
Lawrence Berkeley National Laboratory
LBL Publications

Title
Management, Analysis, and Visualization of Experimental and Observational Data -- The 
Convergence of Data and Computing:

Permalink
https://escholarship.org/uc/item/3p80p9bs

Authors
Bethel, E. Wes
Greenwald, Martin
Kleese van Dam, Kersten
et al.

Publication Date
2016-10-27

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3p80p9bs
https://escholarship.org/uc/item/3p80p9bs#author
https://escholarship.org
http://www.cdlib.org/


Management, Analysis, and Visualization of
Experimental and Observational Data – The

Convergence of Data and Computing

E. Wes Bethel1, Martin Greenwald2, Kersten Kleese van Dam3, Manish Parashar4, Stefan
M. Wild5, and H. Steven Wiley6

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2 Massachusetts Institute of Technology, Cambridge, MA, USA

3 Brookhaven National Laboratory, Upton, NY, USA
4 Rutgers University, Piscataway, NJ, USA

5 Argonne National Laboratory, Lemont, IL, USA
6 Pacific Northwest National Laboratory, Richland, WA, USA

August, 2016

i



Acknowledgment

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, program
manager Dr. Lucy Nowell.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States Gov-
ernment nor any agency thereof, nor The Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.

ii



Management, Analysis, and Visualization
of Experimental and Observational Data –
The Convergence of Data and Computing

E. Wes Bethel∗

Lawrence Berkeley National Laboratory

Martin Greenwald†

Massachusetts Institute of Technology

Kerstin Kleese van Dam‡

Brookhaven National Laboratory

Manish Parashar§

Rutgers University

Stefan M. Wild¶

Argonne National Laboratory

H. Steven Wiley‖

Pacific Northwest National Laboratory

Abstract

Scientific user facilities—particle accelerators, telescopes,
colliders, supercomputers, light sources, sequencing facili-
ties, and more—operated by the U.S. Department of Energy
(DOE) Office of Science (SC) generate ever increasing volumes
of data at unprecedented rates from experiments, observa-
tions, and simulations. At the same time there is a growing
community of experimentalists that require real-time data
analysis feedback, to enable them to steer their complex
experimental instruments to optimized scientific outcomes
and new discoveries. Recent efforts in DOE-SC have focused
on articulating the data-centric challenges and opportunities
facing these science communities. Key challenges include
difficulties coping with data size, rate, and complexity in the
context of both real-time and post-experiment data analysis
and interpretation. Solutions will require algorithmic and
mathematical advances, as well as hardware and software
infrastructures that adequately support data-intensive scien-
tific workloads. This paper presents the summary findings of
a workshop held by DOE-SC in September 2015, convened to
identify the major challenges and the research that is needed
to meet those challenges.

1 Introduction

The Department of Energy (DOE) Office of Science (SC)
operates dozens of national science user facilities that span
many disciplines [9]. These facilities include accelerators,
colliders, supercomputers, light sources, and neutron sources,
as well as facilities for studying the nanoworld, genomes, the
environment, the atmosphere, and the cosmos. In Fiscal Year
2014, over 33,000 researchers from academia, industry, and
government laboratories, from all fifty states and the District
of Columbia, utilized these unique facilities to perform new
scientific research. Each of these facilities generates vast
amounts of scientific data, and thanks to advances in tech-
nology, the size, rate, and complexity of this data is rapidly
increasing. A growing concern is that advances in the science
programs will not be able to keep pace with increasing data
rates due to a lack of resources, the need for research and
development of tools as well as with platforms and infras-
tructures needed to manage, analyze, and act on the growing
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collections of data. All of the above are needed to derive
novel scientific insights from data.

With the goal of understanding, inventorying, and artic-
ulating the data-centric needs and challenges of the experi-
mental and observational science (EOS) community in DOE-
SC, the Office of Advanced Scientific Computing Research
(ASCR) held a workshop, from 29 September 2015 through
1 October 2015 in Bethesda, MD. The workshop report [4]
consists of inputs from representatives from a sampling of
DOE-SC EOS facilities and researchers in mathematics and
computer science. The findings of the workshop, drawn from
detailed discussions of participants who reviewed a wide range
of exemplary science use cases, indicate that there are acute
and urgent needs regarding the management, analysis, and
visualization of experimental and observational data (EOD)
collected and generated by EOS at DOE-SC user facilities.

The science needs articulated in the workshop report, along
with the findings, recommendations, and detailed discus-
sion of issues, collectively are consistent with the vision
articulated in the National Strategic Computing Initiative
(NCSI) [19, 13] and the Big Data Research and Development
Initiative [24, 18]. The workshop report also describes multi-
ple opportunities for cultivating a research, development, and
deployment path that will help realize that vision. Specif-
ically, the science use cases reveal a trend toward the con-
vergence of data and computing : data- and compute-centric
needs and suggests that opportunities in these research ar-
eas are increasingly intertwined, interrelated, and symbiotic.
Advances in our ability to collect data will require advances
in computational capabilities to understand, preserve, share,
and make optimal use of data, and can positively impact the
quality and value of our science by improving the quality and
reusability of the data we collect.

