arXiv:1507.01138v1 [astro-ph.IM] 4 Jul 2015

From Thread to Transcontinental Computer:
Disturbing Lessons in Distributed Supercomputing

Derek Groen*

Centre for Computational Science and CoMPLEX

University College London
London, United Kingdom
Email: d.groen@ucl.ac.uk

Abstract—We describe the political and technical complica-
tions encountered during the astronomical CosmoGrid project.
CosmoGrid is a numerical study on the formation of large scale
structure in the universe. The simulations are challenging due to
the enormous dynamic range in spatial and temporal coordinates,
as well as the enormous computer resources required. In Cosmo-
Grid we dealt with the computational requirements by connecting
up to four supercomputers via an optical network and make
them operate as a single machine. This was challenging, if only
for the fact that the supercomputers of our choice are separated
by half the planet, as three of them are located scattered across
Europe and fourth one is in Tokyo. The co-scheduling of multiple
computers and the ’gridification’ of the code enabled us to achieve
an efficiency of up to 93% for this distributed intercontinental
supercomputer. In this work, we find that high-performance
computing on a grid can be done much more effectively if the
sites involved are willing to be flexible about their user policies,
and that having facilities to provide such flexibility could be
key to strengthening the position of the HPC community in an
increasingly Cloud-dominated computing landscape. Given that
smaller computer clusters owned by research groups or university
departments usually have flexible user policies, we argue that it
could be easier to instead realize distributed supercomputing by
combining tens, hundreds or even thousands of these resources.

I. INTRODUCTION

Computers have become an integral part of modern life, and
are essential for most academic research [1]. Since the middle
of last century, researchers have invented new techniques to
boost their calculation rate, e.g. by engineering superior hard-
ware, designing more effective algorithms, and introducing
increased parallelism. Due to a range of physical limitations
which constrain the performance of single processing units [2],
recent computer science research is frequently geared towards
enabling increased parallelism for existing applications.

By definition, parallelism is obtained by concurrently using
the calculation power of multiple processing units. From
small to large spatial scales, this is respectively done by:
facilitating concurrent operation of instruction threads within
a single core, of cores within a single processor, of processors
within a node, of nodes within a cluster or supercomputer,
and of supercomputers within a distributed supercomputing
environment. The vision of aggregating existing computers to
form a global unified computing platform, and to focus that
power for a single purpose, has been very popular both in
popular fiction (e.g., the Borg collective mind in Star Trek or

Simon Portegies Zwart*
Leiden Observatory
Leiden University
Leiden, the Netherlands
Email: spz@strw.leidenuniv.nl

Big Brother in Orwell’s 1984) and in scientific research (e.g.,
Amazon EC2, projects such as TeraGrid/XSEDE and EGI,
and numerous distributed computing projects [3], [?], [?], [41,
(S, [el, 71, [81). Although many have tried, none have yet
succeeded to link up more than a handful of major computers
in the world to solve a major high-performance computing
problem.

Very few research endeavors aim to do distributed com-
puting at such a scale to obtain more performance. Although
it requires a rather large labour investment across several
time zones, accompanied with political complexities, it is
technically possible to combine supercomputers to form an
intercontinental grid. We consider that combining supercom-
puters in such a way is probably worth the effort if many
machines are involved, rather than a few. Combining a small
number of machines is hardly worth the effort of doubling the
performance of a single machine, but combining hundreds or
maybe even thousands of computers together could increase
performance by orders of magnitude [9].

Here we share our experiences, and lessons learned, in
performing a large cosmological simulation using an intercon-
tinental infrastructure of multiple supercomputers. Our work
was part of the CosmoGrid project [10], [4]], an effort that
was eventually successful but which suffered from a range of
difficulties and set-backs. The issues we faced have impacted
on our personal research ambitions, and have led to insights
which could benefit researchers in any large-scale computing
community.

We provide a short overview of the CosmoGrid project, and
describe our initial assumptions in Section |lI| We summarize
the challenges we faced, ascending the hierarchy from thread
to transcontinental computer, in Section [[II|and we summarize
how our insights affected our ensuing research agenda in Sec-
tion We discuss the long-term implications of CosmoGrid
in Section [V|and conclude the paper with some reflections in
Section [VII

II. THE COSMOGRID PROJECT: VISION AND (IMPLICIT)
ASSUMPTIONS

The aim of CosmoGrid was to interconnect four supercom-
puters (one in Japan, and three across Europe) using light
paths and 10 Gigabit wide area networks, and to use them

concurrently to run a very large cosmological simulation.
We performed the project in two stages: first by running
simulations across two supercomputers, and then by extending
our implementation to use four supercomputers concurrently.
The project started as a collaboration between researchers
in the Netherlands, Japan and the United States in October
2007, and received support from several major supercomputing
centres (SARA in Amsterdam, EPCC in Edinburgh, CSC in
Espoo and NAOJ in Tokyo). CosmoGrid mainly served a two-
fold purpose: to predict the statistical properties of small dark
matter halos from an astrophysics perspective, and to enable
production simulations using an intercontinental network of
supercomputers from a computer science perspective.

