
Talk to Me: A Case Study on Coordinating
Expertise in Large-Scale Scientific Software

Projects
Reed Milewicz and Elaine M. Raybourn

Sandia National Laboratories, 1611 Innovation Pkwy SE, Albuquerque, New Mexico 87123

Abstract—Large-scale collaborative scientific software projects
require more knowledge than any one person typically possesses.
This makes coordination and communication of knowledge and
expertise a key factor in creating and safeguarding software
quality, without which we cannot have sustainable software.
However, as researchers attempt to scale up the production of
software, they are confronted by problems of awareness and
understanding. This presents an opportunity to develop better
practices and tools that directly address these challenges. To
that end, we conducted a case study of developers of the Trilinos
project. We surveyed the software development challenges ad-
dressed and show how those problems are connected with what
they know and how they communicate. Based on these data, we
provide a series of practicable recommendations, and outline a
path forward for future research.

I. INTRODUCTION

Large-scale scientific software projects are among the most
knowledge-intensive undertakings, consisting of extremely di-
verse communities of practice and inquiry. For example, a
climate modeling application can consist of numerous codes
for modeling the atmosphere and the ocean, each of which is
written by a distinct research team. The effective realization of
such an application in an high-performance computing (HPC)
environment relies heavily upon people with backgrounds in
computational science and software engineering. The orches-
tration of that talent demands disciplined project management
and communication with stakeholders. Thousands of person-
years of labor are poured into the software development over
the course of decades.

Given the long lifespan and criticality of these projects,
sustainability has been a focal point of research in recent
years. By sustainability, we mean the ability of the software
to continue to function as intended in the future, which is
necessary for the reliability and reproducibility of research [1].
Sustainability is a multi-faceted challenge that encompasses
both social and technical aspects of software development.
In this work, we focus on the social aspect: the creation,
communication, and use of knowledge integral to the scien-
tific software development process. Large scientific software
projects require diverse forms of expertise, bringing together

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract de-na0003525.

people of different backgrounds and perspectives; to have
success, there must be close, effective interaction among those
parties [2]. Unfortunately, as we attempt to scale up these
projects, we are confronted by barriers – logistical, technical,
and cultural – that make it hard for people to share and apply
what they know. These challenges increase both the cost and
difficulty of software development and maintenance which
ultimately threatens sustainability.

From a software engineering perspective, more work is
needed to create better tools and methodologies to manage
and maintain that software development knowledge. However,
as Dennehy and Conboy observe, the culture and context
of a software project are “critical determinants of software
development success” and that “a method, practice, or tool
cannot be studied in isolation” [3]. For these reasons, we offer
a survey and study of knowledge management practices within
the Trilinos project, a keystone scientific software library at
Sandia National Laboratories [4]. In order to identify targets
for intervention, we model how knowledge is created and,
shared and its relationship to common software development
challenges.

A. Motivating Example

Robust public investment into next-generation supercom-
puters is vital to the scientific enterprise. At the same time,
the enormous sums of money that must be spent to construct
and maintain these tools make it incumbent on their users to
be accountable to the taxpayers. For this reason, government
agencies stipulate rigorous requirements that must be met both
by the machine and the software that it runs; a supercomputer
must provide sufficient capabilities and the software must be
able to fully utilize them. In the acceptance testing phase of
supercomputer acquisition and software utility, participating
research organizations put forward representative codes to be
run on a novel architecture, and code performance is then
compared against the capabilities advertised by the vendor.

In the past year, the government requirements were tested
when an well-respected application powered by Trilinos strug-
gled to scale beyond 217 Message Passing Interface (MPI)
processes during an acceptance phase, resulting in a nearly
30% drop in performance on the target architecture. Al-
though all other applications passed the acceptance test and
the contract was completed successfully, the issue flagged a
potential “time bomb” for numerous applications and had to

ar
X

iv
:1

80
9.

06
31

7v
1 

 [
cs

.S
E

] 
 1

7 
Se

p 
20

18

http://arxiv.org/abs/de-na/0003525


be corrected [5]. A team of researchers was given several
months to locate the bug. The issue was finally resolved by
a Trilinos scientist-developer who volunteered three weeks of
his time to uncover it. The ultimate cause of the issue was a
bug with two causes. First and foremost, a Trilinos meshing
package upon which applications depended misused an MPI
function, MPI Reduce scatter, due to a misunderstanding of
its semantics. In addition to this, it was found that the vendor-
supplied implementation of the function was inefficient, which
contributed to the overall slowdown. The issue was fixed
by splitting the call into separate calls to MPI Reduce and
MPI Scatter.

The lead author in this work is embedded with the Trilinos
team, and both authors are members of the Interoperable De-
sign of Extreme-scale Application Software (IDEAS) project1,
which focuses on improving the productivity and sustainability
of scientific software projects. As part of that mission, we
carried out a subsequent investigation into the incident which
revealed a deeper mystery: the exact same bug had been
introduced, found, and fixed in Trilinos multiple times over
the years. The offending code was first introduced in three
packages between 1998-2000 and fixed in 2005, copied line-
for-line into a fourth package in 2004 and fixed again in 2015,
and finally introduced into the meshing package in 2014 and
fixed in 2017. In each case, the discovery and solutions were
socialized, comments were made in the code, and notes were
left in an issue tracker, but that information did not flow to
the right parties in each subsequent incident.

We stress that none of this reflects poorly upon the project;
Trilinos is the work of a preeminent, world-class team of re-
searchers and developers. Rather, this presents an opportunity
for us to better understand the challenges that large scientific
software teams face. As Moe et al. describe, the hallmark of
large-scale software is that no one can know everything [6].
Good, strategic communication and organization of expertise
are necessary for a team to reach its full potential. For
scientific software developers, that leads to several pertinent
questions. How do researchers share (or fail to share) their
knowledge? What practices or policies could be enacted to
prevent or mitigate problems like the ones we have described
in our motivating example? These we formulate as specific
research questions:

• RQ1: Do scientific software developers face problems in
sharing their knowledge?