This paper makes two primary contributions to the
eScience community. First, it contains a canonical science
use case that captures many of the high-level characteristics
of how large-scale EOS projects in DOE-SC make use of the
EOD they collect. This canonical use case is a composite
sketch drawn from eleven specific use cases provided by the
DOE-SC EOS community. Second, this paper presents a set
of data-centric challenges, distilled from the eleven science
use cases in [4], that DOE-SC EOS projects face now and
in the future. These two contributions are a summarization
of ideas presented in the September 2015 ASCR EOD work-
shop report [4], which contains additional qualitative and
quantitative information about the specific EOS projects.

We begin with a discussion of a canonical use case scenario
(§2) to provide context and orientation to DOE-SC science
facilities. That section lays the groundwork for the subse-
quent sections (§3–§9), which in turn present the primary
findings of the workshop. We discuss related work (§10)
before making concluding remarks.
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Table 1: The eleven use cases provided by the DOE-SC EOS commu-
nity.

1 Environmental Molecular Sciences Laboratory
2 Climate Simulation and Analysis
3 Atmospheric Radiation Measurement

Climate Research Facility
4 Advanced Light Source
5 Linac Coherent Light Source
6 Oak Ridge National Laboratory Neutron Sources
7 Scanning Probe and Electron Microscopies
8 Advanced Photon Source
9 Deep Underground Neutrino Experiment
10 Open Numerical Laboratories
11 DOE HEP Cosmic Frontier

2 A Canonical Science Use Case Scenario

The canonical science use case in this section is a composite
of eleven use cases (see Table 1) submitted by the DOE-SC
EOS community. Those eleven use cases span a diversity of
science topics from the DOE-SC offices of Biological and En-
vironmental Research (BER), Basic Energy Sciences (BES),
and High Energy Physics (HEP). Prior to the workshop, EOS
researchers from those areas provided detailed information
specific to their EOS project(s) that answered the following
set of questions:

Present- or near-term issues. Each EOS project pro-
vided a description of the science facility, how the facility
or experiment “does science” with the EOD they col-
lect, and a “flowchart” (verbal or pictorial) describing
the data lifecycle starting with data acquisition and
including all processing stages, all the way through dis-
semination.

Future issues. Each EOS project provided information
from the same categories for both the present- or near-
term issues as well as looking ahead, usually 3–5 years,
into the future.

Data lifecycle. Each EOS project provided information
about how data is used and the key issues that need
to be addressed, at each of the primary data lifecycle
stages, in both present and future scenarios.

Data requirements. For each stage in the data lifecycle,
each EOS project provided information about data
“speeds and feeds,” throughput requirements, and specific
data-centric capabilities needed for the specific science
use case.

Impediments, gaps, needs, and challenges. Each
EOS project provided a list of data-centric impediments
or barriers they presently face and expect to face in the
future.

The canonical use case below identifies the major stages
in the data lifecycle and the types of processing that might
take place there. The challenges faced by EOS projects in
achieving these objectives are the subject of later sections.

Figure 1 is an illustration that gives a general overview of
the major data lifecycle and processing stages in DOE-SC
EOS projects. Although Figure 1 is a generalization of the
eleven use cases in the workshop report, it captures all their
major thematic elements. The following subsections discuss
these major thematic elements.

2.1 Data Products

First and foremost, the primary objective for these EOS
products is to support scientific research that generates large
amounts of data from experiments and observations. In some
cases, this EOD will be turned into “a product” that is then
given to a single principal investigator (PI). In other cases,
data products are created and shared by an entire community.
In all cases, as elaborated below, these EOS projects have
clear requirements for carefully capturing provenance (i.e.,
information about the conditions under which data is col-
lected), what types of processing it underwent, and so forth,
and preserving this information in the form of metadata.
There are numerous challenges associated with growing data
size and complexity, and all EOS projects point to the fact
that EOD may have a long lifespan, which in turn creates
challenges regarding long-term data storage and dissemina-
tion. These challenges are all the subject of later sections in
this paper.

2.2 Use of HPC Computing Facilities

The background in Figure 1 is shaded to indicate that EOS
projects may do some data processing “close to” the instru-
ment at the science user facility, while some of the processing
requires, due to data size or other factors, access to and use
of large-scale HPC computing facilities. The balance point,
between computing at science user facilities and at HPC
facilities, highly varies from project to project and depends
on specific project needs. In later sections, we delve into the
challenges of EOS projects’ use of HPC computing facilities,
which span diverse topics ranging from meeting time-sensitive
computational requirements, to long-term data storage and
dissemination.

2.3 Data Processing, Analysis, and Understanding

Hamming’s statement that “the purpose of computing is
insight, not numbers” [14] applies equally to EOS projects
and their use of data. Figure 1 shows that operations on
data, which include various types of processing, such as
filtering, reduction, cataloging, analysis, and provenance
capture, occur at multiple stages in the data lifecycle.