A. The software: GreeM and SUSHI

For CosmoGrid, we required a code to model the for-
mation of dark matter structures (using 20483 particles in
total) over a period of over 13 billion years. We adopted
a hybrid Tree/Particle-Mesh (TreePM) N-body code named
GreeM [11]], [12], which is highly scalable and straightforward
to install on supercomputers. GreeM uses a Barnes-Hut tree
algorithm [13] to calculate force interactions between dark
matter particles over short distances, and a particle-mesh algo-
rithm to calculate force interactions over long distances [14].
Later in the project, we realized that further code changes
were required to enable execution across supercomputers. As
a result, we created a separate version of GreeM solely for this
purpose. This modified code is named SUSHI, which stands
for Simulating Universe Structure formation on Heterogeneous
Infrastructures [4], [15].

B. Assumptions

Our case for a distributed computing approach was focused
on a classic argument used to justify parallelism: multiple
resources can do more work than a single one. Even the
world’s largest supercomputer is about an order of magnitude
less powerful than the top 500 supercomputers in the world
combined [16]]. In terms of interconnectivity the case was also
clear. Our performance models predicted that a 1 Gbps wide
area network would already result in good simulation perfor-
mance (we had 10 Gbps links at our disposal), and that the
round-trip time of about 0.27 s between the Netherlands and
Japan would only impose a limited overhead on a simulation
that would require approximately 100 s per integration time
step. World-leading performance of our cosmological N-body
integrator was essential to make our simulations possible, and
our Japanese colleagues optimized the code for single-machine
performance as part of the project. Snapshots/checkpoints
would then be written distributed across sites, and gathered
at run-time. At the start of CosmoGrid, we anticipated to run
across two supercomputers by the summer of 2008, and across
four supercomputers by the summer of 2009.

We assumed a number of political benefits: the simula-
tion we proposed required a large number of core hours
and produce an exceptionally large amount of data. These
requirements would have been a very heavy burden for a

single machine, and by executing a distributed setup we could
mitigate the computational, storage and data I/O load imposed
on individual machines. We also were aware of the varying
loads of machines at different times, and could accommodate
for that by rebalancing the core distribution whenever we
would restart the distributed simulation from a checkpoint.
Overall, we mainly expected technical problems, par-
ticularly in establishing a parallelization platform which
works across supercomputers. Installing homogeneous soft-
ware across heterogeneous (and frequently evolving) super-
computer platforms appeared difficult to accomplish, partic-
ularly since we did not possess administrative rights on any
of the machines. In addition, the GreeM code had not been
tested in a distributed environment prior to the project.

III. DISTRIBUTED SUPERCOMPUTING IN PRACTICE

Although we finalized the production simulations about a
year later than anticipated, CosmoGrid was successful in a
number of fundamental areas. We managed to successfully
execute cosmological test simulations across up to four super-
computers, and full-size production simulations across up to
three supercomputers [4], [15]. In addition, our astrophysical
results have led to new insights on the mass distribution of
satellite halos around Milky-Way sized galaxies [[L7], on the
existence of small groups of galaxies in dark-matter deprived
voids [18]], the structure of voids [19] and the evolution of
barionic-dominated star clusters in a dark matter halo [20].
However, these results, though valuable in their own right,
do not capture some of the most important and disturbing
lessons we have learned from CosmoGrid about distributed
supercomputing. Here we summarize our experiences on
engineering a code from the level of threads to that of a
transcontinental machine, establishing a linked infrastructure
to deploy the code, reserving the required resources to execute
the code, and the software engineering and sustainability
aspects surrounding distributed supercomputing codes.

We are not aware of previous publications of practical
experiences on the subject, and for that reason this paper may
help achieve a more successful outcome for existing research
efforts in distributed HPC.

A. Engineering a code from thread to transcontinental ma-
chine

The GreeM code was greatly re-engineered during Cosmo-
Grid. This was necessary to achieve a complete production
simulation within the core hour allocations that we obtained
from NCF and DEISA. Our infrastructure consisted of three
Cray XT4 machines with little Endian Intel chips and one IBM
machine with Big Endian Power7 chips. At the start of Cos-
moGrid, the Power7 architecture was not yet in place. GreeM
had been optimized for the use of SSE and AVX instruction
sets, executing 10 times faster when these instructions are
supported. SSE was available in Intel chips and AVX was
expected to be available in Power7 chips. However, the support
for AVX in Power7 never materialized, forcing us to find alter-
native optimization approaches. An initial 2-month effort by

IBM engineers, leading to a 10% performance improvement,
did not speed up the code sufficiently. We then resorted to
manual optimization without the use specialized instruction
sets, e.g., by reordering data structures and unrolling loops.
This effort resulted in a ~ 300% performance increase, which
was within a factor of 3 of our original target.

