therefore requires
a local installation of Java and its security preferences to
be set correctly; the latter being quite inconvenient for the
users particularly within industrial and organizational con-
texts. For example, conflicts with an organization’s security
management policies or restrictions on downloads and self-
administered installations will often inhibit the use of the
gUse workflow editor in such contexts.

The three-stage creation process also impeded experiment
and innovation by requiring completion of one aspect, the
topology of data and control flow, for every step of a
workflow, before the details of individual steps could be
considered. Whereas, a scientist or engineer may want
to refine some parts before outlining others, or be able
to modify the workflow’s graphical representation after a
workflow has been created. Both are important in R&D
contexts epitomized by VAVID, as the practitioners need to
fluently innovate, refine methods formalized as workflows,
incrementally develop workflows and repeatedly use existing
workflows on new data or with new parameters—a modus
operandi well supported by science gateways [5].

Therefore, the usability issues surrounding gUSE/WS-
PGRADE the graph editor, the three-stage workflow cre-
ation process and the ability to incrementally develop and
refine workflows have been addressed and replaced by the
workflow editor presented in this paper. This allows domain
scientists to focus and take more responsibility of their own
work rather than the technical aspects surrounding it. While

ar
X

iv
:1

50
8.

01
41

2v
1 

 [
cs

.D
C

] 
 6

 A
ug

 2
01

5



this editor is specific to gUSE/WS-PGRADE, it is a step
in the direction of also empowering scientists and engi-
neers, improving their prototyping agility and reducing their
dependence on IT specialists during innovation [6]. When
methods have stabilized and are being used in large scale
production the IT specialists may still contribute efficiency
and reliability improvements.

The paper establishes the background, and presents the
design and implementation of the new editor in that context.
An initial evaluation is then reported, that leads to conclu-
sions and plans for further work.

II. RELATED WORK

Developers and providers of workflow management sys-
tems have recognized the demand by user communities for
usability during the composition of workflows, i.e. their
initial creation and their subsequent edits to improve the
method or develop a derived method. WS-PGRADE [7],
Pegasus [8], KNIME [9], Galaxy [10], Taverna [11], Kepler
[12], Swift [13] and UNICORE [14] are widely used open-
source workflow management systems, which offer work-
flow canvases. Workflows are illustrated as directed graphs
on the canvases. Nodes normally represent jobs or executable
modules, while the directed edges define the control and data
dependencies between the jobs.

Conceptually WS-PGRADE distinguishes between an ab-
stract workflow and a concrete workflow. The abstract
workflow is created via the graph editor with drag-and-drop
mechanisms to add nodes and connect them to each other via
input and output ports representing the data flow. The result
is a graphical representation of the workflow lacking the
information about distinctive jobs or data. In a further step,
the abstract workflow is extended to a concrete workflow,
which can be configured for concrete jobs, parameters and
data files. Similar to gUSE, Pegasus supports a wide range
of cluster, grid and cloud infrastructures with cutting-edge
data management capabilities. Its web-based user interface
is formed by Triana [15] but only exists as a prototype.

KNIME follows a different approach to the workflow
canvas than WS-PGRADE, that its users find convenient and
intuitive. Users select from available modules and nodes that
they want to connect with each other. They can develop
parts of a workflow completely, including running that
subgraph and inspecting intermediate data, before extending
the workflow towards completion. This allows their focus
to match the way they think about a method. Advanced
users can also create new modules, which requires some
programming experience.

The KNIME workflow canvas is very intuitive but is of-
fered as a workbench based on Eclipse requiring installation
on the users’ side and not as web-based user interface. This
detracts from its utility in contexts such as VAVID. Galaxy
follows a concept for creating workflows similar to the one
in KNIME and offers a toolbox via a web-based solution.

While Galaxy is widely used, especially by the biomedical
community, the data management capabilities are quite re-
stricted for large data and necessitate data transfers between
single jobs of a workflow to the server hosting the back-
end of Galaxy. However, Galaxy can map to the highly
parallelized enactments of Swift [16]. Another workflow
system well established in the biomedical community is
Taverna but the workflow canvas is only available as a
workbench. The workflows can be shared via the social
website myExperiment [17].