2.4 Data Sharing and Collaboration

Although it may not be readily apparent from Figure 1, the
workshop’s science use cases reveal a theme that collaboration
and sharing are central to EOS science. Data produced by
EOS projects is almost always turned into data products
that are disseminated to a single PI, to a small group, or
to a much larger, geographically distributed community. To
be useful, however, such data needs to be curated and made
easily understandable and accessible by all users.

Efficient use of shared data requires adequate metadata, if
only to inform the community about the precise conditions
under which it was collected. Typically, any given data set
will be interpreted with respect to prior knowledge or will be
combined with previously collected data. Thus, EOS data
sets are usually a part of a much larger research study in
which the metadata needed to set the context of the data is
as important as the data itself. In addition, almost all EOS
project data must be extensively processed by specialized
software packages to convert the raw instrument data into a
form that can be used in broader scientific studies.

2.5 Uses of EOD

Although Figure 1 shows a generalization of major data
lifecycle stages, the paragraphs below summarize a few of

2



Data	
  acquisition

Data	
  
dissemination,	
  

long-­‐term	
  archival,	
  
in-­‐depth	
  analysis,	
  

reanalysis

Initial	
  processing:	
  reconstruction,	
  
filtering,	
  reduction,	
  transformation	
  

cataloguing,	
  analysis

Simulation,	
  modeling,	
  
analysis,	
  visualization

Additional	
  processing:	
  
transformations,	
  reduction,	
  
format	
  conversion,	
  curation,	
  

data	
  products

Adjust	
  experiment	
  
parameters

Experiment	
  planning	
  
Scientific	
  Data

Actions/controls
Science	
  User	
  Facility

HPC	
  Facility

Figure 1: An illustration showing the various stages in the EOS data lifecycle.

the many uses of EOD identified in the eleven scientific use
cases presented at the workshop.

Data products from EOS. In the early stages of experiment
planning, a single PI (or community of investigators) tends
to focus on a particular science mission or objective. The
experiment is conducted, and the “first light” output of these
experiments consists of a data product of some type. Here,
the phrase “data product” could mean something relatively
narrow and focused, such as a lab analysis of a sample,
or it could mean something much broader, such as a large
collection of data from multimodal sources like a sky survey.

Primary analysis. With the data product(s) in hand, EO
researchers then proceed to perform in-depth analysis as they
focus on hypothesis testing, verification that the experiment
went as intended, and/or any number of other tasks within
the primary mission’s focus.

Some of this analysis processing may require non-trivial
steps, including assimilation with simulation or model-based
approaches and statistical inverse problems, in order to ex-
tract key measurements from the EOD. These analysis results
may produce outputs that could become data products in
their own right, such as catalogs of features or properties
extracted from the EOD.

Reanalysis. After an experiment and its initial study are
completed, the resulting primary and supplementary data
products may have a long lifespan. Over time, there may
be the possibility for new scientific inquiry focusing on new
hypotheses not envisioned at the time of the original experi-
ment. For example, the Sloan Digital Sky survey (first light
in 1998 [22]) is still operating today and its data are actively
used by a worldwide science community.

Reference data sets. Once generated, a given data set may
serve as an invaluable reference in many different ways in
the future. Here, a significant issue is that not every EO
data set will be equally used by the public, and over the

years some of them will fade into irrelevancy while others
emerge as a community reference. It is these latter data
sets that need to be kept for a long time, even if just for
comparison and reference. For such collections, which are
used by many different refereed publications, reproducibility
of these analyses will become another reason to keep the
data, even when better and higher resolution alternatives
become available.

Broad dissemination of results. In 2013, the Office of Sci-
ence and Technology Policy issued a memorandum directing
federally funded programs to make the results of their re-
search freely available to the public, generally within one year
of publication [12]. This broad, public access to research data
of all types, and EOD in particular, could have far-reaching
impacts. It could entail uses of EOD that go far beyond
those envisioned in our 2015 workshop report.

3 Challenges of Exploding Data Size, Rate, Complexity,
and Diversity

Data size and rate of collection at science user facilities
are growing at a rapid rate. Each of the eleven EOS use
cases provide details about expected and anticipated growth
in data rates. One of the primary drivers for increasing
data size is the increase in the resolution of the instrument
sensors and detectors. From these summaries of projected
growth rates, we see a near future where individual facilities,
of which there are dozens, are each generating collections
of data in the range of tens to hundreds of petabytes per
year. These projections suggest, when integrating across the
entire program, that these science user facilities will be soon
collectively acquiring exabytes of data per year. Affordable
data storage, effective data access, distribution, and curation,
and meaningful analysis are key challenges that these facilities
increasingly face.

All EOS projects represented at this workshop are having
difficulty coping with with the demands and opportunities
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that the flood of data offers. The complexity of the data,
new challenges in analytics and visualization, difficulties in
capturing sufficient metadata, and ease-of-use problems are
impediments to use and adoption of many types of data-
centric tools and infrastructure, hampering the effort to
harness the wealth of data in the service of scientific discovery.

