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Abstract—Earth observation sciences produce large sets of data
which are inherently rich in spatial and geo-spatial information.
Together with live data collected from monitoring systems and
large collections of semantically rich objects they provide new
opportunities for advanced eScience research on climatology,
urban planning and smart cities to name a few.

Such combination of heterogeneous data sets forms a new
source of knowledge. Efficient knowledge extraction from them
is an eScience challenge. It requires efficient bulk data injection
from both static and streaming data sources, dynamic adaptation
of the physical and logical schema, efficient methods to correlate
spatial and temporal data, and flexibility to (re-)formulate the
research question at any time.

In this work, we present a data management layer over a
column-oriented relational data management system that pro-
vides efficient analysis of spatiotemporal data. It provides fast
data ingestion through different data loaders, tabular and array-
based storage, and a dynamic step-wise exploration.

I. INTRODUCTION

Spatial location is among the core aspects of data in

climatology and urban planning. Current research in these

areas often use a combination of data sources. For example,

in [30] a combination of point cloud data (produced by LIDAR

scanners), meteorological data (produced by weather stations)

and cadastral data is used to study the spatial variability

of urban heat islands and thermal comfort within the city

boundaries.

In such studies scientists try to turn a collection of measure-

ments into useful information through analysis and interpre-

tation in the context of what they already know. The thought-

ful and systematic gathering, analysis, and interpretation of

data allows a collection of measurements to be converted

into evidence that supports scientific ideas, arguments, and

hypotheses.

At the initial stages, huge amounts of raw data are collected

to be scanned and filtered to remove noise or irrelevant

properties. The data is often stored using domain specific file-

based solutions. Although this allows efficient access to the

data in its original format, data isolation, data redundancy, and

application dependency on data formats are major drawbacks

a All contributions were done while working at the Netherlands eScience
Center.

of this approach. Furthermore, complex ad-hoc queries are

hard to express, particularly when faced with the challenge

to combine numerous data sources. File-based solutions have

also poor vertical and horizontal scalability [17].

The filtering stage is followed by a simple aggregation

phase to detect if the data is meaningful or not. With a

single scan simple conclusions are induced from this type

of analysis. However, for more complex analysis external

specialized libraries are required for each of the data sets.

For statistical analysis R [28] is the preferred tool while for

geospatial operations for urban planning research scientists use

libraries such as SAGA [1].

The data interchange between external libraries is tedious

and the scientist is often forced to move data back and forth

between systems and storage formats until the final answer is

reached. This process is inefficient and might require several

iterations of data conversion. Furthermore, it does not provide

enough flexibility to change research direction during the

process since the knowledge extracted in each iteration is not

kept aside in the same format for easy re-utilization. It forces

a scientist to re-design the entire pipeline and repeat all the

process we just described.

In this paper we introduce a solution to this problem: a

round table architecture that facilitates the integration of differ-

ent heterogeneous data sets for exploration in four dimensions,

3D space and time.

The solution we propose is based on a single database

management system (DBMS) that is extended to provide fast

data ingestion of large geo-spatial and meteorological data

sets. By offering multiple front-ends to access the data, such as

SQL, R [28] and SciQL [22], the scientist is able to use simple

queries to combine different data sources and extract new

knowledge. This allows dynamic and step-wise exploration

of data in a flexible and efficient manner. Although we use

for illustration climate research, our solution is applicable to

other scientific domains with large spatial data sets such as

astronomy, seismology, etc.

The remainder of the paper is as follows. Section II dis-

cusses the general architecture. In Section III, through different

use case scenarios, flexibility and efficiency on exploring

climate and geo-spatial data is shown. Finally the article ends
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Fig. 1: Round table schema

with a summary in Section IV and future plans in Section V.

II. ROUND TABLE

In this section we introduce the architecture of our round

table presented in Figure 1. It has a set of data loaders, one

for each scientific data format, it provides several storage

and logical schemas, and it supports a set of front-ends for

better expressiveness of research questions. All components

are connected through a common storage layer and data

management kernel, so derived knowledge can be stored and

reused for new, or reformulated, queries.

Following the methodology used by urban planning scenar-

ios, the coming sections identify the issues at each stage of

the process together with components of our round table that

solve them.