• RQ2: How does individual and organizational knowledge
affect those problems?

• RQ3: How is that knowledge communicated?

II. BACKGROUND

A. Terminology

There is no single, agreed-upon definition for what con-
stitutes knowledge in a project. In this work, we use the
definition provided by Davenport and Prusak, who state that
knowledge is “a fluid mix of framed experience, values,

1https://ideas-productivity.org

contextual information, and expert insights that provides a
framework for evaluating and incorporating new experiences
and information. It originates in and is applied in the minds
of knowers. In organizations, it often becomes embedded not
only in documents or repositories but also in organizational
routines, processes, practices, and norms” [7]. For example,
Parise et al. show how a senior research scientist at a company
is valuable not only for their own expertise but also for
their “critical relationships” with other knowledgeable people
(e.g., in academia) [8]. In other words, a successful research
project must exercise both individual knowledge and those
individuals’ connections to other sources of knowledge.

We adopt the refined model introduced by Kelly, one built
upon a decade of invaluable studies of scientific software
development that better captures this dynamic and model the
communication environment of our case study [9]. It consists
of five components or knowledge domains: real world (the
phenomena being studied), theory-based (the models used
to understand those phenomena), software (the development
conventions and practices), execution (the tools and environ-
ment needed to create and run the software), and operational
(the relationship between the use of the software solution and
the real world problem). Each of these elements both inform
the solution and many drive each other; for example, there
is feedback between the theory and the real world, between
writing the software and executing it on the hardware, and
between the use of the software and its application to the real
world problem. We used this model in developing our survey
and in interpreting our findings.

B. Knowledge in Large-scale Software Projects

The phenomena we study in this work are based on those
in LaToza et al., a study of the work habits and mental models
of software developers [10]. In that work, the authors found
that developers go to great lengths to maintain a tacit mental
model of their software project, one that is reinforced through
face-to-face communication with others and clear delineation
and awareness of responsibilities. These needs become more
difficult to satisfy as the size and scope of software projects
grow. Scaling up software development methodologies that
emphasize close communication and coordination (e.g., agile
methodologies) is currently an open area of research [11] [12].
This is especially pertinent for scientific software projects
which often follow agile-like development methods [13]. The
available evidence suggests that knowledge sharing at scale
requires intentional practices that are tailored to organizational
culture [14], but it is not clear just what that means for
scientific software.

C. Scientific Software Culture

Studies of complex R&D projects in industry have shown
that a lack of a common language creates barriers to the
communication and codification of knowledge generated by
project activities [15]. Because of the intimate relationship be-
tween software and science, the development process requires
a diverse assortment of both domain experts and software



engineers [16], and these teams are frequently distributed
and multi-organizational [17]. As a multidisciplinary endeavor,
each member of a project can have highly specialized knowl-
edge that isn’t easily transferred from one person to another.
This is also a frequent source of conflict, such as between
scientists and software engineers [18] [19], as well as between
scientists from different disciplines [20] [21].

Scientists typically see software as a tool for creating
and expanding scientific understanding, and less emphasis is
placed on activities which concern knowledge of the software
itself, such as planning or documentation [18]. There is
often an implicit assumption that a scientific model and its
implementation in code are connected such that knowledge of
one translates to the other. This leads scientists to use software
that they don’t truly understand and write software without
creating artifacts needed to understand it [22]. Additionally,
within the scientific community at large, there is a drive to
produce publishable research, as publications are a pathway
to funding, positions, and prestige [23]. Studies have shown
that scientists, when placed under pressure to publish, tend to
focus on activities that lead to publications while neglecting
those which do not [24].

In many respects, such competing vocabularies, methods
and agendas are not unique to the scientific software domain:
the success of distributed and multidisciplinary teams almost
never happens by accident. In the words of Ratcheva, “simply
putting people together in groups, representing many disci-
plines, does not necessarily guarantee the development of a
shared understanding” [25].

III. CASE STUDY

We surveyed developers of the Trilinos mathematical li-
brary project at Sandia National Laboratories to investigate
the research questions presented in Section 1. Trilinos is a
confederation of several dozen semi-independent packages.
While packages may differ from one another in purpose, size,
maturity, testedness, clients, and development teams, they are
generally interoperable with one another, sharing datatypes,
standardized interfaces, and a common vision for the project’s
ecosystem. It is rare for a client to use the entire codebase,
rather they select a subset of the packages that pertain to their
application. This leads to a combinatorial explosion in the
number of ways in which Trilinos packages can be configured,
built, and arranged. To give some perspective on the scale and
complexity of the software, we characterize Trilinos in the
context of other, similar DOE projects on Table I. The project
is available as open-source software, hosted on GitHub2,
and follows a master-development branch model in which
contributions are promoted to master if and only if all tests
pass.

We recruited participants for the survey through an internal
developers’ mailing list and print advertisements. The survey
was distributed as a PDF file and as printed copies, and respon-
dents provided code names to anonymize their identities. The

2https://github.com/trilinos/Trilinos

TABLE I: Characterization of Trilinos compared with findings
of Post and Cook 2000 [26]

Property Typical DOE CSE Project

Code Complexity 20-50 independent packages
Code Size 500,000 LOC
Project Age 10-35 years
Release Schedule 1-2 major releases, 20-100 minor releases per year.
Size of Teams 3-25 professionals

Trilinos

Code Complexity 57 packages
Code Size 2,247,210 SLOC
Project Age 17 years
Release Schedule 2 major releases per year
Size of Teams 3-6 professionals

Fig. 1: A visual summary of the demographic information
collected by our survey.

mailing list consisted of 60 individuals and, among these, 29
developers were considered to be active, primary contributors.
We received 36 responses, with 26 of which derived from
the “primary” group, 5 from more peripheral developers on
the mailing list, and an additional 6 responses from (mostly
junior) members who were not subscribed to the list. This
gives us a confidence level of 95% with an interval of ±6%
if we only consider the primary developers and ±11% for the
entire population.