A key limitation today is our [in]ability to
analyze and visualize the acquired data due
to its volume, velocity and variety.

–Advanced Photon Source [3]

The problems associated with data size and velocity are
compounded when a given EOS community relies on multiple
instruments, such as the DOE-SC’s Cosmic Frontier projects,
which carry out sky surveys (e.g., the Sloan Digital Sky
Survey [22]) using multiple instruments. These are expected
to produce data estimated to be on the order of hundreds of
petabytes. These data need to be available to the research
community over a long period of time. Survey data with
a long shelf life can be very valuable because they can be
mined and analyzed in many different ways, thereby providing
a stable resource for developing new approaches for data
exploration and analysis. in addition to the intrinsic science
value.

The growth in data volumes creates challenges beyond
issues of processing and storage, but also for data transfer,
particularly in experiments that rely on real-time feedback to
the instrument operator. This problem is complicated even
further by the fact that many experiments can be run con-
currently with parallel data flows coming from independent
detectors.

Another challenge associated with increased data size and
complexity is the need to support data integration and data
discovery through the appropriate collection and manage-
ment of metadata and derived data products associated with
experimental and simulation studies.

An ongoing concern in EOS projects is the need to detect
errors in automated, high-throughput workflows. There is a
clear convergence here between computing and data, where
computational methods can be brought into the picture to
ensure the best possible data are collected during an exper-
iment. In some cases, errors occur during data acquisition.
These errors can be mitigated and/or corrected after taking
data through advanced algorithms that can model the dy-
namical effects of the acquisition instrument to produce a
data set with minimized and/or quantified error.

A related concern is the loss of science and opportuni-
ties for science discovery due to data loss. One example
is the Cosmic Frontier projects, where data loss can occur
in studies of transients because of possible inefficiencies in
detection technology, classification algorithms, and lack of
follow-up resources. Other issues that prevent making use
of the complete data set are technical issues such as lack of
understanding of foregrounds, incomplete modeling of the
atmosphere, and detector noise.

Although coping with the increasing size and rate of data
inflows from experiments and observations is challenging,
there is a corresponding set of issues at the other end of the
data pipeline. EOS projects typically also produce data prod-
ucts that are derived from raw EOD and, in many cases, from
the results of numerical calculations. Some data products
are produced for individual users, while other data products
are intended to be used by entire communities or as reference

data sets. As mentioned above, it is necessary to have a
clear record of information (metadata) about the data for
these data products to be useful and usable, as well as a
long-term plan for addressing the archiving, curation, and
Dissemination of these data products.

4 Science Use of Large-Scale HPC Facilities

EOS projects’ use of tools and facilities, which are designed
for HPC workloads, have realized varying degrees of success.
Meeting the challenges of the explosion of data from EOS
projects requires computational platforms, networking, and
storage of greater capacity and lower latency, along with soft-
ware infrastructure suited to their needs. However, existing
HPC platforms and software tools are designed and provi-
sioned for high-concurrency HPC workloads, single-project
data products, and comparatively simpler data needs. Future
HPC architectures are expected to be more I/O-challenged.

EOS projects look to large-scale HPC computing facilities
to help serve workloads that can be characterized as: requir-
ing fast turnaround for computing tasks, having processing
pipelines that are distributed in nature and involve the move-
ment of very large amounts of data, long-term storage of
data, as well as providing access to data to a potentially
diverse set of stakeholders and consumers.

Each beamline operates with unique capabil-
ities and an independent scientific mission.
. . . Computational needs and strategies may
differ considerably across beamlines, but com-
putation is required for nearly every aspect of
the facility.

–Advanced Photon Source

The issue of fast turnaround is so significant that we ex-
pand on related findings below. In brief, EOS projects using
instruments such as beamlines, require computational re-
sources within minutes, or perhaps seconds, of when data are
generated, which is incompatible with the queued structure
employed on today’s leadership-class HPC machines.

The EOS science use cases presented at the workshop
describe variants of data handling and processing activities
that can be characterized as distributed computing models.
The typical design pattern involves first collecting data at
the instrument, performing some processing close to the
instrument, then moving data to a large-scale facility for
more lengthy calculations and preparation of data products,
followed by dissemination of data products. The way each
project implements this pattern varies according to their
needs and available resources.