A. Heterogeneous data integration

The first challenge in combining heterogeneous data sources

is to store the data under the same storage without changing the

users data structure perception, i.e., the conceptual schema [2]

should remain the same. For efficiency reasons the data

organization at the physical storage system follows a different

schema to optimally exploit the hardware characteristics.

At the core of our round table we have a data management

system (DBMS). One of the major advantages of a DBMS

the clear separation it provides between the physical and the

conceptual schema. Such separation creates the opportunity

to have different types of applications exploring the same

data sets. Furthermore, they are designed to efficiently address

scalability issues of managing large volumes of data such as

the ones produced in climate observations [13].

B. Scientific data loaders

Scientific data repositories have been a challenge for current

relational DBMSs (RDBMS) due to the high cost of converting

and loading data into a pre-defined schema. Researchers

in [21] have explored a possible solution, data vaults for in-

situ data access by a relational database.

A data vault provides a symbiosis between a DBMS and ex-

isting file-based repositories. It keeps data in its original format

while scalable processing functionality is offered through the

DBMS. Depending on the data format, it provides transparent

access to all data kept in the repository through a tabular or

array-based interface.

One of the strongest characteristics of data vaults is their

ability to exploit the metadata that are present in all data

formats. Data loading in data vaults comprises of two phases:

the attachment of a file and the import of the file. During the

attachment, the file’s metadata is loaded into the database. At

query time, the metadata is used to decide whether the file

has information relevant to the query. In such a case the file is

imported into the database. During the import the actual data

of the file is loaded.

Inspired by the work in [21], our work creates the same

type of access for NetCDF files. NetCDF stands for Network

Common Data Form [3]. It is used as input/output format in

oceanography, meteorology, and climate research. They sup-

port the creation, access and sharing of array-oriented scientific

data. NetCDF files are rich in metadata, like creation time,

array dimensions, units of measurement, coordinate system,

to name a few.

To represent external NetCDF data in our DBMS we defined

a mapping between the external data structures and the in-

database counterparts. The metadata are represented into cata-

log tables using a straightforward mapping. Since the NetCDF

format is predominantly used for array data, for the current

implementation we have chosen an array-based storage. The

same storage has been used successfully in use cases similar

to ours, e.g., European Earth observation project [4].

The data vaults approach gives the user the opportunity to

continue performing data curation activities since the main

data archive is the file-based repository, i.e., the data is kept

outside of the DBMS. The data imported to the DBMS is

easily invalidated in case of updates. For a new data format

version the catalog tables are easily updatable and a new data

loader is provided.

C. Filtering stage

During filtering, the efficiency in extracting only relevant

data for analysis is the major requirement. For that, we have

decided to use a column-oriented instead of a row-oriented

architecture. For read-intensive analytic workloads, such as

the ones encountered in data warehouses, column-oriented

architectures offer an order-of-magnitude performance gain

compared to traditional row-oriented architectures.

The performance boost obtained by column-stores is

achieved by its vertical partitioning and two major optimiza-

tions: late materialization and block iteration. With vertical

partitioning each column is stored in an independent file which

reduces I/O when only a sub-set of the table’s columns needs

to be read. For late materialization, columns read from disk

are joined together into rows as late as possible during the

query processing. Together with block iteration, i.e., multiple

values from a column are passed as a block from one operator

to the next, vectorized query processing is achieved. The block

iteration optimization offers about a factor of 1.5 improvement

on average, while late materialization offers about a factor of 3
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performance improvement in most of read-intensive analytical

processing workloads [12].

On top of that, column-stores also provide efficient sec-

ondary indices for in-memory filtering. In the filtering step, the

majority of the queries are range selections. Such type of filter-

ing is sped up using secondary indexes such as skip lists [27]

or column imprints [29]. Column-imprints are exploited by

the column-store used in our round-table, it resembles bitmaps

that index ranges of values in each cache line of each column.

This makes them very efficient in range queries since they

allow skipping cache lines that do not contain data for a

desired range.

To show our concept, we have implemented our approach

in MonetDB, a modern in-memory column-store database

system, designed in the late 90’s with a proven track record

in various fields [20].

D. Complex Analysis

Simple aggregations allow scientists to detect whether the

data at their disposal is meaningful or not. If meaningful, the

scientist extracts the data for complex analysis. During this

phase, the data is often extracted from the database to be

used as input by external specialized libraries or systems. This

process is highly inefficient since it involves transferring huge

amounts of data. We propose the opposite, data is kept in the

database and functionality of external specialized libraries is

brought in.

