
Orchestral: a lightweight framework for parallel
simulations of cell-cell communication

1st Adrien Coulier
Department of Information Technology

Uppsala University
Uppsala, Sweden

adrien.coulier@it.uu.se

2nd Andreas Hellander
Department of Information Technology

Uppsala University
Uppsala, Sweden

andreas.hellander@it.uu.se

Abstract—We develop a modeling and simulation framework
capable of massively parallel simulation of multicellular systems
with spatially resolved stochastic kinetics in individual cells.
By the use of operator-splitting we decouple the simulation of
reaction-diffusion kinetics inside the cells from the simulation
of molecular cell-cell interactions occurring on the boundaries
between cells. This decoupling leverages the inherent scale
separation in the underlying model to enable highly horizontally
scalable parallel simulation, suitable for simulation on heteroge-
neous, distributed computing infrastructures such as public and
private clouds. Thanks to its modular structure, our frameworks
makes it possible to couple just any existing single-cell simulation
software together with any cell signaling simulator. We exemplify
the flexibility and scalability of the framework by using the
popular single-cell simulation software eGFRD to construct and
simulate a multicellular model of Notch-Delta signaling over
OpenStack cloud infrastructure provided by the SNIC Science
Cloud.

Index Terms—Computational systems biology, high perfor-
mance and parallel computing, distributed computing, cloud
computing

I. INTRODUCTION

One important insight gained in computational systems
biology is that intrinsic molecular noise in cellular regulatory
networks can have important consequences for the functioning
of the system [11], [22], [27], [32]. This has led to the
development of a wide range of methods and simulation
software capable of simulating the stochastic dynamics of
intracellular kinetics, both in a well-mixed and in a spatial
setting [14].

In the case that one can assume a well-mixed system, i.e.
when the rate of chemical reactions can be assumed to be
independent of the spatial location of the molecule, Gillespie’s
Stochastic Simulation Algorithm is a popular algorithm to
generate trajectories of the involved chemical species, who are
assumed to follow a continuous time discrete space Markov
process. As long as the well-mixed assumption holds, this
type of modeling has proven very useful, in cell biology but
also in other fields where this algorithm was not primarily
intended [28].

This work has been funded by the Swedish research council (VR) under
award no. 2015-03964 and by the eSSENCE strategic collaboration of
eScience.

Cellular regulation kinetics are inherently spatial though,
with reactions frequently taking place in a diffusion-limited
regime where the spatial homogeneity assumption breaks
down. One popular alternative that simulates stochastic kinet-
ics with spatial resolution is the Reaction Diffusion Master
Equation (RDME) [11]. On an even finer scale, molecules
are assumed to be continuously diffusing hard spheres and
interact according to Smoluchowski diffusion limited theory.
The Green’s Function Reaction Dynamics (GFRD) frame-
work [25] is a popular simulation software in that setting.
There is therefore a well established hierarchy for single-
cell modeling techniques, with ordinary differential equation
(ODE) based methods on the coarser end of the spectrum and
detailed particle dynamics methods on the other end.

However, in complex multicellular systems, cells do not act
in isolation of each other, on the contrary, they interact with
each other in many different ways. Through direct contact,
where cells physically push or pull each other, changing
position and shape over time, and through chemical signaling,
where signals are mediated by receptor molecules at the
surface of the cells, that trigger a cascade of intracellular reac-
tions when activated, modulating the cell’s genetic regulatory
networks. Unless simulations are able to capture both these
intricate cell-cell interaction mechanisms as well as discrete,
spatial stochastic molecular regulation, modelers are missing
out on important details.

Several studies have focused on coupling single-cell and
multicellular interactions. Cell mechanics have been modeled
with agent-based models [30], center based models [19], vertex
based models [1] or cellular Potts models [17]. These models
have been coupled with ODEs [7], [13], boolean networks [3],
and more recently the RDME framework [12]. Non-spatial
deterministic models remain the preferred framework due to
their relatively low complexity and low computational cost.
Similar to the insights gained from using stochastic models
in the single-cell setting though, enabling the use of more
detailed stochastic models of chemical kinetics coupled with
sophisticated models of cell mechanics interactions could
bring significant insight to these models.

Contrary to methods used for single-cell models, for multi-
cellular systems there is no unifying underlying mathematical
theory that would provide an analytical solution to be com-

ar
X

iv
:1

80
6.