Kepler offers a desktop application and a web-based
graphical user interface for workflow management. The
latter has fewer features than the desktop solution and lacks
support for creating or modifying a workflow’s structure.
Thus, it cannot be used for composing a workflow, but
only for uploading existing workflows, which can then be
modified only with respect to the data and parameters used.
While UNICORE also provides both solutions for workflow
management and the web-based one is capable of all features
available in the desktop application, its use is restricted to
computing infrastructures interfaced via UNICORE.

Commercial products offering workflow canvases include
a commercial version of KNIME, products applying WS-
BPEL (Web Services Business Process Execution Language)
[18], PipelinePilot [19] or the Genomics Research Platform
created by OnRamp [20]. The commercial version of KN-
IME supports advanced features for increasing productivity
such as connectors to clouds and Software-as-a-Service
(SaaS) as well as features for collaboration.

WS-BPEL is widely used in industry but requires that
all applications integrated into a workflow are available
as web service. PipelinePilot, as well the the Genomics
Research Platform are solutions that are especially tuned
for bioinformatic applications but general applicable for
diverse domains. Workflows can be configured for local and
batch systems but are missing connectors to grid or cloud
infrastructures. Since partners in the VAVID project are
from industry, the business models behind such commercial
solutions would necessitate the coverage of license costs
without delivering more functionalities than gUSE.

In summary, few workflow systems deliver the power of
diverse digital resources as gUSE does and most of the
web-based creation and editing tools either require local
software installations with inherent security problems or
offer incomplete functionality. Hence we suggested a general
approach to these deficiencies [6], however, the current
work, though a step in that direction, is specific to gUSE.

III. DESIGNING THE WORKFLOW EDITOR

In this section, we first give an overview of the
pre-existing workflow editing capabilities of gUSE/WS-
PGRADE and detail its associated problems. We then
introduce a partial solution that was under development
before discussing the design of our new web-based workflow



editor. We explain how it overcomes the aforementioned
inconveniences and how it is integrated into gUSE/WS-
PGRADE.

A. gUSE/WS-PGRADE Graph and Workflow Creation

gUSE/WS-PGRADE is composed of a number of Liferay
portlets each providing a specific functionality in relation
to workflow management. These portlets are typically com-
posed of a presentation layer, portlet layer and persistence
layer. The portlet content is displayed using Java Server
Pages (JSP), with optional imported JavaScript libraries,
where the portlet layer interacts with the client-side presen-
tation layer to serve resources or perform defined actions
dependent on the actions of a user. If necessary, the portlet
will interact with the database to store or retrieve data.

Using the pre-existing facilities to create a gUSE/WS-
PGRADE workflow a user must navigate through three
portlets: Graph, Create Concrete and Concrete. A work-
flow’s graph, or an abstract workflow, is created by down-
loading and executing a Java Network Launch Protocol
(JNLP) file from the Graph portlet. This instantiates the
Java Web Start (JWS) graph editor application, only after
the user has correctly added a Java security exception. This
process is not user friendly and many problems can arise
if the correct security exception is not added or there are
problems with the local Java installation. Figure 1 shows an
example graph created using the JWS graph editor.

Figure 1. gUSE Java Web Start Graph Editor

Users have the ability to add and remove jobs, input and
output ports as well as the connections between ports, all of
which are represented as an XML document. After the graph
has been saved, it is stored in the gUSE database. Graphs can
then be transformed into workflows via the Create Concrete
portlet and configured using the Concrete portlet. The latter
displays a static image of the workflow graph where jobs can
be selected allowing configuration parameters to be entered
via a pop-up form, e.g. defining a job’s executable type, its
arguments and data files. Although configuration changes

can be made to an existing workflow, the graph’s topology
and geometry cannot be modified. Therefore, when a user
wishes to make such changes, a new graph and workflow
must be created and re-configured.

B. A Web-based Workflow Editor for gUSE/WS-PGRADE

We first introduce a graph editor that was being developed
contemporaneously, which fed into our design, and then
explain the design of our workflow editor.

1) Graph Editor: Our workflow editor builds on the pre-
vious work of the National Institute of Astrophysics (INAF)1

that created a web-based graph editor portlet implementation
of the JWS graph editor, named GraphEditorPortlet. The
graph editor was developed in the context of the VisIVO
mobile application [21] to allow gUSE/WS-PGRADE usage
from mobile devices, where the JWS editor application
cannot operate. The web-based graph editor was developed
using the JavaScript libraries KinecticJS 4.7.32, jQuery 1.9
and jQuery UI 1.10.33 and replicates the JWS graph editor
both in terms of functionality and presentation. Therefore
any user familiar with the current JWS graph editor of
gUSE/WS-PGRADE will be able to easily use the web-
based graph editor.