Much of the parellelization work on GreeM was highly
successful, as evidenced by the Gordon Bell Prize awarded
in 2012 to Ishiyama et al. [21]. However, one unanticipated
problem arose while scaling up the simulation to larger prob-
lem sizes. GreeM applies a Particle-Mesh (PM) algorithm to
resolve the interactions beyond a preconfigured cutoff limit.
The implementation of is algorithm was initially serial, as the
overhead was a negligible component (< 1%) of the total
execution time for smaller problems. However, the overhead
became much larger we scaled up to mesh sizes beyond 2563
mesh cells, forcing us to move from a serial implementation
to a parallel implementation.

1) SUSHI and MPWide: Initially we considered executing
GreeM as-is, and using a middleware solution to enable
execution across supercomputers. In the years leading up to
CosmoQrid, a large number of libraries emerged for distributed
HPC (e.g., MPICH-G2 [22], OpenMPI [23], [24], mpig [25]
and PACX-MPI [26]). Many of these were strongly recom-
mended by colleagues in the field, and provided MPI layers
that allowed applications to pass messages across different
computational resources. Although these were well-suited for
distributed HPC across self-administered clusters, we quickly
found that a distributed supercomputing environment was
substantially different.

First, supercomputers are both more expensive and less
common than clusters, and the centres managing them are
reluctant to install libraries that require administrative privi-
leges, due to risks of security and ease of maintenance (MPI
distributions tend to require such privileges). Second, the
networks interconnecting the supercomputers are managed by
separate organizational entities, and the default configurations
at each network endpoint are almost always different and
frequently conflicting. This is not the case in more traditional
(national) grid infrastructures, where uniform configurations
can be imposed by the overarching project team. The het-
erogeneity in network configurations resulted in severe per-
formance and reliability penalties when using standard TCP-
based middleware (such as MPI and scp, unless we could find
some way to either (a) customize the network configuration
for individual paths or (b) adopt a different protocol (e.g.,
UDP) which ignores these preset configurations. In either case,
we realized that using standard TCP-based MPI libraries for
the communication between supercomputers was no longer a
viable option.

Using any other library had the inevitable consequence of
modifying the main code, and eventually we chose to cus-
tomize GreeM (the customized version is named SUSHI [15]))
and establish a seperate communication library (MPWide [27]],
[28]]) for distributed supercomputing.

B. Establishing a distributed supercomputing infrastructure

Having a code to run, and computer time to run it on is
insufficient to do distributed concurrent supercomputing. The
amount of data to be transported is ~ 10 Gb per integration
time step and should not become the limiting factor in measur-
ing performance. Each integration step would take about 100s.
When allowing a 10% overhead we would have to require
a network speed of 2 1Gb/s. Our collaboration with Cees
de Laat (University of Amsterdam) and Kei Hiraki (Tokyo
University) enables us to have two network and data transport
specialists at each side of the light path.

At the time, Russia had planned to make their military
10 Gbps dark fiber available for scientific experiments, but
due to their enhanced military use we were unable to secure
access to this cable. The eventual route of the optical cable
is presented in Fig.[[l We had a backup network between the
NTT-com router at JGN2plus and the StarLIGHT interconnect
to guarantee that our data stream remained stable throughout
our calculations.

One of the interesting final quirks in our network topology
was the absence of an optical network interface in the Edin-
burgh machine (which was installed later), and the fact that
the optical cable at the Japanese side reached the computer
science building on the Mitaka campus in Tokyo next to where
the supercomputer at NAOJ was located. A person had to go
physically to dig a hole and install a connecting cable between
the two buildings.

From a software perspective, we present our design con-
siderations on MPWide fully in Groen et al. [28]. Here
we will summarize the main experiences and lessons that
we learned from CosmoGrid, as well as our experiences in
readying the network in terms of software configuration. We
initially attempted to homogenize the network configuration
settings between the different supercomputers. This effort
failed, as it was complicated by the presence of over a dozen
stakeholder organizations, and further undermined by the lack
of diagnostic information available to us. For example, it was
not always possible for us to pinpoint specific configuration
errors to individual routers, and to their respective owners. We
also assessed the performance of UDP-based solutions such as
Quanta [29] and UDT [30]], which operate outside of the TCP-
specific configuration settings of network devices. However,
we were not able to universally adopt such a solution, as some
types of routers filter or restrict UDP traffic.

We eventually converged on basing MPWide on multi-
stream TCP [31], and combine this with mechanisms to cus-
tomize TCP settings on each of the communication nodes [28]].
Our initial tests were marred with network glitches, particu-
larly on the path between Amsterdam and Tokyo (see Fig. [2]for
an example where packets were periodically stalled). However,
later runs resulted in more stable performance once we used a
different path and adjusted the MPWide configuration to use
very small TCP buffer sizes per stream [4].

Rev 09 Feb. 13 2008

Network Topology for Cosmo Grid experiment = Round Trip Performance Test -
Seattlo

JGN2plus

NHOG

JGN2plus
NTT-com Otemachi, Tokyo

Fig. 1. Network topology map of the Amsterdam-Tokyo light path, shown
with reduced complexity, as it was envisioned in 2009. The revision number
(v0.9) is given in the top corner (together with an incorrect date), correctly
implying that throughout the project we updated this topology map at least
eight times. Reproduced from the preprint version of Portegies Zwart et
al. [10].