Our questionnaire consisted of multiple sections: demo-
graphic information, career priorities, methods of communica-
tion, areas of expertise, and problems encountered in software
development. Additionally, we requested the GitHub handle
of our respondents (removed from our published dataset) so
that we could cross-reference the survey results with metrics
on software contributions. We begin by presenting the demo-
graphic information, which is summarized in Figure 1. The
following are the highlights from this section:

• 86% of respondents had completed their PhD, and 83%
were members of staff (the remainder being interns,



TABLE II: A summary of the findings of our analysis.

Research Questions Findings
RQ1. Do scientific software de-
velopers face problems in sharing
their knowledge?

The majority of respondents agreed
with 13 out of 19 of our pro-
posed problems (see Table III). We
found that position in the organi-
zational network was moderately
correlated with the total number of
problems they reported, which is
to say that well-connected people
reported fewer problems.

RQ2. How does individual and
organizational knowledge affect
those problems?

We found weak correlations be-
tween operational and execution
domain knowledge and four of
the problems we studied. We also
observed that ten problems are
weakly correlated with having ac-
cess to other people in specific
areas of knowledge.

RQ3. How is that knowledge com-
municated?

Communication strategies appear
to affect eight problems, most
notably in the case of face-to-
face communication and expertise-
finding problems. Additionally, the
frequency and variety of commu-
nication correlates positively with
self-perception of knowledge.

contractors, and postdocs, etc.). Collectively, respondents
had between 233 to 345 years of combined experience,
with the median respondent having from 11 to 15 years
of experience.

• 77% of respondents reported that they worked on 4 or
more projects simultaneously, which typically means that
they spend half their time working on a primary project,
with the other half divided between three or more smaller,
focused initatives. In total, 72% of respondents reported
working with 6 or more people on a regular basis, with
the median respondent working with between 6 and 10
people.

• The research interests among Trilinos scientist-developers
are very diverse, and, while there is some overlap, none of
the respondents listed shared all the same interests. As a
rule, projects like Trilinos do not hire for redundancy;
each project member contributes unique skills to the
project.

In other words, our respondents tend to be highly educated,
uniquely qualified, and in regular contact with a small fraction
of the overall Trilinos team.

IV. ANALYSIS

In this section, we present the findings of our survey.
Our presentation centers on commonly encountered software
development issues and their relationship to individual and
organizational knowledge. In Section V, we provide a discus-
sion of the findings. Where correlations are provided, we use
Pearson’s r and set α = 0.05 as the threshold for p-values to
reject the null hypothesis. Survey materials and anonymized
survey responses can be found online3.

3https://github.com/rmmilewi/KnowledgeManagementSurvey

A. Defining the Problems

Recall the research questions presented in section 1 and that
our RQ1 study question focused on identifying challenges,
or problems, in sharing knowledge. For RQ1, respondents
were presented with a list of commonly encountered issues
in software development based on those in LaToza et al. [10],
a study of the work habits and mental models of software
developers. For each, participants reported whether the issue
was not a problem, a moderately difficult problem, or a
difficult problem. The overall results can be seen in Table III.
The median respondent reported having eleven of the nineteen
problems, two of which were considered especially difficult.
Our survey results suggest a strong consensus on the problems
we listed, with majority support for 13 of the 19 problems.

The three most commonly reported problems were dividing
attention between projects (pdividedattention), understanding
other’s code (potherscode), and finding bugs related to code
(pbugrelatedcode). Given the widespread agreement on so many
problems, we first want to test whether problems in each
category are strongly correlated with one another, which would
suggest that they measure the same construct; in other words,
might our problems reflect a small number of common causes?
We can infer this using Cronbach’s alpha (which we will refer
to as Cα) as a measure of interrelatedness or reliability [27].
The score ranges from 0 to 1, and the rule of thumb is
that Cα >= 0.70 suggests a set of items has good internal
consistency; strong internal consistency in survey measures
suggests that they all measure some common, latent variable.
In Table IV, we see that this holds true for only two of the
five categories. From this, we can conclude that while many
problems are common, they are often independent of each
other and will need to be addressed separately (e.g., finding
a reviewer for your code and finding someone to talk about a
bug require different information).

Likewise, we also asked whether these problems could be
explained by simple demographic or organizational measures
(e.g., do more experienced people have fewer problems),
without our nuanced survey data. For this, we examined
the relationship between problems and organizational network
structure by looking at team composition. The Team API
of GitHub allows projects to group developers into teams,
and the Trilinos project uses this feature to match developers
with particular packages or cross-cutting concerns (e.g., the
framework team); we found 57 teams, one of which was
a global team of all developers that we excluded from our
analysis. From this data we produced the team member graph
seen in Figure 2, which provides a rough estimation of the
lines of communication between developers. For each node
in the graph, we computed its triangle count, which is the
number of triangles (cyclic paths of length 3) formed between
it and its neighbors; triangle counting is a common measure
in social network analysis and it is the underpinning for
measures such as the clustering coefficient (see [28]). As we
illustrate in Figure 3, there is a moderate inverse correlation
between triangles and problems: the more embedded a person



TABLE III: Respondent ratings of proposed problems. In the
survey, problems were presented without headings and in a
different order.