The web-based graph editor is split into two components:
the graphical editor front-end and the back-end Liferay
portlet implementation. Much of the editor’s complexity
resides with the former, where the position of graphical
objects and their respective states must conform to the user’s
requirements. An object’s state consists of the object name,
description and its xy coordinates. If an object is a port, the
port type, its sequence number and a list of any connections
to other ports are included.

The front-end also provides dialogs, similar to those of
the JWS graph editor, which must initiate the appropriate
operations such as saving and loading graphical representa-
tions. Save operations convert each object’s state into XML,
using the XMLWriter library4, to create an XML document
that is passed to the portlet via an AJAX call. The XML is
then sent to the gUSE wfs module via existing mechanisms
to store the graph as an abstract workflow in the gUSE
database. Similarly, a load operation retrieves the required
graph’s XML from wfs, which is then passed to KineticJS
to reconstruct each object’s state on the display canvas.

This web-based graph editor is a direct replacement for
the current gUSE JWS graph editor. It does not allow graphs
of existing workflows to be modified, nor does it remove the
inefficient three-stage process of creating, configuring and
submitting workflows.

1www.inaf.it/en
2www.kineticjs.com
3www.jquery.com
4www.javascriptsource.com/ajax/xmlwriter.htm

www.inaf.it/en
www.kineticjs.com
www.jquery.com
www.javascriptsource.com/ajax/xmlwriter.htm


Figure 2. The Web-based gUSE Workflow Editor

2) Workflow Editor: In order to transition from a graph
to workflow editor and to solve these usability issues, we
developed a new portlet named the WorkflowEditorPortlet,
which inherits from both the GraphEditorPortlet and the
Concrete portlet but contains additional functionality and
improvements to allow the user to directly interact with
workflows as opposed to just graphs. The only common
entity between the graph and workflow editor is that of the
interface and its associated code. Improvements to both the
front-end and back-end graph editor components, as well as
the necessary additions to gUse, are the foundations of the
workflow editor. Figure 2 gives a preview of this complete
workflow editor.

We see that users have the necessary functionality to
create, save and load workflows. Furthermore, users have
the ability to operate the editor in two modes: graph or
workflow. The former mode is an improved version of the
web-based graph editor inherited from INAF, while the latter
mode allows direct interactions with workflows, including
those created by the JWS graph editor, as well as the ability
to submit syntactically correct workflows to a configured
DCI. The differentiation of modes ensures past and present
users of gUSE/WS-PGRADE are still able to operate on
graphs and workflows as individual entities.

In addition to creating this new portlet, we have modified
the existing gUSE/WS-PGRADE Concrete portlet to exhibit
equal functionality to that of the WorkflowEditorPortlet by
modifying the former’s configure.jsp presentation layer to
include our editor in place of the static workflow image
previously provided. In order to ensure both the Work-
flowEditorPortlet and the Concrete portlet provide consistent
functionality, both share the same presentation layer, as
shown in Figure 3 depicting the editor’s architecture.

In effect, our WorkflowEditorPortlet replaces the
gUSE/WS-PGRADE Concrete portlet, but with added
functionality. The availability of latter remains at the
discretion of gUSE. Figure 3 also shows that configure.jsp
includes the JSP files related to the selected operating mode.
Regardless of the mode selected, users continue to interact
with the same KineticJS objects, however the integration of
workflow editing capabilities required substantial changes

RemovePort

AddNewJob
AddPort

RemoveJob

RemoveLine
ChangeJobConfig
ChangePortConfig

Cache and Persistence Layer
AJAX Handlers

Presentation Layer (JSP/JS)

Portlet Layer (Java)

gUse 
DB

UserData
(Cache)

WorkflowEditorPortlet

workflow_editor_mode.jsp
workflow_editor_submit.jsp

configure.jsp

graph_editor_mode.jsp

ConcretePortlet

Figure 3. Workflow Editor Architecture

to both the graph editor and the gUSE back-end; a task that
proved difficult when integrating a solution into a system
adopting legacy libraries and where the distinction between
front-end and back-end functionality was minimal.