10
88

9v
1

 [
q-

bi
o.

C
B

]
 2

8
Ju

n
20

18

pared with. Also, there is no well-established model hierarchy,
and models are often only compared qualitatively to each
other [21]. So far, cell mechanics models have often been
coupled with coarse, simple internal cell dynamics, such as ad
hoc rules, ordinary and delayed differential equations, or sim-
ple stochastic dynamics [15]. It remains, however, unclear how
much information is lost in using these coarse approximations.
In other words, using more detailed models and software for
simulating intracellular reaction networks, such as GFRD [25],
Smoldyn [2] or URDME [9], could uncover new insights.
Handling such detailed simulation remains highly challenging
due to their prohibitive computational cost.

Given this diversity in both single-cell and multicellular
simulation frameworks, there is a need for tool to easily
combine different software into complex simulations that
includes single-cell resolution and cell-cell signaling. Due to
the computational cost, such a framework needs to be able to
leverage modern distributed computing environments such as
cloud infrastructure to seamlessly scale simulations in parallel.
This would make quantitative comparative studies of various
model couplings possible, allowing modelers to determine
more easily how much detail is needed in their simulations.

The aim of this paper is therefore to provide such a unifying
framework making it possible to construct composite multicel-
lular models from state-of-the-art single-cell simulators and
from multicellular modeling frameworks. To accommodate as
many current and future modeling approaches as possible, the
framework needs to be as flexible and general as possible. To
achieve this, the only assumption we make regarding our mod-
els is that they are possible to split in an operator split fashion.
Unlike other multiscale agent-based platforms (such as Chaste
[20] or BSim [16]) our framework is independent of any
language or technology, and focuses on combining different
tools into massively parallel simulations rather than to provide
new tools for individual components of a simulation. Rather
than a new simulation software, or a generic workflow library,
our framework is a tool to compare various combinations
of models, systematically and reproducibly, using existing
simulation software [25], from the computational biology field
on the one hand, and from parallel computing on the other
hand [6].

The rest of the paper is organized as follows: first, we
introduce our framework and its components. We then move
on to the scaling study and detail our simple biological test-
model and how we have implemented our framework. We
examine both strong and weak scaling of our algorithm. We
conclude by emphasizing the advantages of our approach and
open the way for future developments.

II. A PARALLEL FRAMEWORK FOR MULTISCALE
SIMULATION OF CELLS

Our main objective is to design a general framework that
makes it possible to a) combine different existing tools for
single cell reaction kinetics simulation and multicellular me-
chanics models into multi-fidelity multicellular simulations,
and b) enable to simulate the resulting model in parallel

χ S

Tχ→S

TS→χ

χ.out S.in

S.outχ.in

O

Figure 1: The Orchestral Framework. Blue nodes represent
simulation modules, while red nodes represent translation
scripts. Every timestep, the internal cell dynamics are sim-
ulated (χ) and the result of these simulations is translated to
initialize the simulation of cell signaling (S). This simulation
is then run as well and the results are translated to update
the cell’s internal state. The central node (O) executes and
distributes the execution of every program the right order.

across a range of platforms. The simulations should permit
the inclusion of spatial details in single cells, and should be
pluggable to allow for the use of different simulation software
for the different parts of a simulation (multiscale simulation).

Three main design assumptions are critical to meet these
requirements. First, we assume that a multicellular simulation
can be broken down into principal parts, or simulation mod-
ules, e.g: intracellular dynamics, cell signaling, and mechanics.
Second, we assume that each such simulation module can
be simulated one after the other, for a short timestep ∆t,
such that the numerical solution converges with ∆t → 0.
This is true for operator splitting and co-simulation schemes
under reasonably non-restrictive conditions, and a commonly
employed strategy in multiphysics simulation. This assumption
enables parallelism, since by decoupling internal cell dynamics
from boundary interactions over the timestep ∆t, it allows
us to update cells in an embarrassingly parallel fashion. The
amount of parallelism enabled depends on the size of the
timestep, as will be illustrated in the numerical experiments.

Third, we assume that the simulation software used to
implement the different simulation modules can be called
from the command line, with a single input file and a single
output file as arguments (SISO). This assumption makes our
framework agnostic to specific technology, software or library
to handle the simulation modules. Literally any command line
simulator can be used, provided the two above-mentioned
assumptions are fulfilled.