1000 T T

MPWide Communication’
Computation
Total -

[
o
o

time per step [s]

[N
o

0 200 400 600 800
simulation step

1000 1200

Fig. 2. Example of glitches observed in the communication path. This is a
performance measurements of a cosmological simulation using 2563 particles,
run in parallel across the supercomputers in Amsterdam and Tokyo (32 cores
per site). We present the total time spent (blue dotted line), time spent on
calculation (green dashed line), and the time spent on communication with
MPWide (red solid line). Stalls in the communication due to dropped packets
resulted in visible peaks in the communication performance measurements.
Reproduced from Groen et al. [27]. Note: The communication time was
relatively high (~ 35% of total runtime)) in this test run due to the small
problem size, in [27] we also present results from a test run with 20483
particles, which had a communication overhead of ~ 13% of total runtime.

C. Reserving supercomputers

The ability to have concurrent access to multiple supercom-
puters is an essential requirement for distributed supercom-
puting. Within CosmoGrid, we initially agreed that the four
institutions involved would provide so-called “phone-based”
advance reservation for the purpose of this project. However,
due to delays in the commisioning of the light path, and due to
political resistance regarding advance reservation within some
of the supercomputing centres (in part caused due to increasing
demand of the machines), it was no longer possible to use
this means of advance reservation on all sites. Eventually, we

ended up with a different “reservation” mechanism for each
of the supercomputers.

The original approach of calling up was still supported
for the Huygens machine in the Netherlands. For the Louhi
machine in Finland, calling up was also possible, but the
reservation was established through an exclusively dedicated
queue, as no direct reservation system was in place. This
approach had the side effect of locking other users out, and
therefore we only opted to use it as a last resort. For the
HECToR machine in the UK, it was possible to request higher
priority, but not to actually reserve resources in advance.
Support for advance reservation was provided there shortly
after CosmoGrid concluded, but at the time the best method
to “reserve” the machine was to submit a very large high
priority job right before the machine maintenance time slot.
We then need to align all other reservations to the end of that
maintenance time slot, presumed usually to be 6 hours after
the start of the maintenance. For the CRAY machine in Japan,
reservation was no longer possible due to the high work load.
However, some mechanisms of augmented priority could be
established indirectly, e.g. by chaining jobs, which allowed for
a job to be kept running at all times.

The combination of these strategies made it impossible
to perform a large production run using all four sites. We
did perform smaller tests using the full infrastructure (using
regular scheduling queues and hoping for the best), but we
were only able to do the largest runs using either the three
European machines, or Huygens combined with the CRAY in
Tokyo.

D. Software engineering and sustainability

The task of engineering a code for distributed supercomput-
ing is accompanied with a number of unusual challenges, par-
ticularly in the areas of software development and testing [32].
At the time, we had to ensure that GreeM and SUSHI remained
fully compatible with all four supercomputer platforms. With
no infrastructure in place to do continuous integration testing
on supercomputer nodes (even today this is still a rarity), we
performed this testing periodically by hand. In general, testing
on a single site is straightforward, but testing across sites less
SO.

We were able to arrange proof-of-concept tests across 4
sites using very small jobs (e.g., 16 cores per site) by putting
these jobs with long runtimes in the queue on each machine
and waiting with starting the run until the jobs are running
simultaneously. For slightly larger jobs (e.g., 64 cores per
site) this became difficult during peak usage hours as the
queuing times of each job became longer and less predictable.
However, we have been able to perform a number of tests
during more quiet periods of the week (e.g., at 2 AM), without
using advance reservation. For yet larger test runs we were
required to use advance reservation, reduce the number of
supercomputers involved, or both.

Software testing is instrumental to overall development, par-
ticularly when developing software in a challenging environ-
ment like an intercontental network of supercomputers. Here,

Parallelize
N-body code
for use across
supercomputer

Establish
distributed
supercomputing

Optimizing
GreeM
(calculation)

Run the
cosmological

: simulation
infrastructure

1 MPI easy to

iPower7archt i MPieasyfo: INL-JPpaths: I1Alisites can | "

H TAll sites can

: supports : :set up. across: : (10Gbps) : : be reserved :
: AVX. ' : sites. 1 : available, 1 : by phorie, 1
........ 1 M aguad WonaguaaM | i,)
........ . l .--.{---I PTTS .
1 IBM experts | Use a user 1 NL-JP paths | 1 3/4 sites |
:can speed up: installable :(1OGbps) can: : canbe :
:.--il"f'. o comm. lib. :.b.".'fle."f’.“".: L
We optimize i “Standard "} " Paths 7}
the code 1TCP delivers! 1 reachboth '
! good perf. I endpoints, 1 e m——-— -
ourselves LOONETh LEITETTRL MSigiesite™)
: storage can :
1 handle load.
........ 1
-------- " PR (S
1 \Qandarg”, 1 Paths are” | +
:UDP delivers} | consistently H Move output
,__Q_Of_’d Ee_":_: ! configured. ! from site
----i---- to site.
Build flexible iitseasy o} Small test run
" 1
mulh-stream-(—i change | on four sites.
TCP library §_~config:_ 1 12 hour prod.

run on three
sites.