Problem

This is a problem (%
agree)
/ a difficult problem (%
agree)

Code Understanding
Understanding the rationale behind a piece
of code (pcoderationale)

63.9% (13.9%)

Understanding code that someone else
wrote (potherscode)

83.3% (22.2%)

Understanding the history of a piece of code
(pcodehistory)

58.3% (8.3%)

Understanding code that I wrote a while ago
(pyouroldcode)

22.2% (0.0%)

Task Switching
Having to switch tasks often because of
requests from my teammates or manager
(ptaskrequest)

75.0% (38.9%)

Having to switch tasks because my current
task gets blocked (ptaskblocked)

55.6% (11.1%)

Having to divide my attention between
many different projects (pdividedattention)

94.4% (58.3%)

Modularity
Being aware of changes to code elsewhere
that impact my code (pchangeothers)

58.3% (11.1%)

Understanding the impact of changes I make
on code elsewhere (pchangeself )

61.1% (2.8%)

Links Between Artifacts
Finding all the places code has been dupli-
cated (pduplication)

58.3% (2.8%)

Understanding who “owns” a piece of code
(pownership)

38.9% (0.0%)

Finding the bugs related to a piece of code
(pbugsincode)

75.0% (8.3%)

Finding code related to a bug
(pbugrelatedcode)

83.3% (11.1%)

Finding out who is currently modifying a
piece of code (pmodifiers)

33.3% (0.0%)

Team
Convincing managers that I should spend
time rearchitecting, refactoring, or rewriting
code (pconvincingmanagers)

41.7% (25.0%)

Convincing developers to make changes to
code I depend on (pconvincingdevelopers)

61.1% (16.7%)

Expertise Finding
Finding the right person to talk to about a
piece of code (prightpersoncode)

50.0% (8.3%)

Finding the right person to talk to about a
bug (prightpersonbug)

38.8% (5.6%)

Finding the right person to review a change
before a check-in (prightpersonreview)

25.0% (5.6%)

is in the team network, the less likely they are to have
problems. Additionally, the triangle count correlates with three
specific problems at the α = 0.05 level: pyouroldcode (r =
−0.335, p = 0.045), pbugsincode (r = −0.465, p = 0.004),
and prightpersonbug (r = −0.353, p = 0.004).

Our next question is whether this embeddedness is merely
a proxy of any of our other demographic variables. We see
that embeddedness is neither a function of experience or
seniority (r = −0.015,p = 0.932) nor the number of projects
(r = 0.107,p = 0.533) nor the total number of people that
people regularly work with (r = −0.242,p = 0.155). More-
over, none of these demographic measures can directly account
for the number of problems that people face. We do find

TABLE IV: Cronbach’s alpha scores for problem categories.

Category Cα
Code Understanding 0.770
Task Switching 0.715
Modularity 0.474
Artifacts 0.595
Team 0.594
Expertise Finding 0.579

Fig. 2: A graph of Trilinos developers on GitHub assigned to
teams, where each edge indicates that two developers belong
to the same development sub-team. The graph is color-coded
to reflect the number of triangles formed between a node and
its neighbors, red being more interconnected and blue being
less interconnected.

Fig. 3: A linear regression on the number of problems re-
ported by developers as a function of their triangle count
(r = −0.434,p = 0.008). Even without considering our survey
data, the plot demonstrates how problems of understanding and
awareness are correlated with the way in which developers are
situated in the organization.



three problems that have weak correlations with these factors:
pbugrelatedcode (r = −0.350,p = 0.036), and the number
of projects and both pcodehistory (r = 0.361,p = 0.030)
and pchangeothers (r = −0.342,p = 0.041). However, even
though many of the problems we listed relate to understanding
and awareness, raw quantities of experience and contact with
others do not correlate with the overall number of problems
people face. From this, we can conclude that we need to dig
deeper into what and who people know, how they know them,
and why.

Summary: All of the problems we investigated are, in some
sense, problems of coordination, understanding, and aware-
ness; they concern what people know, who they know, and how
they use that information. These challenges are certainly not
unique to scientific software, but they take on added weight
and meaning given the demanding and knowledge-intensive
nature of the work. Our analysis of the survey data suggests
that these problems have multiple underlying drivers that do
not neatly align with our categories. The closest we can come
to a unifying explanation is that the number of problems
respondents have is moderately correlated with embeddedness
in the organizational network. This is not altogether surprising:
studies of R&D organizations have often drawn attention to
the value of network centrality in amplifying an individual’s
impact and increasing their access to knowledge (see [29]).

B. What and Who Do They Know?

For RQ2, we want to characterize the range of expertise
of each participant and their access to others with expertise.
We selected eight topics corresponding to the five knowledge
areas described in Kelly 2015 [9], and these are described in
Table V. For each topic, we asked participants to provide a
self-assessment of their own familiarity with the topic on a
5-point Likert scale ranging from “not very knowledgeable”
to “very knowledgeable”. Additionally, we asked participants
whether they worked with someone else that they “could turn
to for help on that topic”. Our survey results can be seen in
Table V.

As a litmus test for our topic choices, we compare our
survey findings against the Kelly five factor model introduced
in section II by aggregating measures according to category,
as can be seen in Figure 4. Our findings lend strong support to
the model with agreement on eight out of ten possible edges.
We found a moderate relationship between operational and
software knowledge (r = 0.639,p = 0.00004) which is not
predicted by the five factor model; this is likely an artifact of
the Trilinos team being library developers (i.e. writing code
for other people’s code). We also note a missing edge between
theory and software knowledge: many Trilinos developers
translate theory into code, but there’s no support for the notion
that one domain is used to increase knowledge in the other.
If we dig into the data, we find that scores increase with
years of experience for every topic except for mathematics
(r = 0.001,p = 0.994). This suggests that self-perception of
knowledgeability in this area is relatively fixed, so our survey
instrument may not be picking up on any cross-pollination

Fig. 4: A map of correlations between knowledge categories
significant at the α = 0.05 level. Dashed blue lines indicate
relationships predicted by the model, and solid red lines
indicate relationships suggested by our data.

that may happen between theory domain and software domain
topics.

We found knowledge had a weak inverse correlation with
three of the of the nineteen problems and a moderate inverse
correlation with one. First, finding the right person to talk
about a piece of code (prightpersoncode) was less likely a
problem among respondents with knowledge of version control
(r = −0.337,p = 0.044) and hardware (r = −0.348,p =
0.037). Second, finding duplicated code (pduplication) was
seen as easier by respondents with high knowledge of compil-
ers (r = −0.362,p = 0.030) and hardware (r = −0.336,p =
0.045). Third, knowledge of client codes and of version control
were related to the problem of understanding code written
by others (potherscode, r = −0.344,p = 0.040 and r =
−0.365,p = 0.040). Finally, compiler expertise has a moderate
correlation with the problem of determining code ownership
(pownership, r = −0.503,p = 0.002). Taken all together, this
suggests that the common driver in these findings is a deep
awareness of the work context, such as the needs of clients or
the execution of the code on target architectures. Given our
findings and sample size, more research is warranted.