A large number of these modifications were made to allow
graphs of existing workflows to be altered on-demand. The
previous implementation of gUSE/WS-PGRADE lacks the
functionality to save incremental changes to a workflow’s
graph and instead only permits the bulk saving of graphs
and workflows to the database. This is a result of storage
mechanisms, which cache loaded workflows and only allow
configuration parameters to be added or modified. Upon a
save operation, the cache contents are saved to the database,
in turn saving any configuration changes, however any
modifications to the graph are not replicated in the cache
and therefore are not saved.

We upgraded the cache to account for such changes by
creating and instantiating a jQuery AJAX call for each
type of change made to the graph. The change is caught
and processed by the portlet which is then passed to the
appropriate handler to update the cache. This process, as
well as the available handlers, are shown in Figure 3.



For example, upon the addition of a new port, the presen-
tation layer concatenates the values of the port’s properties
into a string and an AJAX call is made. The portlet processes
this call and spawns the AddPort handler, which enters
the values directly into the cache, either for a new or
an existing workflow; the latter resulting in current values
being overwritten. The properties of an existing port can be
amended via the ChangePortConfig handler. The amended
cache, present in the Java class UserData, can then be stored
into the database when a save operation is initiated by the
user.

The close conceptual relationship between a gUSE graph
and workflow means that in order to allow the user to
directly store workflows, it first must be saved as a graph.
The workflow can then be created from the graph by calling
the existing method newWorkflow, which takes the graph
name as one of many arguments, and saves the workflow in
the database. Similarly, workflows are loaded by determining
the graph name of a specified workflow and returning the
graph’s XML to reconstruct each object’s state on the display
canvas.

The modification of the gUSE cache appears as a triv-
ial addition, however this introduced many complications.
Firstly, a new series of database interactions had to be
created to retrieve unique identifiers for each new workflow
object added to the display canvas. Secondly, any object
added to the canvas had to be checked for uniqueness and
correctness; a feature that was not present in the inherited
web-based graph editor. For example, by adding a port,
its name and sequence number must be compared with all
others attached to the job.

Validity checks must also ensure objects and their state
are consistent with a correctly constructed workflow. For
example, validity rules must ensure an output port cannot
be connected to another output port. Thirdly, and most
importantly, the workflow’s state present in the cache must
be equivalent to the state present on the display canvas; a
feature also not present in the inherited web-based graph ed-
itor. If the state is not equivalent in both entities, workflows
will be incorrectly configured and subsequently, are likely
to exhibit unexpected behaviour when executing on a DCI.

The ability to dynamically add jobs, ports and connections
to the cache also allows on-demand workflow configuration.
Previously, users had to create and save a workflow before
it could be configured via the Concrete portlet, by selecting
jobs from the static representation of the workflow. By
selecting the desired job, users can now instantly add con-
figuration parameters without having to save the workflow
in the first instance; all changes are reflected in the cache
and are uploaded to the database when the user initiates a
save operation.

The incorporation of this feature came with many dif-
ficulties, primarily due to the incompatibilities between the
different jQuery versions used by the web-based graph editor

and the gUSE/WS-PGRADE workflow configuration entry
form. The latter uses jQuery 1.3.2 and outdated associ-
ated jQuery libraries such as jqDock and BeautyTips. In
order to upgrade these libraries, a complete re-design of
the gUSE/WS-PGRADE elements reliant on these libraries
would have to take place. As the inherited web-based editor
is only compatible with jQuery versions 1.9 and above, a
solution was devised to operate multiple jQuery versions
concurrently.

The web-based workflow editor provides a much needed
solution for the workflow community, and in particular for
those who interact with and submit workflows via gUSE.
We have shown the necessary changes to create a simple
yet effective web-based editor, removing the dependency for
a client-side Java installation and extending the Java server
portlet implementation. Furthermore, by using standard web
technologies, the editor operates on all popular web browsers
allowing all users to efficiently create workflows and modify
existing ones.

IV. EVALUATION

The new editor and its integrated method for workflow
creation and management have been deployed and evaluated
on one of the test systems used for the VAVID project;
detailed functionality and performance testing of the editor
will take place after the use cases of VAVID have been fully
created.

When opening the workflow editor portlet, as expected,
no Java Web Start application is instantiated and the editor
is now displayed inside the web browser. As there is no
separate editor window, the editor now follows the same
style conventions used in the rest of WS-PGRADE. Further-
more, it is also much faster and involves less user-interaction
than downloading and opening the former editor. The former
method was also cumbersome, often involving having to
determine how to enable Java support in the web browser
and properly adjust the security settings of Java to execute
the editor.