External functionality that we decided to bring in are

SAGA [1] and climate data operators (CDO) [5]. SAGA

is the abbreviation for System for Automated Geoscientific

Analyses and it is a Geographic Information System (GIS)

software. SAGA has been designed for an easy and effective

implementation of spatial algorithms. CDO is a collection of

command line operators to manipulate and analyze climate

data. It is actively used by climate researchers and it is seen

as a list of operations required for climate data manipulation.

Through SQL, SciQL and R it is possible to have equivalent

functionality to most of the climate data operators (CDO).

However, further work is necessary to support, for instance,

correlation and covariance, regression, empirical orthogonal

functions, interpolation, transformation and construction of

climate indices.

In addition to SAGA and CDO we also exploit two special

extensions of MonetDB, R integration and the Geospatial

module which allows the user to run ad-hoc queries for

selecting information using both spatial and geographic

information. We will describe them in more detail in the

following Sections.

1) R integration: The R environment for statistical com-

puting [28] is one of the most popular statistical software

packages. One of the core strengths of R is its collection

of thousands of contributed packages covering all aspects

of statistical analysis. For example, the gstat [26] and

geoR [16] packages provide powerful multivariate or model-

based statistical analysis for geospatial data sets [26], [16].

MonetDB supports two different methods of integrating

statistical analyses in R: The MonetDB.R client program [25]

and the embedded R operators [24]. The MonetDB.R client is

the one exploited for our study. It allows R users to connect to

a MonetDB server from an R shell or program, run arbitrary

queries, and retrieve the results.

2) Geospatial functionality: MonetDB has an SQL inter-

face to the Simple Feature Specification of the Open Geospa-

tial Consortium(OGC) [10] with support for the objects and

functions defined in the specification. The spatial query model

that is used by MonetDB follows the well established two-step

approach of filtering and refinement.

In the filtering step, the majority of points that do not

satisfy the spatial predicate for a given geometry G are

identified and disregarded using a fast approximation of the

predicate. MonetDB performs the filtering using the column

imprints [29].

The refinement step operates on the results of the filtering

step that produced a superset of the solution. During this

step, the spatial predicate is evaluated against the precise

geometry G. This can be very expensive, especially when the

geometries are complex. Currently, we are experimenting with

GPU technology to speed up the refinement.

The efficiency of the geospatial functionality has been

tested in the context of point cloud data using the Actueel

Hoogtebestand Nederland 2 (AHN2) [6] data set which is the

Dutch elevation map. The results are compared with a file-

based solution, Rapidlasso LAStools and PostGIS [31].

III. MODERN DATA EXPLORATION

We illustrate the application and efficiency of our system

with two use cases, one for meteorology and one for urban

planning. With these use cases, this section shows how our

solution does fast data ingestion and dynamic step-wise ex-

ploration where flexibility and performance have a symbiotic

relationship. Flexibility is studied in the context of climate

monitoring data. This data is directly accessed in its original

format. Statistical questions are answered through the R front-

end integrated with MonetDB.

A. Climatology use case

Given various measurements of temperature, precipitation,

wind, etc. meteorologists often look for correlations that can be

used to create better climate and weather models. An example

would be studying the effect of sea surface temperature on

precipitation in coastal areas. In combination with geographic

data it is possible to analyze the surroundings and weather

conditions for different geographic areas. Another example

could be analyzing precipitation during a month, or searching

for the geographic areas with highest precipitation.

In this scenario, we used data provided by the Royal

Netherlands Meteorological Institute (KNMI) [7]. The data

is stored in NetCDF format and it represents one month of

measurements of precipitation and sea surface temperature
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Fig. 2: Coastal and Land climate

over a gridded area covering the Netherlands. It contains one

measurement per day for each grid cell.

In addition, there are a land-sea mask and measurements of

distance to the coast. The land-sea mask is a value between

0 and 1 that measures the percentage of land in the grid cell,

thus a value larger than 0.5 is considered as land. The distance

to coast is measured in kilometers and a value of less than 10

kilometers denotes a coastal area.