We also found that people with a high knowledge of design
were more likely to report problems with receiving requests
to switch tasks (r = 0.353,p = 0.035) and having to divide
their attention between projects (r = 0.337,p = 0.043).
Additionally, people with a high knowledge of math were
more likely to have problems with tracking which people are
modifying different pieces of code (r = 0.358,p = 0.037).

Next, we wanted to know what benefits there are to be-
ing connected with other people who have knowledge. We
carefully worded the prompt to check for contacts that a
respondent “could turn to for help”, with the expectation that
people who have problems are more likely to seek out people
who can help them. The average respondent reported having
contacts that covered 4.4 of the 8 topics, and the amount
of coverage was found to be moderately correlated with the



TABLE V: Results for knowledge self-assessment questions

Topic Knowledge Area Histogram Median (out of 5) % know someone else
Knowledge of the real-world phenomena that the software is used to study. Real-World 3 63.8%
The selection of mathematical techniques to attack a problem. Theory 4 63.8%
Software design Software 4 50.0%
Software construction Software 5 50.0%
Compilers and compiler optimizations Execution 4 55.0%
The effects of hardware architecture on algorithm performance Execution 3 58.3%
Using a version control system Execution 5 55.0%
How the software is integrated with client codes Operational 4 47.2%

number of problems (r = 0.455,p = 0.005). Additionally, the
only indicator that someone had a contact for one topic was
that they had a contact for another topic (average r = 0.808,
average p = 0.0000002). This is to say that the ability or
tendency to engage in this kind of networking was independent
of an individual’s background or position in the team.

Ten of the nineteen problems are weakly correlated with
having people to reach out to (average r = 0.389, average
p = 0.0245) spread across the following categories: code
understanding (potherscode,pcodehistory, and pyouroldcode), task
switching (ptaskrequest,ptaskblocked, and pdividedattention),
modularity (pchangeothers), links between artifacts (pownership
and pbugsincode), and team (pconvincingdevelopers). This may
suggest that people on the Trilinos team are motivated to seek
out knowledge-related contacts in order to maintain awareness
of code and to negotiate and coordinate with others.

Summary: Knowledge in multiple domains is critical at
every stage of the scientific software lifecycle. However, while
the problems we researched in this paper pertain to scientific
software development, they are not problems solved by writing
better software or doing better research. Recall the model pro-
posed by Kelly in section II: real-world, theory, and software
domain knowledge provided no measurable benefit. On the
other hand, operational and execution domain knowledge were
correlated with four of the nineteen problems; the common
denominator is a deep awareness of how the software is
assembled and used — knowledge which helps bridge the
gap between different domains of activity. Finally, we found
that the majority of problems were correlated with seeking
out help from others. For example, people who had problems
understanding other’s code were more likely to have a contact
knowledgeable in software construction (r = 0.447,p =
0.006).

C. How do they Communicate?

Finally, we want to know how expertise is communicated
among Trilinos developers, and how it is correlated with other
survey questions. We provided respondents with a list of
different communication media, and for each we asked them
to describe how frequently they used them on a 5-point scale
from “never or not in the last year” to “daily”. The results
can be seen in Figure 5. We found that knowledge scores
were moderately correlated to communication scores in that
those who communicated more frequently considered them-
selves more knowledgeable and vice versa (for average scores,
r = 0.491, p = 0.002). Meanwhile, eight of the nineteen

3%

11%

11%

36%

36%

47%

28%

25%

8%

22%

50%

81%

81%

78%

83%

86%

64%

61%

42%

33%

33%

28%

25%

22%

19%

11%

11%

8%

6%

0%

11%

25%

28%

22%

31%

19%

44%

50%

69%

58%

39%

8%

11%

17%

17%

Documentation, code comments, or tutorials

Issue tracking and task management software

Team collaboration software

Social media

Personal instant messaging services

Videoconferencing software

SMS text messages

Conference phone calls

One-on-one phone calls

Public mailing lists

Private email exchanges

Large meetings with multiple teams or
stakeholders

Regular planned meetings

Impromptu meetings with multiple people

One-on-one conversations

100 50 0 50 100
Percentage

Response
Never or not in the last year

Less than once a month

Monthly

Weekly

Daily

Fig. 5: The results of the Communications portion of the
survey, which examined how and how frequently developers
communicated with each other.

problems were correlated with differences in communication
strategies.

Face-to-face communication was a contributor to all prob-
lems in the expertise finding category. Finding a reviewer for
code (prightpersonreview) was inversely correlated with fre-
quent one-on-one meetings (r = −0.360,p = 0.031); a similar
relationship was found for one-on-one phone calls and finding
someone to talk about a bug (prightpersonbug,r = −0.403,p =
0.016). Unstructured meetings with multiple people, mean-
while, was implicated in finding the right person to talk about
a bug (r = −0.360,p = 0.043). Finally, large meetings with
multiple stakeholders were correlated with both finding people
to talk about code (prightpersoncode,r = −0.383,p = 0.021)
as well as bugs (r = −0.339,p = 0.031). The takeaway
is that these problems are a function of close and sustained
communication, moreso than mere awareness of others.