Fig. 3. Overview of situations where the CosmoGrid project deviated from
the original planning. We summarize the four main computational activities
in the circles at the top, and provide examples of assumptions, which were
shown to be incorrect during the project, using red boxes with transparent
crosses. We present examples of effective workarounds using green boxes.
We provide further details on each situation in Sec. [T

the lack of facilities for advance reservation and continuous
integration made testing large systems prohibitively difficult,
and had an adverse effect on the development progress of
SUSHI. We eventually managed to get an efficient production
calculation running for 12 hours across three sites and with
the full system size of 2048° particles [13], but with better
facilities for testing across sites we could well have tackled
larger problems using higher core counts.

More emphasis and investment in testing facilities at the
supercomputer centres would have boosted the CosmoGrid
project, and such support would arguably be of great benefit
to increase the user uptake of supercomputers in general.

IV. RESEARCH DIRECTIONS AFTER COSMOGRID

Our experience with CosmoGrid changed how we ap-
proached our computational research in two important ways.
First, due to the political hardships and the lack of facilities
for advance reservation and testing, we changed our emphasis
from distributed concurrent supercomputing towards improv-
ing code performance on single sites [21]], [33].

Second, our expertise enabled us the enter the relatively
young field of distributed multiscale computing with a head
start. Multiscale computing involves the combination of mul-
tiple solvers to solve a problem that encompasses several
different length and time scales. Each of these solvers may
have different resource requirements, and as a result such
simulations are frequently well-suited to be run across mul-

tiple resources. Drost et al. applied some of our expertise,
combining it with their experience using IBIS, to enable
the AMUSE environment to run different coupled solvers on
different resources concurrently [34].

Our experiences with CosmoGrid were an important argu-
ment towards redeveloping the MUSCLE coupling environ-
ment for the MAPPER project. In this EU-funded consortium,
Borgdorff et al. developed a successor (MUSCLE 2), which
is optimized for easier installation on supercomputers, and
automates the startup of solvers that run concurrently on
different sites (a task that was done manually in CosmoGrid).
In addition, we integrated MPWide in MUSCLE2 [35] and
used MPWide directly to enable concurrently running coupled
simulations across sites [36]].

V. FUTURE PROSPECTS OF DISTRIBUTED
SUPERCOMPUTING

Distributed high-performance supercomputing is not for
the faint at heart. It requires excellent programming and
pluralization skills, stamina, determination, politics and hard
labour.

One can wonder if it is worth the effort, but the an-
swer depends on the available resources and the success of
proposal writing. About 20-30% of the proposals submitted
to INCITE (http://www.doeleadershipcomputing.org/faqs/) or
PRACE (http://www.prace-ri.eu/prace-kpi/) are successful, but
these success rates are generally lower for the very largest
infrastructures (e.g., ORNL Titan). In addition, some of the
largest supercomputers (such as Tianhe-2 and the K Computer)
provide access only to closely connected research groups or
to projects that have a native Principal Investigator. Acquiring
compute time on these largest architectures can be sufficiently
challenging that running your calculations on a number of
less powerful but earlier accessible machines may be easier to
accomplish.

Accessing several of such machines through one project is
even harder, and probably not very realistic. Similarly, for the
different architectures, it would be very curious to develop
a code that works optimal on K computer and ORNL Titan
concurrently. Achieving 25 PFlops on Titan alone is already
a major undertaking [33]], and combining such an optimized
code with a Tofu-type network architecture (which is present
on the K computer) would make optimization a challenge of
a different order.

We therefore do not think that distributed architectures
will be used to beef-up the world’s fastest computers, nor to
connect a number of top-10 to top-100 supercomputers to out-
compute the number 1. The type of distributed HPC as dis-
cussed in this article is probably best applied to large industrial
or small academic computer clusters. These < 2PetaFlop
architectures are found in many academic settings or small
countries, and are relatively easily accessible, by peer review
proposals or via academic license agreements. In this context,
we think it is more feasible to connect 10 to 100 of such
machines to outperform a top 1 to 10 computer.

http://www.doeleadershipcomputing.org/faqs/
http://www.prace-ri.eu/prace-kpi/

VI. CONCLUSIONS

We have presented our experiences from the Cosmo-
Grid project in high-performance distributed supercomputing.
Plainly put, distributed high-performance supercomputing is
a tough undertaking, and most of our initial assumptions
were proven wrong. Much of the hardware and software
infrastructure was constructed with very specific use-cases in
mind, and was simply not fit for purpose to do distributed
high-performance supercomputing. A major reason why we
have been able to establish distributed simulations at all is
due to the tremendous effort of all the people involved, from
research groups, networking departments and supercomputer
centres. It was due to their efforts to navigate the project
around the numerous technical and political obstacles that
distributed supercomputing became even possible.