Our step-wise approach goes as follows. First, using data

vaults, we attach the NetCDF data to the database by storing

its location and metadata often stored in the file header.

The attachment does not imply data loading, therefore, it is

possible to explore large NetCDF repositories. Then using

the NetCDF catalog different meteorological measurements

inside the database are filtered, aggregated and combined.

The result of these operations are saved into a table, array

or materialized view to allow future usage without the need

to re-calculate them. For flexibility, the user might opt for a

non-materialized view so the operations are re-computed and

their results contain the underlying changes to the NetCDF

repositories’ data.

Using MonetDB’s R front-end we query the NetCDF data,

i.e., actual data is loaded at this point. Through the R dplyr

package MonetDB.R [25] filtering, grouping, and aggregation

operations are pushed into the database for execution and

only the result is moved to the R environment. In this way,

large amounts of data can be inspected and filtered out before

transferring it to the R front-end to identify, for instance, cor-

relations. Such a feature was exploited to plot the correlation

of coastal and inland precipitation in Figure 2a.
For further advanced analysis or visualization we use the

functionality available in the R packages. The example R code
below plots the cumulative precipitation points, aggregated in-
side the database, in the area of the Netherlands, c.f. Figure 2b.

# a c c e s s t o Google maps
map<−get_map ( l o c a t i o n = ’ N e t h e r l a n d s ’ ,

zoom =7)

mapPoints <−ggmap ( map)+
geom_poin t (

d a t a =cumprecdf ,
a e s ( x= lon , y= l a t , s i z e = p r e c ) ,
c o l o u r =" b l u e "
) +

g g t i t l e ( " Cumula t ive p r e c i p i t a t i o n " )

After loading, the NetCDF data is available to any front-

end of MonetDB. For instance, the maximum precipitation

measurements (mm/h) over a 10 days period are given by the

aggregate query in Figure 3 which is executed through the

SQL front-end an uses the same NetCDF data.

B. Urban planning use case

Urban areas are exposed to the same climate as regional

areas, however, the urban characteristics can influence ther-

mal comfort of citizens at local scale [30]. Ketterer and

Matzarakis [23] showed that air temperature is not enough

to quantify the intra-urban spatial variability of climate with

respect to human thermal comfort. Human thermal comfort

depends on the combined effect of air temperature, air hu-

midity, wind speed, and radiation [19], but wind speed and

radiation are affected by the urban geometry such as the height

and spacing of buildings. Hence, to improve urban thermal

environment it is necessary to understand spatial and temporal

variability of local climate [30].

Next to detail climate, climate researchers also need to

use spatial parameters like mean building height and the sky

view factor (SVF) [15]. These parameters are calculated using

a Digital elevation model (DEM). Such an approach was

followed by the authors in [30] to study thermal and spatial

variability of an urban heat island. They used a network of

weather stations located at the city center of Rotterdam and a

Fig. 3: Extreme precipitation
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(b) WU stations 0.1 degree distance from a KNMI station

Fig. 4: Geospatial data combined with Climate data

point cloud data set as DEM. Point Cloud data is collected

using airbone laser scanning. Airborne laser scanning is a

remote sensing technology which collects large amounts of

point data to be the base of digital surface or elevation models.

For the urban planning scenario we combine data from

KNMI stations with data from Weather Underground (WU)

stations [8] which are the ones used in [30]. We enrich this

data with spatial information using the Actueel Hoogtebestand

Nederland 2 (AHN2) [6] point cloud data set which is the

Dutch elevation map. AHN2 is composed by 640 billion points

stored in 64 000 LAZ files.

The Netherlands has few hundred of WU stations which log

information about wind direction, temperature, humidity, pre-

cipitation, etc.. Figure 4a shows the location of these stations

with KNMI stations colored in red and WU stations colored in

blue. The WU measurements are logged every 10 minutes and

provided as open data. Using measurements between January

1st 2014 until March 1st 2015 stored as CSV file, data is

loaded iteratively, i.e., only the required columns are loaded.

For example, only the columns stationID, precipitation, time,

location (latitude and longitude coordinates) are loaded. The

remaining columns are loaded upon request. Such an approach

allows partial vertical loading of wide CSV files, i.e., large

number of attributes, into tables with few columns.