As another example, the Deep Underground Neutrino
Experiment (DUNE, [8]) experiment presently uses a combi-
nation of local, on-site computing and HPC facilities at Fermi
National Accelerator Laboratory, which also is expected to
host a full replica of data recorded by the prototype instru-
ment. DUNE plans to keep full data replicas off site for
redundancy, as well as to opportunistically leverage comput-
ing resources, including those outside of DOE-SC. DUNE is
targeting the design and development of project-wide software
infrastructure designed to maintain portable and accessible
software that can be used at any particular institution and
run transparently on modern grid and/or cloud resources as
part of a distributed-processing, data-centric workflow.
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Procedures for moving data from place to
place, including tools for automating [a] re-
silient workflow for orchestrating distributed
data-related operations are a bottleneck.
–Accelerated Climate Modeling for Energy
project [1]

There is a clear need for community- or facility-centric
data repositories for data storage and dissemination with suf-
ficient bandwidth and with an easy interface for interacting
with tools for data analytics. The most useful platforms need
to be massively parallel to support a combination of visual-
ization and analysis tools. It is very likely that DOE facilities
(both HPC facilities and science user facilities) will take on
a significantly larger role in data archiving, transfer, and
analysis. It is also possible that commercial cloud resources
could become a major resource in these areas—although sev-
eral outstanding questions remain (e.g., cost models, data
archiving and transfer); this disruptive possibility needs to
be continuously explored. The main new hardware trend
of interest for DOE facilities—in the relatively near-term—
is the evolution and integration of HPC systems within a
data-centric usage model.

The needs of data sharing sites are quite distinct from
those simply designed to store or analyze data. Data sharing
and dissemination software must have robust features in
searching for specific data types and for linking the data to
people, studies, scientific fields, and published results.

5 Time-Sensitive Computing

Many projects have time-critical data needs (e.g., arising from
human-in-the-loop experiment steering). These projects re-
quire a low-latency, high-throughput infrastructure for data
movement, analysis, processing, and storage. However, com-
puting platforms currently available to such researchers are
insufficient in capacity or turnaround. The lack of large and
capable facilities tuned to EOS needs are common across
many disciplines.

Many EOS projects use, or hope to use, large-scale HPC
platforms and high-speed networking to do real-time process-
ing of experiment data. The desire is for high-throughput,
fast turnaround to enable adjustment of experiment parame-
ters while the experiment is in progress, thereby maximizing
the scientific outcomes of the experiment.

For example, at the very first stages of the analysis work-
flow, scanning electron microscopy projects—such as those
at the Center for Nanophase Materials Sciences [5]—are in-
terested in collecting full detector response at the fastest
meaningful rates in order to assess tool performance and ad-
just parameters on-the-fly. Fast visualization schemes would
also be useful for monitoring samples and quality of output
signals.

6 The Risk of Unusable Data

Scientific data is increasingly at risk of being unusable, un-
traceable, or unreproducible. Without adequate metadata
and provenance, scientific data has limited usefulness be-
cause its origins are undocumented and unknown, thereby
limiting the ability to validate results or to make use of
such data for other purposes. However, today the capture of
these critical information often relies on manual, non-digital
and non-sharable approaches, hindering scientific discovery
particularly in increasingly high-velocity, high-volume data
environments.

In some projects, data-centric operations, which involve
management, analysis, movement, and distribution, are the
responsibility of an individual user, with whatever limited
knowledge and capability is available to them. As a result,
only a fraction of collected data is ever analyzed, and only
a fraction of that data is ever published and made available
for community-wide use.

One very real consequence of current data management
systems is that most of the data is difficult to use by anyone
other than the original group that generated it. This problem
must be solved if making data publicly available is intended
to have any useful purpose. In addition, much necessary
metadata is never collected because of the lack of under-
standing of what is required for data sharing by the primary
investigator(s) and the lack of easy-to-use tools to capture
it. The overall cost and complexity of metadata recording
and consolidation is currently prohibitive, which is a primary
reason why metadata is rarely collected. Unfortunately, this
means that the associated data cannot be easily exchanged or
reused. Systematic collection of the metadata that describes
the provenance of stored data is typically inadequate, limit-
ing the integrity, traceability, and reproducibility of research
products.

. . . relevant data should be made available to
the scientific community after some amount
of time. But more than data preservation is
required—proactive data curation is necessary
for the data to be really useful. . . . The benefit
of curation would be to reduce duplication of
effort in data creation, but also for the re-use
of data for further high quality research.

–Advanced Light Source [2]

There is interest in having access to data after the current
research is published. Such access needs to ensure that
enough metadata is stored so that the data can be analyzed
appropriately. Although certain classes of metadata (e.g.,
the who, the when) can be captured automatically, there is a
need to capture the reason why certain aspects of an analysis
or data transformation or reduction operation was performed.
This information needs to be provided by the data generators
and archived with the data so that subsequent access is useful,
and can be utilized by researchers beyond the group that
acquired it originally.