Meanwhile, we found that digital communications were ef-
fective at solving some challenges while fueling others. Private
email was correlated with understanding of how other people’s
distant changes may affect your code (pchangeothers,r =



−0.372,p = 0.430), but it is also a high-bandwidth channel
of communication correlated with divided attention problems
(pdividedattention,r = 0.437,p = 0.008). Likewise, video
conferencing has made it possible to keep people involved
in many different projects, even when separated over great
distances, but it also is correlated with divided attention
(r = 0.451,p = 0.006). Meanwhile, team collaboration
software (e.g., Jira, Confluence, etc.) are inversely correlated
with the problem of knowing who responsible for work items
(pownership,r = −0.329,p = 0.50) as well as piecing together
the origins of bugs (pbugrelatedcode,r = −0.383,p = 0.021),
but unaccounted slack time which could be spent on rearchi-
tecting and refactoring activities may be harder to come by
(pconvincingmanagers,r = 0.401,p = 0.015). Lastly, we found
that use of documentation was inversely correlated with the
problem of bug finding (pbugrelatedcode,r = −0.396,p =
0.016).

Summary: Our analysis suggests that quantity and quality
of communication are correlated with eight of the nineteen
problems. Frequent face-to-face communications may enable
expertise-finding activities, implying a need for ongoing,
sustained contact. Next, digital communication strategies are
useful for protecting modularity and understanding the links
between artifacts, but the communication overhead also intro-
duces new challenges (e.g., dealing with divided attention).
Finally, knowledge assessments seem to mirror communica-
tion assessments; those who communicate more know more,
or at the very least are more confident in their knowledge.

V. DISCUSSION

As we attempt to scale up the production of scientific
software to meet the demands for innovation, we are beset
by problems of understanding, coordination, and awareness.
These are complex and multi-faceted issues for which there
can be no single solution. In our case study, we found that the
number of problems that respondents reported was, in some
sense, a reflection of their “embeddedness” in the team, which
motivated further investigation into how expertise is situated
and accessed.

The most useful forms of expertise were those that allowed
respondents to position themselves between domains of ac-
tivity, namely between the code and the machine (execution
knowledge) and between the developers and the clients (oper-
ational knowledge). The benefit of that knowledge is indirect.
For example, respondents who know more about compilers had
fewer problems identifying code ownership, but this is likely
because compiler experts place more importance on tracking
the sources of different codes. Likewise, people with a high
knowledge of design had more attention problems, and this
is probably because design work supports and coordinates the
activities of many different people. Other relationships that
fall out of the data, such as between knowledge of math
and tracking code modifications may have more complex
etiologies; participants who place a stronger focus on research
and skills that support research may be devoting less time and
energy towards maintaining awareness of the software project.

TABLE VI: The number of problems in each category that
have a statistically significant relationship with the items
studied in our survey.

Problem Area Back-
ground

What
They
Know

Knowing
Who
Knows

How
They
Commu-
nicate

Code
Understanding

(2/4) (1/4) (3/4)

Switching Tasks (2/3) (3/3) (1/3)
Modularity (1/2) (1/2) (1/2)
Links Between
Artifacts

(2/5) (3/5) (2/5) (2/5)

Team (1/2) (1/2)
Expertise
Finding

(1/3) (1/3) (3/3)

Most of the problems addressed in this study are not able
to be solved by individuals in isolation, a fact that motivates
respondents to seek out contacts across different areas of
expertise. This was especially important for people having to
negotiate and coordinate with others to carry out work and for
those trying to maintain awareness of code written by others.
Seeking out help did not reduce the frequency with which
respondents reported problems, which implies that this is a
risk mitigation rather than a risk reduction strategy. We infer
that mere awareness and/or periodic contact is not enough to
reduce the occurrence of issues: resolution of several of the
problems we studied depended upon the quantity and quality
of contact with others. Frequent communication had a positive
correlation with knowledge across the board. With respect
to particular problems, frequent face-to-face communications
were important for locating and using other people’s expertise.
Meanwhile, digital communications were found to help with
change awareness and bug-finding, but also had the potential
to exacerbate attention problems and create new bureaucratic
barriers.

A. Recommendations

The phenomena described in this paper are very common
among large software development projects. However, not all
solutions readily translate to the scientific software domain.
Sletholt et al., a literature review on the use agile practices
in scientific software development, found support for some
agile methods but not others [13]. The authors also cau-
tion that their evidence is strongest when considering “small
projects with relatively few team members.” For example, in a
project like Trilinos, where the number one complaint among
developers is having too many projects and not enough time,
daily stand-up meetings may not be a realistic solution for
everyone. This being said, we have identified several well-
supported solutions that we believe may be a good fit for large
scientific software teams like Trilinos.

Empowering knowledge brokers: Boden et al. call atten-
tion to the role of knowledge brokers in distributed software
development, that is, people capable of acting as bridges
between different teams and domains of expertise; knowledge
brokers are considered critical to enabling the flow of informa-



tion between different sites [30]. Brokers tend to play an in-
formal role in filling in structural holes in social networks, but
works like Parise et al. 2006 argue that organizations should
give formal recognition and power to these people [8]. In our
case study, almost all of the Trilinos team is located within
the same research building, but this is not a good guarantee
of team cohesion: a recent study of R&D organizations found
that the frequency of scientific collaboration drops off given
100 feet of distance between offices [31]. Along these lines,
we note that 33% of our respondents indicated that they knew
no one they could turn to for help in any of the knowledge
areas while having an average of 5 different problems that
could potentially be mitigated by having useful contacts; this
is a situation where brokers could be helpful.

Cultivating organizational awareness: A benefit of having
strong networks is the potential for serendipitous encounters.
Santos et al. point out that the most effective knowledge
sharing in complex R&D projects takes place in bars after
work [15]. While strategies such as having knowledge brokers
can help people locate specific expertise on demand, passive
and casual exchanges of knowledge can clue people in to
opportunities they might not have known about otherwise. This
is echoed by Schossau and Wilson 2014, who found that one of
the “completely unanticipated” benefits of Software Carpentry
workshops was that they promoted awareness of technologies
and methods, even if that information was not immediately
useful [32]. It is possible to create these conditions through
events such as interdepartmental lunches and seminars.