Figure 1 illustrates the architecture of our proposed frame-
work. Blue nodes represent our two simulation modules, one
for internal spatial details (χ), and the other for external cell
interactions (S). Red nodes are the programs responsible for
providing cell interactions with summarized internal spatial

data and for updating internal dynamics with information
from cell-cell interactions, essentially coupling the simulation
modules together. The green node in the center is in charge of
executing these modules in the right order and as efficiently as
possible. For every timesteps, each module is executed once,
in the order following the thick arrow. The simulation ends
once all the timesteps have been executed.

We point out that all the above requirements are very weak
assumptions that are easily satisfied. On the one hand, the
splitting should work provided the coupling implemented by
the user (i.e. the way data are summarized and shared between
simulation modules) is correct and makes senses, physically
speaking. On the other hand, even if simulation software do
not always provide a SISO interface, it is very simple and
straightforward to wrap them into a small script that would
ensure compatibility.

In the following subsections we describe the main compo-
nents of the framework. Our implementation is available at
https://bitbucket.org/Aratz/orchestral/.

A. Simulation modules

In this paper, we restrict the scope to study simulation
modules for intracellular dynamics and cell-cell signaling.

1) Internal cell dynamics module: This module focuses on
simulating chemical kinetics inside cells, e.g. the interaction
between proteins and genes. In this paper it will be denoted
by the Greek letter χ. There is a wide range of models that
can be used here, from ordinary differential equation models
to more detailed particle based algorithms. One important
remark here is that the role of the internal dynamics module
is to update the internal state of independent cells. All types
of molecular interactions involving more than one cell will
be handled in the next module. This makes the update of
cell internal dynamics across a cell population embarrassingly
parallell over the splitting timestep ∆t..

2) Cell signaling module: Here pairwise signaling is con-
sidered, that is, all molecular interactions involving exactly two
cells. This can for example be binding of a ligand in one cell
to a receptor at an adjacent cell. All pairs being independent,
this step is also naturally embarrassingly parallel. We will use
the letter S to represent this module.

B. Translation scripts

The translation scripts connect the simulation modules.
Before a simulation module is run, an input file is generated
by the translation script from the data computed previously
by the other simulation modules (Figure 1). The translation
scripts ensure compatibility between the simulation modules.
If such a module is replaced by a new one using a different
data format, the only action needed in this case is then to
update the translation scripts.

Specifically, when translating from an internal dynamics
model to a signaling model (Tχ→S), the script takes a pair
of cells as input. The script can then be used to filter out
molecules that are close to the common boundary of the two
cells and put them in the signaling model input file. When

{
”0” : {

” p o s i t i o n ” : [0 . 0 , 0 . 0 , 0 . 0]
” ne ighbors ” : [1 , 2] ,
” e p s i l o n ” : 0 . 1 ,
” ws ize ” : 1e−06 ,
” seed ” : 1 ,
” end time ” : 0 . 1
} ,
”1” : {

” p o s i t i o n ” : [1 e−06 , 0 . 0 , 0 . 0]
” ne ighbors ” : [0 , 4] ,
” e p s i l o n ” : 0 . 1 ,
” ws ize ” : 1e−06 ,
” seed ” : 2 ,
” end time ” : 0 . 1
} ,
”2” : {

” p o s i t i o n ” : [0 . 0 , 1e−06 , 0 . 0]
” ne ighbors ” : [4 , 0] ,
” e p s i l o n ” : 0 . 1 ,
” ws ize ” : 1e−06 ,
” seed ” : 3 ,
” end time ” : 0 . 1
} ,
”4” : {

” p o s i t i o n ” : [1 e−06 , 1e−06 , 0 . 0]
” ne ighbors ” : [2 , 1] ,
” e p s i l o n ” : 0 . 1 ,
” ws ize ” : 1e−06 ,
” seed ” : 5 ,
” end time ” : 0 . 1
}
}

Figure 2: Network file. This file describes the position as well
as specific parameters and neighbors of each cells.

translating from a signaling model to an internal dynamics
model (TS→χ), the script takes an unspecified number of
signaling pairs as parameters, which depends on the number
of neighbors of the target cell. Typically, this script is used to
propagate new molecules from the signaling model back into
the internal dynamics model.