The new editor improves the usability in different scenar-
ios as well. One of them being the ability to use test systems
located behind a remote firewall by simply tunnelling the
HTTP port using SSH and accessing the localhost with the
browser. For users without previous exposure to gUSE, the
new integrated method of workflow creation, configuration
and submission within the same portlet is more intuitive
than the previous three-stage method. These improvements
translate into less helpdesk support required by end users and
thus, more time for the development and integration teams
to concentrate on other aspects of the VAVID project.

While the general idea of simplifying the three stages of
workflow management into a single one is perceived as being
more intuitive by the users, the current way of configuring
jobs with the new editor could be further improved. Once the
workflow graph is created, users can modify the name and



description of each job by double-clicking on it. However,
selecting any other point of the node that is not its name
will display the configuration dialog for the corresponding
job. This behaviour is hinted to the user by highlighting
the job’s name on mouse over. Our experience shows this
isn’t sufficiently clear for most users independent of their
experience level, therefore this will be revised in future
versions.

Other potential improvements could be made to the
accessibility and positioning of the workflow nodes. The
accessibility problems relate to the color-scheme and style
used to render workflows, making certain selections and
active elements difficult to recognize. This is simple to
resolve and will be fixed in future releases. The subop-
timal positioning of the elements can be traced back to
the JavaScript frameworks upon which the editor is based.
Despite being state of the art when the original INAF-
implementation of the editor was created, they have now
been superseded by more powerful ones. Reimplementing
the editor with a new framework would have required an
effort outside the means of the VAVID project.

An important requirement for the new editor is that
of backward compatibility with workflows created using
former versions of the editor. In addition to VAVID’s own
workflows, the gUSE development team provided a set of
test workflows to evaluate the backward compatibility. No
compatibility problems have been found during our tests.
Previous workflows could be loaded, modified and submitted
by the new editor. Moreover, given that the underlying for-
mat in which the workflows are stored in the database hasn’t
changed, compatibility issues are not expected. Another vital
compatibility aspect is a consistent rendering and function-
ing of the editor across different browsers and platforms.
During the development and evaluation of the editor, current
versions of Mozilla Firefox, Google Chrome, and Safari
were used on Linux, OS X, and Microsoft Windows without
observing any major changes of the HTML-rendering or a
reduction in usability.

Finally, the installation procedure and accompanying doc-
umentation of the new editor were also evaluated. Installing
or updating the editor from the source code involves the
compilation and re-deployment of the gUSE frontendbase,
wfs, and wspgrade modules. In our experience of using
gUSE 3.6.8, this can be performed with little effort by
following the installation instructions, if there is a working
Java SDK and Apache Maven installed on the system. It
is our hope that the new editor will be integrated into
future releases of gUSE making the manual installation
unnecessary.

V. CONCLUSION AND OUTLOOK

In this paper, we have outlined an improved workflow
editor for gUSE/WS-PGRADE that replaces the three-stage
process of creating, configuring and submitting workflows,

which was unnecessarily cumbersome for prototyping pro-
cessing and analysis methods and raised conflicts with
security policies. Our web-based workflow editor portlet
implementation directly replaces the gUSE Java Web Start
graph editor application and subsequently, the requirement
of a local Java installation and correctly specified security
preferences. The previous three-stage process of creating
workflows has been reduced to a single stage process allow-
ing workflow creation, instant configuration and submission
all within our workflow editor portlet.

Furthermore, users now have the ability to dynamically
modify the graphical structure of their existing workflows
and update job configuration parameters on-demand, allow-
ing the incremental development and refinement of work-
flows; a feature supported by many other science gateways
and a requirement from the users of the VAVID project and
many other communities.

We believe that the aforementioned improvements to the
gUSE/WS-PGRADE workflow creation process will greatly
enhance the user experience of interacting with workflows
allowing domain scientists to focus and take more respon-
sibility of their own work rather than the technical aspects
surrounding it. Preliminary usability studies strongly support
this. However there are many improvements that could
be made to gUSE and to our web-based workflow editor
to improve the users’ experience and operational behavior
further.

The revision of the system’s architecture to make the
client-side (browser embedded) and server-side of gUSE and
WS-PGRADE more independent would be a first step. The
API presented by the server side should support both bulk
and incremental changes to workflows. This might be parti-
tioned across several back-end micro-services with sharply
focused functionality to improve flexibility and maintainabil-
ity [22]. These stable and relevant interfaces would support
incremental enhancements to these adopted web-based tools
and permit others to create advanced alternatives.