Encouraging integrative work: As our survey data show,
quality (not just quantity) of interactions matters for problems
such as expertise finding. This echoes the findings of Hara
et al., who distinguished between complementary and inte-
grative collaborations in research groups, the former requiring
awareness and the latter requiring frequent, close communi-
cation [20]. In our case, we found that 36% of respondents
reported having no daily face-to-face interactions with other
coworkers; the value of quiet isolation notwithstanding, there
is also much to be said for close collaboration. However,
the solutions in this category make greater demands on in-
dividuals. Pair programming, for instance, has been shown to
have great potential in conventional software development, but
it has seen only limited adoption among scientific software
teams [13]. Another strategy commonly employed in industry
is to occasionally rotate members between different teams in
order to disseminate best practices [14].

VI. THREATS TO VALIDITY

There are several potential threats to internal validity in
this study. As with all surveys, our work is vulnerable to
response biases. One concern in crafting this survey was
social desirability bias, as our survey asks participants about
their strengths and their weaknesses. This has come up in
other surveys of scientist-developers such as Carver et al.,
which found that scientists tend to overestimate their own
software development abilities [33]. We attempted to control
for this by having a vetted protocol for collecting and storing

survey data to protect the anonymity and confidentiality of
responses; in general, we found that respondents were eager
to volunteer information. Another concern was non-response
bias because scientist-developers are notoriously preoccupied,
but nevertheless we were able to get a sufficient number of
responses. Moreover, as this was an organizational survey, we
were able to precisely quantify the number of non-responses.

While our sample size is representative of the population,
the population itself is a single team, and this raises questions
about external validity. Most scientific software teams do not
operate at the size and scale of Trilinos; a 2018 study by
Pinto et al. found that 95% of scientific software teams they
surveyed had five members or fewer [34]. However, large-
scale projects (e.g., libraries) are foundational for the scientific
software ecosystem, and the problems we studied are universal
to large software projects regardless of domain.

Lastly, we note that almost all of the correlations we report
are weak to moderate in strength. This was not unexpected,
as we were concerned with uncovering the relationships be-
tween software development problems and incidental, perhaps
unintentional practices. Our findings are meant to spur further
investigation into potential solutions that may tap into the dy-
namics of knowledge and communication we have described.

VII. RELATED WORK

Szymczak et al. argue for a rational, document-driven
approach to codifying the knowledge surrounding scientific
software development, and introduces Drasil, a platform for
accomplishing this [35]. Along these lines, Smith et al. provide
a series of case studies on the application of document-
driven design to scientific software [36]. We recognize the
value of this approach, especially when it comes to improving
usability and verifiability, but we caution that most software
development knowledge is tacit and unable to be codified;
many of the specific problems we have described in our work
are not easily addressed by knowledge capture strategies.

On the subject of training and education, Gil et al. note
that there is “a very limited focus on issues of collaborative
software development” in the education of early-career scien-
tists [37]. Our work suggests that such training is of special
importance to large-scale scientific software development.

VIII. CONCLUSION

In this work, we studied problems of communication and
awareness in realizing large-scale scientific software by con-
ducting a survey of developers of the Trilinos project, a key
software library at Sandia National Laboratories. Scientific
software development is vitally necessary to the modern
scientific enterprise. However, achieving development at scale
means confronting recurrent problems of awareness and un-
derstanding which pose risks to sustainability. Our takeaway is
that several widespread development problems may be related
to the way in which expertise is situated and communicated
within the team, and presented several preliminary recommen-
dations. We hope to test the validity of those recommendations
by putting them into practice. Our findings underscore the



need for more investigation into development methodologies
suitable for large-scale scientific software development. To that
end, our future work will include ethnographic research into
the work practices of scientist-developers to further study the
role of coordinating expertise and communication in large-
scale scientific software development.

REFERENCES

[1] S. Hettrick, “Research software sustainability: Report on a knowledge
exchange workshop,” 2016.

[2] J. Cohen, C. Cantwell, N. C. Hong, D. Moxey, M. Illingworth, A. Turner,
J. Darlington, and S. Sherwin, “Simplifying the development, use and
sustainability of hpc software,” Journal of Open Research Software,
vol. 2, no. 1, 2014.

[3] D. Dennehy and K. Conboy, “Going with the flow: An activity theory
analysis of flow techniques in software development,” Journal of Systems
and Software, 2016.

[4] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps
et al., “An overview of the trilinos project,” ACM Transactions on
Mathematical Software (TOMS), vol. 31, no. 3, pp. 397–423, 2005.

[5] K. Agelastos, M. Rajan, N. Wichmann, P. Lin, R. Baker, S. Domino,
E. Draeger, S. Anderson, J. Balma, S. Behling, M. Berry, P. Carrier,
M. Davis, K. McMahon, D. Sandness, K. Thomas, S. Warren, and
T. Zhu, “Performance on trinity phase 2 (a cray xc40 utilizing intel xeon
phi processors) with acceptance-applications and benchmarks.” Sandia
National Laboratories, 2017.

[6] N. B. Moe, D. Šmite, A. Šāblis, A.-L. Börjesson, and P. Andréasson,
“Networking in a large-scale distributed agile project,” in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2014, p. 12.

[7] T. H. Davenport and L. Prusak, Working knowledge: How organizations
manage what they know. Harvard Business Press, 1998.

[8] S. Parise, R. Cross, and T. H. Davenport, “Strategies for preventing a
knowledge-loss crisis,” MIT Sloan Management Review, vol. 47, no. 4,
p. 31, 2006.

[9] D. Kelly, “Scientific software development viewed as knowledge acqui-
sition: Towards understanding the development of risk-averse scientific
software,” Journal of Systems and Software, vol. 109, pp. 50–61, 2015.

[10] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a
study of developer work habits,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 492–501.

[11] T. Dingsøyr and N. B. Moe, “Towards principles of large-scale agile
development,” in International Conference on Agile Software Develop-
ment. Springer, 2014, pp. 1–8.

[12] K. H. Rolland, B. Fitzgerald, T. Dingsoyr, and K.-J. Stol, “Problema-
tizing agile in the large: alternative assumptions for large-scale agile
development,” in 37th International Conference on Information Systems,
2016.