C. Orchestration

Finally, the main module of our framework is the orches-
trator, which is responsible for executing simulation modules
and translation scripts, and for efficiently distributing the
computations across the computing grid. Again, this module
is completely independent from the simulation modules. Re-
placing a simulation module does not affect the orchestrator,
and replacing the orchestrator (for instance to fit the com-
puting cluster of the user’s choice better) does not affect the
implementation of the simulation modules.

https://bitbucket.org/Aratz/orchestral/

{
” c e l l e x e c u t a b l e ” : ” modern eg f rd / b u i l d / b i n / RunGfrd −−cus tom −s eed { s eed } −e

↪→ { e n d t i m e } −w s i z e {w s i z e } −i n { i n p u t f i l e } −o u t { o u t p u t f i l e }” ,
” s i g n a l i n g e x e c u t a b l e ” : ” py thon3 s i g n a l i n g / s i g n a l i n g . py −s eed { s eed } −e

↪→ { e n d t i m e } −i n { i n p u t f i l e } −o u t { o u t p u t f i l e }” ,
” t r a n s l a t i o n X 2 S ” : ” py thon3 t r a n s l a t i o n X 2 S . py { n e t w o r k f i l e } { c e l l o u t p u t f i l e s }

↪→ { s i g n a l i n g i n p u t f i l e }” ,
” t r a n s l a t i o n S 2 X ” : ” py thon3 t r a n s l a t i o n S 2 X . py { n e t w o r k f i l e }

↪→ { t a r g e t c e l l o u t p u t f i l e } { s i g n a l i n g f i l e s } { t a r g e t c e l l i n p u t f i l e }” ,
” d a t a f o l d e r ” : ” da ta / ” ,
” n s t e p s ” : 100

}

Figure 3: Configuration file. This file contains all the information necessary to run the four modules, i.e. command line syntax
and parameters, as well as global simulation parameters.