Exploiting the fact that KNMI weather stations are highly

reliable, their measurements are used to determine the devi-

ation on the WU stations measurements, and thus identify

possible heat islands. Using geographic information and func-

tionality from the geospatial module (for polar and Cartesian

coordinates conversion and distance calculation) and the R

module, Figure 4b plots the WU stations (the ones in green)

within 0.1 (polar coordinate) degree distance from each KNMI

station (the ones in red).

Our search zooms in into the city center of Rotterdam and

checks the temperature difference between WU stations and

the nearest KNMI station. Using data from February 2015 the

monthly average temperature difference at 4PM is shown in

Figure 5a. All stations report on average higher temperatures

than the KNMI station. Station IROTTERD21 has the highest

difference.

A study of each station surroundings is necessary for the

identification of heat islands. A long with the experiments

in [30] we use AHN2 data as DEM. In our approach a flat table

is used for storing point cloud data, where a different column

is used for storing the X, Y, Z coordinates. As a result, each

point is stored as a different tuple in the flat table. Such a

storage model facilitates integration of point cloud data with

other data sets and exploits the IO efficiency of column-stores.

AHN2 has a sample density of 6 to 10 points per square

meter. Its density is perfect to create a sky view factor (SVF) of

Rotterdam city center. Using the MonetDB geospatial module,

we extracted from AHN2 all points comprising Rotterdam city

center. The height map of these points is shown in Figure 5b,

the points are colored by height, with blue for the lowest points

and red for the highest points. The points are loaded into

SAGA using the functionality Import Tables from SQL query.

They are used as input to determine the sky view factor.

Using the SVF function from SAGA with the same pa-

rameters as the ones used in [30] we created a plot for

Rotterdam city center, shown in Figure 5c. The white areas

have high SVF value, yellow medium and red means low SVF.

Based on the height map, SVF information, IROTTERD21’s

location (courtyard) and elevation (0 meters), which reports

zero average wind speed, it seems we are in the presence of

a heat island.

C. A glimpse of the system efficiency

For all these use cases the main focus was flexibility.

Nevertheless, efficiency of the solution is already visible in

some components, mostly in the geospatial module. The load

and indexing of the entire AHN2 data set takes around 18

hours. Rapidlasso LAStools [11] in a similar machine takes

around 23 hours to prepare the same data set for efficient

querying [31].

With higher cost of data preparation, LAStools is not able

to out-perform MonetDB for the Rotterdam city selection

out of AHN2. MonetDB takes 5.47 seconds with 1 thread

or 3.86 seconds with 16 threads to extract 37345849 points

while Rapidlasso LAStools takes 6.08 seconds if it outputs

las format, but for text format which is necessary to import

the data into SAGA library it takes 73,06 secs. A detailed



(a) Temperature Difference (b) Point Cloud view (c) Sky view factor

Fig. 5: Rotterdam city center

system performance study is out of the scope of this paper

and it will be released in a future publication.

IV. CONCLUSION

In this paper we present our efforts to develop a flexible and

efficient data management layer for geo-spatial data analysis.

An architecture is presented which provides fast data ingestion

through different data loaders, tabular and array-based storage,

and a set of frond-ends to explore the data sets in various ways.

The data is loaded from its original format upon request,

e.g., for climate use cases stored in NetCDF files only the

variables of interest are loaded into the DBMS. Hence, it

allows exploration of large NetCDF repositories without a

priori data loading. Through a tabular and array-based storage

scheme it enables spatial and temporal operations and analyses

while providing semantic properties management stored as

simple relational tables.

All data is accessible through different front-ends such

as R, SciQL and SQL. R is used to express statistical

analysis, simple geographic summaries, and for visualization.

N-dimensional array based functions are expressed through

SciQL. SQL as declarative language is ideal to express

complex adhoc queries and data flows. The connection with

QGIS [9] for efficient visualization of spatial data is under

development [14].

Our open-source solution facilitates data exploration for

climatology and urban planning. It fills the gap between the

needs of various eScience applications and the available data

management technologies and file-based solutions.

V. FUTURE PLANS

Currently we are working on the bridge between SAGA and

MonetDB. Functionality to convert point cloud data to vector

data and to 2D/3D raster data is also under development [18].

In a future publication we will study the advantages and

disadvantages of our solution compared to Hadoop-framework

solutions and the Hierarchical Data Format (HDF5) software

library.
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