7 The Central Role of Collaboration and Sharing

Collaboration and sharing of data, tools, and methodologies
are central to modern EOS projects, yet there is insufficient
infrastructure to facilitate such interactions. Common tools
and methodologies for sharing and collaboration in data-
intensive sciences have not been widely developed, deployed,
or adopted. The limit is generally not simply data transfer,
but rather a lack of widely-used tools to produce and consume
well-characterized data collections that include the desired
level of annotation, metadata, and provenance. Collabora-
tions also require an ability to share software tools, source
code, data models, and formats, and to provide workflows
that are reproducible. Beyond established collaborations,
there is a clear need to share tools and approaches between
groups and disciplines to minimize the unnecessary duplica-
tion of effort. In many cases, existing tools are inadequate
or too difficult to use.
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By their nature, the mission focus for EOS projects is
to collect data, and to share it. This theme is present in
all the use cases presented at the workshop. The projects
differ in some key ways: some projects’ immediate focus
is on sharing data with a primary principal investigator
or group, while others focus on sharing data with larger
communities. Although making data accessible for download
over the Internet lowers the barrier to accessibility for a
potentially large number of consumers, doing so is only a
small part of a larger landscape of collaboration and sharing.

Understanding the process of how science is
actually done, what information needs to be
captured and where the data is generated are
key issues that must be addressed to enable
effective data sharing.

–Environmental Molecular Sciences Laboratory
[11]

The use cases provide several compelling reasons why col-
laboration and sharing is important. First, sharing software
has the potential effect of reducing costs, particularly of
software development. The idea is that redundancy of effort—
software development—is reduced when key methods and
tools can be reused across different projects. Sharing data,
particularly curated data, would be to reduce the duplication
of effort in data creation, as well as for data re-use for further
high-quality research. Another benefit would be that it could
lead to more algorithms and software being made available
to the community, as researchers write code that can be
benchmarked and used against curated data.

One concept that is central to achieving the ability to share
data and tools is the idea of community-centric, or “standard”
data models and formats for both data and metadata. The
climate community, for example, has realized a degree of
success in sharing data as well as software tools for working
with data, due to its use of a data model or format that has
broad community support. This idea is identified as a need
or an impediment in several of the science use cases.

Current technologies are inadequate for shar-
ing [. . . ] data between group members. The
EOS community needs a more fluid means for
sharing data and working together.

–Environmental Molecular Sciences Laboratory

The use cases identify several different ideas that are needs
for or impediments to collaboration and sharing. One is
that the issue of data and software sharing does not have
program-wide visibility. As a result, progress in this space
is ad hoc, with solutions for distributing data or software
emerging on a per-facility or per-PI basis, with little or no
coordination. Thus, there are many different sources of data
and software, resulting in duplication of effort as well as a
high barrier to finding data or software. Impediments that are
most detrimental are related to the issues of data sharing and
collaborating in large groups, methodological transparency,
and dissemination and archival capabilities. Data and/or
software that is “custom” and not curated is unlikely to be
widely used. Better methods—interfaces and software tools,

infrastructure—are needed to search and subset data without
having to download an entire data set.

Impediments that are most detrimental are
related to the issues of data sharing and col-
laborating in large groups, methodological
transparency, and dissemination and archival
capabilities.

–Environmental Molecular Sciences Laboratory

There is a deep interplay between the topic of collaboration,
and the related but orthogonal topics of the overall data
lifecycle, the usability of data and the associated challenges
of metadata/provenance capture and long-term data archival
and curation, and EOS’s use of computing and data facilities.
The interactions between these different focus areas is made
more challenging by the rapid rate of growth in data size and
the rate of data acquisition. Stated differently, successes in
these related areas are building blocks for success in all areas
of collaboration and data sharing.

8 Data Lifecycle

The term data lifecycle refers to all stages of data collection,
movement, processing, analysis, management, curation, and
sharing. Data collected by observation or experiment has
a potentially long lifespan, and a potentially large set of
consumers, but there presently is no solution or approach for
data curation, quality management, and long-term distribu-
tion within DOE-SC that is generally and broadly applicable.
At the same time, data retention policies at DOE-SC com-
puting facilities are not designed for long-term retention nor
for widespread dissemination.

EOS projects have “data lifecycle” needs that are signifi-
cant, well defined, and that go well beyond what is provided
by the current set of programs and projects in the ASCR
computing facilities and research portfolio. EOD can have a
long lifespan, yet there is no program-wide view or approach
for the long-term curation, storage, and dissemination of
such data; one EOS project indicated that it relies on what-
ever capabilities are provided by journals in association with
publications as its solution to this problem.

. . . our only archival process right now is that
provided by the published journal.

–Spallation Neutron Source [23]

Two key motivations for retaining data sets for a long
period of time are for having a reference data set for use in
evaluating the effectiveness of new methods over time, and
for the opportunity for new discoveries not originally foreseen
at the time the data was collected. Over the years, some
data sets produced by simulation will emerge as a community
reference. For such collections, which are likely to be used by
many different authors in refereed publications, reproducibil-
ity of these analyses will become another reason to keep the
data, even when better and higher resolution alternatives
become available. For example, in tomography, the resulting
tomogram is of comparable size to the raw images, which
are also usually retained for the purposes of comparing the
results of different tomographic reconstruction algorithms.
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Results from projects like sky surveys may initially be fo-
cused on a few key science missions, but over time, a diverse
set of science activities can be carried out with substantial
discovery potential.