CosmoGrid was unsuccessful in establishing high-
performance distributed supercomputing as the future
paradigm for using very large supercomputers. However, the
project did provide a substantial knowledge boost to our
subsequent research efforts, which is reflected by the success
of projects such as MAPPER [8], [36] and AMUSE [34],
[37]. The somewhat different approach taken in these projects
(aiming for more local resource infrastructures, and with a
focus on coupling different solvers instead of parallelizing a
single one) resulted in tens of publications which relied on
distributed (super-)computing.

The HPC community has recently received criticism for its
conservative approaches and resistance to change (e.g., [38],
[39]). Through CosmoGrid, it became obvious to us that
resource providers can be subject to tricky dilemmas, where
the benefits of supporting one research project need to be
weighed against the possible reduced service (or support)
incurred by other users. In light of that, we do understand
the conservative approaches followed in HPC to some extent.
In CosmoGrid, we tried to work around that by ensuring
that our software was installable without any administrative
privileges, and we recommend that new researchers who wish
to do distributed supercomputing do so as well (or, perhaps,
adopt very robust, flexible and well-performing tools for virtu-
alization). In addition, we believe that CosmoGrid would have
been greatly helped if innovations such as automated advance
reservation systems for resources and network links, facilities
for systematic software testing and continuous integration,
and streamlined procedures for obtaining access to multiple
sites had been in place. Even today, such facilities make
HPC infrastructures more convenient for new types of users
and applications, and strengthen the position of the HPC
community in an increasingly Cloud-dominated computing
landscape.

ACKNOWLEDGMENT

Both SPZ and DG contributed equally to this work. We are
grateful to Tomoaki Ishiyama, Keigo Nitadori, Jun Makino,
Steven Rieder, Stefan Harfst, Cees de Laat, Paola Grosso,
Steve MacMillan, Mary Inaba, Hans Blom, Jeroen Bédorf,
Juha Fagerholm, Tomoaki Ishiyama, Esko Keridnen, Walter

Lioen, Jun Makino, Petri Nikunen, Gavin Pringle and Joni Vir-
tanen for their contributions to this work. This research is sup-
ported by the Netherlands organization for Scientific research
(NWO) grant #639.073.803, #643.200.503 and #643.000.803
and the Stichting Nationale Computerfaciliteiten (project #SH-
095-08). We thank the DEISA Consortium (EU FP6 project
RI-031513 and FP7 project R1-222919) for support within the
DEISA Extreme Computing Initiative (GBBP project). This
paper has been made possible with funding from the UK
Engineering and Physical Sciences Research Council under
grant number EP/I017909/1 (http://www.science.net).

REFERENCES

[1]1 S. Hettrick, M. Antonioletti, L. Carr, N. Chue Hong, S. Crouch,
D. De Roure, I. Emsley, C. Goble, A. Hay, D. Inupakutika, M. Jackson,
A. Nenadic, T. Parkinson, M. I. Parsons, A. Pawlik, G. Peru, A. Proeme,
J. Robinson, and S. Sufi, “Uk research software survey 2014, Dec.
2014. [Online]. Available: http://dx.doi.org/10.5281/zenodo.14809

[2] 1. L. Markov, “Limits on fundamental limits to computation,” Nature,
vol. 512, no. 7513, pp. 147-154, 2014.

[3] A. Gualandris, S. Portegies Zwart, and A. Tirado-Ramos, ‘“Performance
analysis of direct n-body algorithms for astrophysical simulations on
distributed systems.” Parallel Computing, vol. 33, no. 3, pp. 159-173,
2007.

[4] D. Groen, S. Portegies Zwart, T. Ishiyama, and J. Makino, “High
Performance Gravitational N-body simulations on a Planet-wide Dis-
tributed Supercomputer,” Computational Science and Discovery, vol. 4,
no. 015001, Jan. 2011.

[5] E. Agullo, C. Coti, T. Herault, J. Langou, S. Peyronnet, A. Rezmerita,
F. Cappello, and J. Dongarra, “Qcg-ompi: {MPI} applications on
grids,” Future Generation Computer Systems, vol. 27, no. 4, pp. 357 —
369, 2011. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X10002359

[6] F. J. Seinstra, J. Maassen, R. V. van Nieuwpoort, N. Drost, T. van
Kessel, B. van Werkhoven, J. Urbani, C. Jacobs, T. Kielmann, and
H. E. Bal, “Jungle computing: Distributed supercomputing beyond
clusters, grids, and clouds,” in Grids, Clouds and Virtualization, ser.
Computer Communications and Networks, M. Cafaro and G. Aloisio,
Eds. Springer London, 2011, pp. 167-197.