Such workflow editors would exploit novel JavaScript
libraries and agile web frameworks. For example, the
JavaScript library jsPlumb5 would improve the visual rep-
resentation and deliver ready made graphical interaction
modes because of its excellent design. It offers many fea-
tures for diverse illustration, representation and manipulation
models for the nodes and edges of a workflow graph. Also,
it is developed by an extensive open-source community,
thereby relieving the workflow-editor developers from sub-
stantial responsibilities.

The workflow editor reported here does not use this
yet for pragmatic and historical reasons—its adoption is
anticipated. It underpinned the prototype generic workflow
editor reported by Gesing et al. [6]. That proposed web-
based workflow editor is intended to accommodate multiple

5www.jsplumb.org

www.jsplumb.org


workflow systems for the following reasons: a) develop-
ing powerful and easily learnt web-based GUIs that run
on all devices from handhelds to work stations demands
skills and effort best amortized over many communities
and the similarities between workflow systems make this
feasible; b) user communities have considerable investments
in particular workflow systems that make transfer to re-
placement workflow systems infeasible, consequently when
inter-disciplinary work develops across communities using
different systems, and when researchers transfer between
groups that consistency saves the researchers intellectual
hurdles and delays; and c) the workflow enactment systems
are already developing capabilities for integrated multi-
workflow language enactments, e.g. [23], and at present
developers of the scientific methods have to use each native
workflow editor rather than being able to work on the whole
method.

A long-term campaign is required to improve the usability
and abstraction so that users who are not adept at computing
can nevertheless take full responsibility for the logic of their
own methods and can innovate and experiment freely. This
becomes ever more necessary as the wealth of available data
grows and as more-and-more domain expect to exploit its
potential. A broad collaboration across disciplines should
address this agenda.

ACKNOWLEDGMENT

The authors would like to thank the Institute for Computer
Science and Control (SZTAKI) of the Hungarian Academy
of Sciences (MTA) and the gUSE development team for
their support throughout this project. The authors would also
like to thank the German Federal Ministry of Education and
Research (BMBF) for the opportunity to do research in the
VAVID project under grant 01IS14005. Furthermore, finan-
cial support by the German Research Foundation (DFG) for
the MASi project is gratefully acknowledged. The research
leading to these results has partially been supported by the
LSDMA project of the Helmholtz Association of German
Research Centres.

REFERENCES

[1] A. Aguilera, R. Grunzke, U. Markwardt, D. Habich,
D. Schollbach, and J. Garcke, “Towards an industry data
gateway: An integrated platform for the analysis of wind
turbine databases,” in Science Gateways (IWSG), 2015 7th
International Workshop on, accepted.

[2] M. Kozlovszky, K. Karóczkai, I. Márton, P. Kacsuk, and
T. Gottdank, “DCI Bridge: Executing WS-PGRADE Work-
flows in Distributed Computing Infrastructures,” in [3],
P. Kacsuk, Ed. Springer, 2014, ch. 4, pp. 51–67.

[3] P. Kacsuk, Ed., Science Gateways for Distributed Computing
Infrastructures: Development framework and exploitation by
scientific user communities. Springer International Publish-
ing, 2014.

[4] A. Hajnal, Z. Farkas, P. Kacsuk, and T. Pintér, “Remote
storage resource management in WS-PGRADE/gUSE,” in
[3], P. Kacsuk, Ed. Springer, 2014, ch. 5, pp. 69–81.

[5] A. Balasko, Z. Farkas, and P. Kacsuk, “Building science gate-
ways by utilizing the generic WS-PGRADE/gUSE workflow
system,” Computer Science, vol. 14, no. 2, 2013.

[6] S. Gesing, M. Atkinson, R. Filgueira, I. Taylor, A. Jones,
V. Stankovski, C. S. Liew, A. Spinuso, G. Terstyanszky, and
P. Kacsuk, “Workflows in a Dashboard: A New Generation
of Usability,” in Proc. WORKS ’14. Piscataway, NJ,
USA: IEEE Press, 2014, pp. 82–93. [Online]. Available:
http://dx.doi.org/10.1109/WORKS.2014.6

[7] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Bal-
asko, K. Karoczkai, and I. Marton, “WS-PGRADE/gUSE
Generic DCI Gateway Framework for a Large Variety of User
Communities,” Journal of Grid Computing, vol. 10, no. 4, pp.
601–630, 2012.