Current strategies for managing (accessing, processing,
and keeping track of) the large number of data products
are awkward at best, requiring a combination of methods.
Science user facilities like the Advanced Photon Source (APS,
[3]) do not provide a centralized and robust long-term data
archive, since this service is categorized as a user responsi-
bility. Most science user facilities have no explicit method
for long-term archival and curation, and this is identified as
an impediment. It is likely that in the future, science user
facilities will be called upon to provide long-term storage
and archival services. One stop-gap approach for long-term
archival is to rely on the infrastructure and policies provided
by the journal where a given paper is published. A welcome
addition in the data universe would be a centralized DOE-SC
facility that provides a mechanism for data archiving and
retrieval, that could be provided as an option to users at low
or no cost.

Providing more access to the data, in a man-
ner that can be used by more scientists, will
improve efficiency, increase the impact of the
science, and result in more papers per experi-
ment.

–Spallation Neutron Source

The issues related to data lifecycle management are broad,
and cut across many different areas. We have identified chal-
lenges and research needed in areas germane to this topic:
the automation of processing stages and automated data
movement in EOS, data storage and retrieval, metadata and
provenance, software engineering and infrastructure, data cu-
ration, collaboration, and interaction with computing service
facilities.

9 The Central Role of Software

Software is a critical element for all EOS projects in all
aspects of working with data and in meeting the challenges
of increasing data size and complexity. Software is used for
collecting, processing, and analyzing data, for preparing data
products, and for automating complex multi-stage operations
that may span distributed resources.

An important outcome of the workshop is the recognition
of common needs across all the science domains. Although
the computing needs of EOS projects vary from one project
to the next, all EOS projects need computing and data
storage/dissemination, along with a sustainable software
ecosystem that can evolve over time to accommodate its
data-centric requirements. This finding suggests that priority
attention should be directed toward approaches that develop
and support solutions that can be widely used by many EOS
projects and facilities.

Software methods need to be capable of supporting the
time-critical analysis and display tasks summarized above.
Software methods, such as advanced algorithms for analysis,
play a key role in improving the quality of data collected
during an experiment, thereby improving the efficiency and
quality of science. The idea is that EOS projects like beam-
lines require computational resources within minutes or per-
haps seconds when data are available and cannot abide with
the queued structure employed on leadership machines.

Because of the central role that software plays in nearly all
aspects of working with data, EOS projects are particularly
vulnerable to inefficiencies and increased costs resulting from
inadequate software. For example, time inefficiencies result
when data-centric pipelines and data movement activities
must be executed manually rather than being automated and
resilient. Inefficiencies in cost can result when a customized
software component is created for one user but is not readily
customizable or applicable to other users in the same facility,
or across other science facilities.

The biggest challenge to the facility is how to
create the scientific software needed to run
it: software for improving the experimental
process; for implementing beamline data
movement and reduction workflows; to
perform preliminary quality assurance,
visualization and reduction; for data analysis
and interpretation; for automating analysis
workflows and distribution to users.

The most serious impediment the APS
encounters is a lack of a DOE-wide view
of software needs across the BES mission.
Since each lab has its own portfolio of
responsibilities, it devotes resources to those
goals.

–Advanced Photon Source

Software technology also plays a key role in encapsulating
complexity and as an enabling technology. EOS projects
want and need to be able to make use of advances in com-
putational architectures, such as using HPC platforms for
performing data-centric operations on larger data and with
a faster turnaround. However, developing software for those
platforms is often beyond the reach of a typical scientist-
developer who may not have HPC software development
skills. When it comes to the development of HPC code, there
are fewer tools that ease the process for scientist-software de-
velopers (as opposed to computational experts) to transition
from prototype code to HPC production code. The same
idea extends to other areas of technology, such as creating
data-centric pipelines that span distributed resources.

Increasingly, both simulations and experimental data anal-
ysis are elements of integrated workflows, which should re-
siliently automate key components of the data-handling
pipeline, from collection to processing, analysis, archival,
and dissemination. Many contemporary EOS projects artic-
ulate the need to combine computing with the experiment
in real time, so as adjust experimental parameters on-the-fly
to obtain the best possible data and science result from the
experiment. Software methods need to be capable of support-
ing the time-critical analysis and display tasks summarized
above. Meeting these challenges will require more powerful
computing and networking infrastructure combined with a
capable, robust and sustainable software ecosystem focusing
on EOS needs. The flood of data available now and in the
near future presents an opportunity that can be met only
through concerted, coordinated, and sustained efforts to im-
prove the software tools, methods, and facilities (computing,
data) available to the EOS community.

Software is “digital data” that needs to undergo the rigors
of curation, in the same way as do data from experimental
and observational sciences, to facilitate its long-term archival
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preservation and widespread dissemination. To be useful,
software, like other forms of digital data, needs to have as-
sociated metadata along with documentation and examples
of use. To be long-lived, it needs to be supported, main-
tained, and disseminated, something that is often not a part
of the cost model. Wide-scale adoption of common tools
will only occur if users are convinced that those tools will
be maintained. Several use cases pointed to the desire to
distribute software together with data, to expand the usabil-
ity of data and to promote the repeatability of results as
well as to promote the use of reference data and methods.
One use case pointed out that their only practical avenue
for doing so was to rely on the archival capabilities provided
by the journal where results are published. The issues and
motivations related to software curation, preservation, and
dissemination are similar to those for other types of scientific
data.