[13] M. T. Sletholt, J. E. Hannay, D. Pfahl, and H. P. Langtangen, “What
do we know about scientific software development’s agile practices?”
Computing in Science & Engineering, vol. 14, no. 2, pp. 24–37, 2012.

[14] V. Santos, A. Goldman, and C. R. De Souza, “Fostering effective
inter-team knowledge sharing in agile software development,” Empirical
Software Engineering, vol. 20, no. 4, pp. 1006–1051, 2015.

[15] V. R. Santos, A. L. Soares, and J. Á. Carvalho, “Knowledge sharing
barriers in complex research and development projects: an exploratory
study on the perceptions of project managers,” Knowledge and Process
Management, vol. 19, no. 1, pp. 27–38, 2012.

[16] E. S. Mesh and J. S. Hawker, “Scientific software process improvement
decisions: A proposed research strategy,” in Software Engineering for
Computational Science and Engineering (SE-CSE), 2013 5th Interna-
tional Workshop on. IEEE, 2013, pp. 32–39.

[17] D. Heaton and J. C. Carver, “Claims about the use of software engi-
neering practices in science: A systematic literature review,” Information
and Software Technology, vol. 67, pp. 207–219, 2015.

[18] J. Segal, “Scientists and software engineers: A tale of two cultures,”
2008.

[19] D. F. Kelly, “A software chasm: Software engineering and scientific
computing,” IEEE Software, vol. 24, no. 6, pp. 120–119, 2007.

[20] N. Hara, P. Solomon, S.-L. Kim, and D. H. Sonnenwald, “An emerging
view of scientific collaboration: Scientists’ perspectives on collaboration
and factors that impact collaboration,” Journal of the Association for
Information Science and Technology, vol. 54, no. 10, pp. 952–965, 2003.

[21] C. H. Jakobsen, T. Hels, and W. J. McLaughlin, “Barriers and facilitators
to integration among scientists in transdisciplinary landscape analyses: a
cross-country comparison,” Forest Policy and Economics, vol. 6, no. 1,
pp. 15–31, 2004.

[22] K. Hinsen, “Technical debt in computational science,” Computing in
Science & Engineering, vol. 17, no. 6, pp. 103–107, 2015.

[23] M. S. Anderson, E. A. Ronning, R. De Vries, and B. C. Martinson, “The
perverse effects of competition on scientists work and relationships,”
Science and engineering ethics, vol. 13, no. 4, pp. 437–461, 2007.

[24] H. P. Van Dalen and K. Henkens, “Intended and unintended conse-
quences of a publish-or-perish culture: A worldwide survey,” Journal of
the Association for Information Science and Technology, vol. 63, no. 7,
pp. 1282–1293, 2012.

[25] V. Ratcheva, “Integrating diverse knowledge through boundary spanning
processes–the case of multidisciplinary project teams,” International
Journal of Project Management, vol. 27, no. 3, pp. 206–215, 2009.

[26] D. Post and L. Cook, “A comparison of software engineering practices
used by the llnl nuclear applications codes and by the software indus-
try,” in Nuclear Explosive Code Developers Conference. Oakland, CA,
Lawrence Livermore National Laboratory, vol. 18, 2000.

[27] L. J. Cronbach, “Coefficient alpha and the internal structure of tests,”
psychometrika, vol. 16, no. 3, pp. 297–334, 1951.

[28] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in Proceedings of the 20th international conference on World
wide web. ACM, 2011, pp. 607–614.

[29] A. Nerkar and S. Paruchuri, “Evolution of r&d capabilities: The role of
knowledge networks within a firm,” Management science, vol. 51, no. 5,
pp. 771–785, 2005.

[30] A. Boden and G. Avram, “Bridging knowledge distribution-the role
of knowledge brokers in distributed software development teams,” in
Proceedings of the 2009 ICSE Workshop on Cooperative and Human
Aspects on Software Engineering. IEEE Computer Society, 2009, pp.
8–11.

[31] F. W. Kabo, N. Cotton-Nessler, Y. Hwang, M. C. Levenstein, and
J. Owen-Smith, “Proximity effects on the dynamics and outcomes of
scientific collaborations,” Research Policy, vol. 43, no. 9, pp. 1469–
1485, 2014.

[32] J. Schossau and G. Wilson, “Which sustainable software practices do
scientists find most useful?” in Proceedings of the 2nd Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE2),
2014.

[33] J. Carver, D. Heaton, L. Hochstein, and R. Bartlett, “Self-perceptions
about software engineering: A survey of scientists and engineers,”
Computing in Science & Engineering, vol. 15, no. 1, pp. 7–11, 2013.

[34] G. Pinto, I. Wiese, and L. F. Dias, “How do scientists develop scientific
software? an external replication,” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2018, pp. 582–591.

[35] D. Szymczak, S. Smith, and J. Carette, “Position paper: A knowledge-
based approach to scientific software development,” in Software Engi-
neering for Science (SE4Science), IEEE/ACM International Workshop
on. IEEE, 2016, pp. 23–26.

[36] S. Smith, T. Jegatheesan, and D. Kelly, “Advantages, disadvantages
and misunderstandings about document driven design for scientific
software,” in Software Engineering for High Performance Computing
in Computational Science and Engineering (SE-HPCCSE), 2016 Fourth
International Workshop on. IEEE, 2016, pp. 41–48.

[37] Y. Gil, E. Moon, and J. Howison, “No science software is an island:
Collaborative software development needs in geosciences,” in Proceed-
ings of the 2nd Workshop on Sustainable Software for Science: Practice
and Experiences (WSSSPE2), 2014.


	I Introduction
	I-A Motivating Example

	II Background
	II-A Terminology
	II-B Knowledge in Large-scale Software Projects
	II-C Scientific Software Culture

	III Case Study
	IV Analysis
	IV-A Defining the Problems
	IV-B What and Who Do They Know?
	IV-C How do they Communicate?

	V Discussion
	V-A Recommendations

	VI Threats to Validity
	VII Related Work
	VIII Conclusion
	References