[71 M. Ben Belgacem, B. Chopard, J. Borgdorff, M. Mamonski,
K. Rycerz, and D. Harezlak, “Distributed multiscale computations
using the MAPPER framework,” Procedia Computer Science, vol. 18,
no. 0, pp. 1106 — 1115, 2013, 2013 International Conference on
Computational Science. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1877050913004195

[8] J. Borgdorff, M. Ben Belgacem, C. Bona-Casas, L. Fazendeiro,
D. Groen, O. Hoenen, A. Mizeranschi, J. L. Suter, D. Coster, P. V.
Coveney, W. Dubitzky, A. G. Hoekstra, P. Strand, and B. Chopard, “Per-
formance of distributed multiscale simulations,” Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 372, no. 2021, 2014.

[9]1 G. Hoekstra, A., S. Portegies Zwart, M. Bubak, and P. Sloot, Towards
Distributed Petascale Computing. Petascale Computing: Algorithms
and Applications, by David A. Bader (Ed.). Chapman & Hall/CRC
computational science series 565pp. (ISBN: 9781584889090, ISBN 10:
1584889098), 2008.

[10] S. Portegies Zwart, T. Ishiyama, D. Groen, K. Nitadori, J. Makino, C. de
Laat, S. McMillan, K. Hiraki, S. Harfst, and P. Grosso, “Simulating the
universe on an intercontinental grid,” Computer, vol. 43, pp. 63-70,
2010.

[11] T. Ishiyama, T. Fukushige, and J. Makino, “Greem: Massively parallel
treepm code for large cosmological n-body simulations,” Publications
of the Astronomical Society of Japan, vol. 61, no. 6, pp. 1319-1330,
2009.

[12] K. Yoshikawa and T. Fukushige, “PPPM and TreePM Meth-
ods on GRAPE Systems for Cosmological N-Body Simulations,”
Publications of the Astronomical Society of Japan, vol. 57, pp. 849—
860, Dec. 2005.

[13] J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation
algorithm,” Nature, vol. 324, pp. 446-449, Dec. 1986.

http://www.science.net
http://dx.doi.org/10.5281/zenodo.14809
http://www.sciencedirect.com/science/article/pii/S0167739X10002359
http://www.sciencedirect.com/science/article/pii/S0167739X10002359
http://www.sciencedirect.com/science/article/pii/S1877050913004195
http://www.sciencedirect.com/science/article/pii/S1877050913004195

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

R. W. Hockney and J. W. Eastwood, Computer Simulation Using
Particles. New York: McGraw-Hill, 1981, 1981.

D. Groen, S. Rieder, and S. Portegies Zwart, “High performance
cosmological simulations on a grid of supercomputers,” in Proceedings
of INFOCOMP 2011. Thinkmind.org, Sep. 2011.
TOP500.0org, “Top500 supercomputer sites.” [Online].
http://www.top500.org

T. Ishiyama, S. Rieder, J. Makino, S. Portegies Zwart, D. Groen,
K. Nitadori, C. de Laat, S. McMillan, K. Hiraki, and S. Harfst, “The
cosmogrid simulation: Statistical properties of small dark matter halos,”
The Astrophysical Journal, vol. 767, no. 2, p. 146, 2013. [Online].
Available: http://stacks.iop.org/0004-637X/767/i=2/a=146

S. Rieder, R. van de Weygaert, M. Cautun, B. Beygu, and S. Portegies
Zwart, “Assembly of filamentary void galaxy configurations,” MNRAS,
vol. 435, pp. 222-241, Oct. 2013.

S. Rieder, R. van de Weygaert, M. Cautun, B. Beygu, and S. Porte-
gies Zwart, “The cosmic web in CosmoGrid void regions,” ArXiv e-
prints, Nov. 2014.

S. Rieder, T. Ishiyama, P. Langelaan, J. Makino, S. L. W. McMillan,
and S. Portegies Zwart, “Evolution of star clusters in a cosmological
tidal field,” MNRAS, vol. 436, pp. 3695-3706, Dec. 2013.

T. Ishiyama, K. Nitadori, and J. Makino, “4.45 pflops astrophysi-
cal n-body simulation on k computer: The gravitational trillion-body
problem,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC *12.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 5:1—
5:10.

N. Karonis, B. Toonen, and I. Foster, “Mpich-g2: A grid-enabled
implementation of the message passing interface,” Journal of Parallel
and Distributed Computing, vol. 63, no. 5, pp. 551 — 563, 2003, special
Issue on Computational Grids.

“Open MPI: Open Source High Performance Computing.” [Online].
Available: http://www.open-mpi.org

C. Coti, T. Herault, and F. Cappello, “Mpi applications on grids: A
topology aware approach,” in Euro-Par 2009 Parallel Processing, ser.
Lecture Notes in Computer Science, H. Sips, D. Epema, and H.-X. Lin,
Eds. Springer Berlin Heidelberg, 2009, vol. 5704, pp. 466—477.

S. Manos, M. Mazzeo, O. Kenway, P. V. Coveney, N. T. Karonis, and
B. Toonen, “Distributed mpi cross-site run performance using mpig,” in
Proceedings of the 17th International Symposium on High Performance
Distributed Computing, ser. HPDC *08. New York, NY, USA: ACM,
2008, pp. 229-230.