10 Related Work

The increasingly important role of data and data understand-
ing in science is well recognized [16] along with attendant
challenges [17]. Within the scientific community, there have
been concerted efforts to capture data-centric challenges
and requirements. In 2004, the The Office of Science Data-
Management Challenge report [10] suggests that successfully
addressing challenges related to the management and under-
standing of data one of the primary obstacles facing modern
science.

These topics were revisited a decade later in 2013 in the
Data Crosscutting Requirements Review [15], with many of
the same observations as the 2004 report, but that also draw
distinctions to the differences and similarities between data-
centric issues specific to the sciences and those elsewhere,
such as finance, health care, and so forth. Also in 2013, a
National Research Council report Frontiers in Massive Data
Analysis [6] summarized analysis challenges in particular,
and highlighted the cross-disciplinary knowledge required
to address these challenges. These issues are not unique
to Department of Energy science areas. The biological and
medical sciences, for example, have also grappled with issues
of large-scale distributed data sets that require significant
computational resources for their analysis along with poten-
tial approaches [20] that are similar to those described in the
2015 EOD report.

From 2015, The Future of Scientific Workflows report [7]
examines data issues from a distributed computing perspec-
tive, where scientific data must be handled and acted on
as part of an end-to-end workflow, which may involve pro-
cessing stages cited at multiple geographic locations. The
2015 EOD report, which is the subject of this paper, takes
a broader view than these earlier reports, to include the
symbiotic relationship between the science user facilities and
computational and networking infrastructure, along with key
research targets in mathematics and computer science, that
would come into play to service those data-centric workloads
and meet scientific knowledge discovery challenges.

The increasing interplay between high-performance com-
puting and large-scale data challenges is the subject of a
recent article by Reed and Dongarra [21]. They suggest that
advances in scientific research require growth in infrastruc-
ture for both computing and for analyzing data. They also
point out the divergence in software architectures used for
traditional HPC computing and for Big Data handling, due
in part to the economics of widespread use of commodity
components in industry.

The 2015 EOD report provides perspective on some of

the challenges facing data-intensive science use of HPC facil-
ities that have historically serviced computationally focused
workloads. These challenges go far beyond what processors,
interconnects and software components are in the system,
and includes issues related to how knowledge is gained from
data, how data is specifically used by several different data-
intensive EOD science projects, and the specific impediments
standing in the way of scientific progress in the face of a
daunting deluge of scientific data.

11 Conclusions and Summary

Like many other areas of science, the science user facilities and
projects operated by the U.S. Department of Energy’s Office
of Science are challenged by an increasing deluge of scientific
data. The focus of this paper is on summarizing some of the
key findings of a workshop convened in September 2015 to
identify key challenges and new research and development
needed to meet those challenges. Whereas this paper focuses
on the key findings and challenges, that workshop report
provides considerably further depth to the findings, as well
as information contributed by workshop participants that
articulates new research and development needed to meet
those challenges.

The 2015 EOD report contains a diversity of specific rec-
ommendations for next steps towards meeting data-centric
needs. Space constraints here limit a substantial discussion
of these recommendations. In brief, they encompass both
high- and detailed-level views of the problem space. For ex-
ample, high-level issues focus on program-wide coordination
of responses and efforts so as to overcome the fragmented
and duplicative nature of how science user facilities approach
cultivating solutions to data-centric challenges. Detail-level
views focus on, for example, the need for new computa-
tional and mathematical methods for approximate and fast
modeling and analysis calculations to meet the emerging
use case of time-constrained use of HPC facilities so as to
tune experiments on-the-fly with the objective of obtaining
higher-quality experimental data.

Realizing success in meeting many of the data-centric
challenges discussed here will likely entail efforts that re-
quire program-wide coordination and visibility. Many of the
problems are simply too large and too far reaching to be
tackled by an individual investigator or individual science
user facility. For example, the objective of long-term data
archival and dissemination is something that is needed by
all EOS projects, and is something that requires significant
forethought and attention to how EOD may be used in the
future. This observation is applicable far beyond the set of
science use cases represented in the workshop’s report, and
can help guide and shape how data-centric problems in all
sciences might be approached elsewhere.

The science use cases in our workshop report reveal a trend
toward the convergence of data and computing. The uses cases
articulate both data- and compute-centric needs, and suggest
that opportunities in these research areas are increasingly
intertwined, interrelated, and symbiotic. Advances in our
ability to collect data will require advances in computational
capabilities to understand, preserve, share, and make optimal
use of data, and can positively impact the quality and value
of our science by improving the quality and reusability of the
data we collect.
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