data//signaling-3-(1,4).in

run_signaling

run_translation_X2S

data//cell-3-1.out

run_translation_S2X

run_translation_X2S

data//cell-3-4.out

run_translation_X2S

run_translation_S2X

data//cell-1-4.out

run_translation_X2S

run_translation_S2X

run_translation_X2S

run_cell

data//cell-6-2.out

run_translation_X2Srun_translation_X2S

run_translation_S2X

run_cell

data//cell-6-2.in

data//signaling-4-(0,2).in

run_signaling

run_translation_X2S

data//cell-4-0.out

run_translation_X2S

run_translation_S2X

data//cell-4-2.out

run_translation_S2X

run_translation_X2S

data//signaling-1-(1,4).in

run_signaling

data//cell-1-1.out

run_translation_X2S

run_translation_S2X

data//signaling-3-(2,4).in

run_signaling

data//cell-3-2.out

run_translation_S2X

run_translation_X2S

data//signaling-1-(0,2).in

run_signaling

run_translation_X2S

data//cell-1-0.out

run_translation_S2X

data//cell-1-2.out

run_translation_S2X

data//signaling-4-(1,4).out

run_translation_S2X run_translation_S2X

run_signaling

data//signaling-4-(1,4).in

data//signaling-1-(0,1).out

run_signaling

data//signaling-1-(0,1).in

data//cell-3-1.in

run_cell

run_translation_S2X

data//signaling-2-(1,4).out

run_translation_S2X

data//signaling-2-(0,1).out

run_translation_S2X

data//cell-2-1.out

run_translation_X2Srun_translation_X2S

data//signaling-6-(0,1).in

run_signaling

run_translation_X2S

data//cell-6-1.out

run_translation_S2X

run_translation_X2S

data//cell-6-0.out

run_translation_S2X

data//cell-4-2.in

run_cell

data//signaling-3-(2,4).outdata//signaling-3-(0,2).out

run_translation_S2X

data//signaling-4-(0,2).out

run_cell

data//cell-6-1.in

data//signaling-3-(0,1).out

run_signaling

data//signaling-3-(0,1).in

data//signaling-2-(0,2).out

run_translation_S2X

run_signaling

data//signaling-2-(0,2).in

run_cell

data//cell-2-1.in

data//cell-2-0.out

run_translation_X2S

run_cell

data//cell-2-0.in

run_translation_S2X

data//cell-5-2.out

run_translation_X2S run_translation_X2S

data//signaling-5-(0,2).out

run_translation_S2X

data//signaling-5-(2,4).out

run_translation_S2X

data//signaling-5-(1,4).in

run_signaling

run_translation_X2S

data//cell-5-1.out

run_translation_X2S

run_translation_S2X

data//cell-5-4.out

data//cell-2-2.in

run_cell

data//signaling-1-(0,2).out data//signaling-1-(2,4).out

data//signaling-6-(2,4).in

run_signaling

data//cell-6-4.out

run_translation_S2X

data//cell-2-2.out

run_translation_X2S

data//signaling-5-(0,2).in

run_signaling

data//cell-5-0.out

data//cell-4-4.out

run_translation_X2S

run_cell

data//cell-4-4.in

data//cell-5-4.in

run_cell

data//signaling-4-(2,4).out

data//cell-6-4.in

run_cell

data//signaling-5-(1,4).out

data//cell-6-0.in

run_cell

data//signaling-5-(0,1).out

data//cell-7-0.in

data//signaling-6-(0,2).out data//signaling-6-(0,1).out

run_signaling

data//signaling-6-(0,2).in

data//signaling-6-(1,4).out

run_signaling

data//signaling-6-(1,4).in

run_signaling

data//signaling-2-(1,4).in

run_signaling

data//signaling-5-(2,4).in

run_signaling

data//signaling-3-(0,2).in

data//cell-2-4.in

run_cell

data//signaling-1-(1,4).out

run_signaling

data//signaling-4-(2,4).in

data//signaling-4-(0,1).out

run_signaling

data//signaling-4-(0,1).in

run_signaling

data//signaling-5-(0,1).in

run_cell

data//cell-3-4.indata//cell-3-2.in

run_cell

data//signaling-2-(2,4).out

data//cell-4-1.in

run_cell

data//signaling-3-(1,4).out

data//cell-2-4.out

run_cell

data//cell-5-2.in

data//signaling-2-(0,1).in

run_signaling

run_cell

data//cell-3-0.out

run_cell

data//cell-5-0.in

data//cell-4-1.out

run_signaling

data//signaling-1-(2,4).in

data//cell-7-1.indata//cell-7-4.in

data//signaling-6-(2,4).out

data//cell-5-1.in

run_cell

data//cell-3-0.in

run_cell

run_signaling

data//signaling-2-(2,4).in

data//cell-7-2.in

run_cell

run_cell

data//cell-4-0.in

run_cell

data//cell-3-1.outdata//cell-3-4.out

run translation S2X run translation S2X

data//cell-3-2.out

run translation S2X run translation S2X

data//cell-3-1.in

run_cell

run_translation_S2X

data//signaling-2-(1,4).out

run_translation_S2X

data//signaling-2-(0,1).out

run_translation_S2X

data//cell-2-1.out

run_translation_X2Srun_translation_X2S

data//signaling-2-(0,2).out

run_translation_S2X

run_signaling

data//signaling-2-(0,2).in

run_cell

data//cell-2-1.in

data//cell-2-0.out

run_translation_X2S

run_cell

data//cell-2-0.in data//cell-2-2.in

run_cell

data//cell-2-2.out

run_translation_X2S

run_signaling

data//signaling-2-(1,4).in

data//cell-2-4.in

run_cell

run_cell

data//cell-3-4.indata//cell-3-2.in

run_cell

data//signaling-2-(2,4).out

data//cell-2-4.out

data//signaling-2-(0,1).in

run_signaling

data//cell-3-0.out

data//cell-3-0.in

run_cell

run_signaling

data//signaling-2-(2,4).in

Figure 4: Task graph generated by Dask, for a model involving
four cells and six timesteps. Round nodes are computation and
translation steps, while rectangular nodes are input and output
files.

We chose to use Dask [6], a python library for parallel
and distributed computing. However, we point out that this is
only one of many available alternatives, and that switching
to any other library could be done very easily. In Dask,
tasks can be described and hierarchized as a directed acyclic
graph (DAG) using a simple Python dictionary, which makes
the code very simple to understand. Switching between local

multicore simulation and distributed computations on a high
performance cluster or a cloud is done by changing a single
line in the orchestrator and updating the configuration file so
that the data are written in the appropriate shared area. Figure 4
shows an example of such a graph for one of our simulations,
where circles are tasks and rectangles are input and output
files.