[8] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. F. da Silva, M. Livny,
and K. Wenger, “Pegasus, a workflow management system
for science automation,” Future Gener. Comput. Syst., no. 0,
pp. –, 2014.

[9] S. Beisken, T. Meinl, B. Wiswedel, L. de Figueiredo,
M. Berthold, and C. Steinbeck, “KNIME-CDK: Workflow-
driven cheminformatics,” BMC Bioinformatics, vol. 14, no. 1,
p. 257, 2013.

[10] D. Blankenberg, G. V. Kuster, N. Coraor, G. Ananda,
R. Lazarus, M. Mangan, A. Nekrutenko, and J. Taylor,
Galaxy: A Web-Based Genome Analysis Tool for Experimen-
talists. John Wiley & Sons, Inc., 2010.

[11] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. With-
ers, S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic,
P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty,
A. Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi,
and C. Goble, “The Taverna workflow suite: designing and
executing workflows of Web Services on the desktop, web or
in the cloud,” Nucleic Acids Research, vol. 41, no. W1, pp.
W557–W561, 2013.

[12] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific work-
flow management and the Kepler system,” Concurrency and
Computation: Practice and Experience, vol. 18, no. 10, pp.
1039–1065, August 2006.

[13] J. Wozniak, T. Armstrong, M. Wilde, D. Katz, E. Lusk, and
I. Foster, “Swift/t: Large-scale application composition via
distributed-memory dataflow processing,” in Proc. IEEE/ACM
CCGRID ’13, May 2013, pp. 95–102.

[14] K. Benedyczak, P. Bala, S. van den Berghe, R. Menday, and
B. Schuller, “Key aspects of the UNICORE 6 security model,”
Future Generation Comp. Syst., vol. 27, no. 2, pp. 195–201,
2011.

[15] I. Taylor, M. Shields, I. Wang, and A. Harrison, “The Triana
workflow environment: Architecture and applications,” in
[24]. Springer London, 2007, pp. 320–339.

http://dx.doi.org/10.1109/WORKS.2014.6


[16] K. Maheshwari, A. Rodriguez, D. Kelly, R. Madduri, J. Woz-
niak, M. Wilde, and I. Foster, “Enabling multi-task compu-
tation on Galaxy-based gateways using Swift,” in CLUSTER
2013, Sept 2013, pp. 1–3.

[17] D. De Roure, C. Goble, and R. Stevens, “The design and re-
alisation of the myExperiment Virtual Research Environment
for social sharing of workflows,” Future Gener. Comput. Syst.,
vol. 25, no. 5, pp. 561–567, 2009.

[18] M. B. Juric, Business Process Execution Language for Web
Services BPEL and BPEL4WS 2Nd Edition. Packt Publish-
ing, 2006.

[19] Accelrys, “Pipeline pilot,” 2015. [Online].
Available: http://accelrys.com/products/collaborative-science/
biovia-pipeline-pilot/

[20] OnRamp, “Genomics research platform,” 2015. [Online].
Available: http://www.onrampbioinformatics.com

[21] F. Vitello, E. Sciacca, U. Becciani, A. Costa, P. Massimino,
E. Takacs, and B. Szakal, “Mobile application development
exploiting science gateway technologies,” Concurrency and
Computation: Practice and Experience, 2015.

[22] M. Fowler, “Microservices,”
http://martinfowler.com/articles/microservices.html.

[23] G. Terstyanszky, T. Kukla, T. Kiss, P. Kacsuk, A. Balasko,
and Z. Farkas, “Enabling scientific workflow sharing through
coarse-grained interoperability,” Future Gener. Comput. Syst.,
vol. 37, no. 0, pp. 46 – 59, 2014.

[24] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Work-
flows for e-Science: Scientific Workflows for Grids. Springer
London, 2007.

http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/
http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/
http://www.onrampbioinformatics.com

	I Introduction
	II Related Work
	III Designing the Workflow Editor
	III-A gUSE/WS-PGRADE Graph and Workflow Creation
	III-B A Web-based Workflow Editor for gUSE/WS-PGRADE
	III-B1 Graph Editor
	III-B2 Workflow Editor


	IV Evaluation
	V Conclusion and Outlook
	References