M. Muller, M. Hess, and E. Gabriel, “Grid enabled mpi solutions
for clusters,” in Cluster Computing and the Grid, 2003. Proceedings.
CCGrid 2003. 3rd IEEE/ACM International Symposium on. IEEE,
2003, pp. 18-25.

D. Groen, S. Rieder, P. Grosso, C. de Laat, and S. Portegies Zwart, “A
light-weight communication library for distributed computing,” Compu-
tational Science and Discovery, vol. 3, no. 015002, Aug. 2010.

D. Groen, S. Rieder, and S. Portegies Zwart, “Mpwide: a light-weight
library for efficient message passing over wide area networks,” Journal
of Open Research Software, vol. 1, no. 1, 2013.

E. He, J. Alimohideen, J. Eliason, N. Krishnaprasad, J. Leigh, O. Yu,
and T. DeFanti, “Quanta: a toolkit for high performance data delivery
over photonic networks,” Future Generation Computer Systems, vol. 19,
no. 6, pp. 919 — 933, 2003.

Y. Gu and R. L. Grossman, “Udt: Udp-based data transfer for high-speed
wide area networks,” Computer Networks, vol. 51, no. 7, pp. 1777-1799,
May 2007.

T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-end performance
effects of parallel tcp sockets on a lossy wide-area network,” in Vehicle
Navigation and Information Systems Conference, 1993., Proceedings of
the IEEE-IEE, Oct 1993.

D. Groen, “Tips for sustainable software development on super-
computers,” 2013. [Online]. Available: http://www.software.ac.uk/blog/
2013-12- 16-tips-sustainable-software-development-supercomputers

J. Bédorf, E. Gaburov, M. S. Fujii, K. Nitadori, T. Ishiyama,
and S. Portegies Zwart, ‘“24.77 pflops on a gravitational tree-
code to simulate the milky way galaxy with 18600 gpus,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 54-65. [Online]. Available:
http://dx.doi.org/10.1109/SC.2014.10

Available:

[34]

[35]

[36]

[37]

[38]

[39]

N. Drost, J. Maassen, M. van Meersbergen, H. Bal, F. Pelupessy,
S. Portegies Zwart, M. Kliphuis, H. Dijkstra, and F. Seinstra, “High-
performance distributed multi-model / multi-kernel simulations: A case-
study in jungle computing,” in Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th Inter-
national, May 2012, pp. 150-162.

J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem,
B. Chopard, D. Groen, P. V. Coveney, and A. G. Hoekstra,
“Distributed multiscale computing with {MUSCLE} 2, the multiscale
coupling library and environment,” Journal of Computational Science,
vol. 5, no. 5, pp. 719 — 731, 2014. [Online]. Available: http:
/Iwww.sciencedirect.com/science/article/pii/S1877750314000465

D. Groen, J. Borgdorff, C. Bona-Casas, J. Hetherington, R. Nash,
S. Zasada, 1. Saverchenko, M. Mamonski, K. Kurowski, M. Bernabeu,
A. Hoekstra, and P. Coveney, “Flexible composition and execution
of high performance, high fidelity multiscale biomedical simulations,”
Interface Focus, vol. 3, no. 2, p. 20120087, 2013.

S. F. Portegies Zwart, S. L. W. McMillan, A. van Elteren, F. I. Pelu-
pessy, and N. de Vries, “Multi-physics simulations using a hierarchical
interchangeable software interface,” Computer Physics Communications,
vol. 184, no. 3, pp. 456 — 468, 2013.

J. Dursi, “Hpc is dying, and mpi is killing it,” 2015. [Online].
Auvailable: http://www.dursi.ca/hpc-is-dying-and-mpi-is-killing- it/

J. Squyres, “That jonathan dursi blog entry,” 2015. [Online]. Available:
http://blogs.cisco.com/performance/that-jonathan-dursi-blog-entry

http://www.top500.org
http://stacks.iop.org/0004-637X/767/i=2/a=146
http://www.open-mpi.org
http://www.software.ac.uk/blog/2013-12-16-tips-sustainable-software-development-supercomputers
http://www.software.ac.uk/blog/2013-12-16-tips-sustainable-software-development-supercomputers
http://dx.doi.org/10.1109/SC.2014.10
http://www.sciencedirect.com/science/article/pii/S1877750314000465
http://www.sciencedirect.com/science/article/pii/S1877750314000465
http://www.dursi.ca/hpc-is-dying-and-mpi-is-killing-it/
http://blogs.cisco.com/performance/that-jonathan-dursi-blog-entry

	I Introduction
	II The CosmoGrid project: vision and (implicit) assumptions
	II-A The software: GreeM and SUSHI
	II-B Assumptions

	III Distributed supercomputing in practice
	III-A Engineering a code from thread to transcontinental machine
	III-A1 SUSHI and MPWide

	III-B Establishing a distributed supercomputing infrastructure
	III-C Reserving supercomputers
	III-D Software engineering and sustainability

	IV Research directions after CosmoGrid
	V Future prospects of distributed supercomputing
	VI Conclusions
	References