The orchestrator takes two input files as parameters. The
first file describes the cell network, i.e. the position of each
cell, the id of their neighbors, and model specific simulation
parameters. An example of such a file, in json format,
is given in Figure 2. The data is encoded as a dictionary,
where unique cell identification numbers are associated to their
parameters. It is possible to fine tune the parameters so as
to have various models for each cell. Only position and
neighbors are used by the orchestrator, all other parameters
are fed to the internal dynamics module when the simulation
is launched.

The second file is a configuration file that provides the
syntax of the command line programs used to execute the
simulation modules and translation script, as well as global
simulation parameters, such as the number of time steps to run.
An example of such a file is given in Figure 3. Each command
line is written so that it is easy to format it using Python’s
format method by simply feeding the simulation parameters
to this function. Changes to the format of the configuration
file only mandates updates of the orchestrator module, but not
the simulation modules or translations scripts.

III. RESULTS

In order to demonstrate the usefulness of our framework and
to test its scalability, we implement a simplistic but biologi-
cally realistic model of cell-cell signalling based on the single-
cell simulation software eGFRD [25]. The objective here is
to provide a proof-of-concept model useful to study parallel
scalability and to demonstrate how to use the framework. We
conduct strong scaling experiments on a modern multicore
machine and weak scaling experiments over a virtual cluster
deployed in an OpenStack community cloud.

Figure 5: eGFRD single-cell simulation screenshot [25]. Cyan
spheres represent Delta molecules while purple spheres rep-
resent Notch molecules. The green sphere in the center is a
bound DNA promoter site.

Parameter Value
Diffusion Constant, D 1× 10−12 m2 s−1

Transcription, tD 1× 102 s−1

DNA binding, ka 1× 10−18 m3 s−1

DNA unbinding, kd 2.5× 101 s−1

Delta to NICD, kN 1 s−1

Table I: Model parameters used for our simulations. Since the
focus of this paper is on performance rather than on biological
realism, it is important to stress that these parameters where
not choosen to be realistic, but rather so that the model would
exhibit some interesting behavior to demonstrate the utility of
our approach.

A. Setup

1) Model: The model implemented is a simplified model of
the Notch signaling pathway [24]. The cells’ membranes con-
tain Notch receptors and Delta ligands (molecules binding
to the receptor). When cells are in contact, Notch and Delta
proteins can bind and this will release Notch’s intracellular
domain (NICD) into the cell. NICD will then diffuse into
this cell and potentially influence gene expression. In our
model, NICD acts as a repressor of Delta, i.e. it suppresses
the creation of new Delta protein. A single DNA molecule is
placed in the center of each cell, modeling the Delta promoter.
When not occupied by NICD, it transcribes Delta at a rate
tD. Delta proteins then diffuse in the cells. Figure 5 shows a
snapshot of this system when simulated with eGFRD, where
each molecule is approximated by a hard sphere diffusing
in a cube representing the cell. DNA is shown in green in
the center of the cube, while Delta molecules are cyan and
NICD molecules are purple. NICD molecules modulate
Delta transcription upon binding to DNA.

To model cell-cell signalling, we assume that when Delta

Figure 6: Snapshot of a patch of 1024 cells simulated by
our algorithm after 10 timesteps. Red circles represent Delta
molecules, while blue circles represent NICD molecules. DNA
is represented by black circles (free DNA) and black triangles
(suppressed DNA). As can be seen, DNA suppression causes
the cell to stop producing ∆ and to become empty.

molecules are within a distance ε of the cell membrane
(boundary of the cube), they can be mirrored to the cell on the
other side of the membrane and turn into NICD at rate kN .
NICD then diffuses inside the receiving cell and potentially
associates to DNA at rate ka. This binding turns off Delta
transcription. NICD unbinds from DNA in bound state at rate
kd. Except DNA, all species degrade at the same rate d. The
parameter values used in our simulation are summed up in
Table I. These values are We tuned the model to illustrate our
framework with interesting features. In the case one would
want to perform a more detailed modeling study, one would
need to take values from the literature.

We model cells as identical cubes, arranged in a 2D layer.
Hence, each cell has at most four neighbors.

The chemical reaction turning Delta into NICD is handled
by the signaling model, while all other reactions are handled
as internal cell dynamics. Coupling is done by transferring all
Delta molecules within ε of a single face of the cube to the
associated signaling model. Coupling in the other direction is
done by simply reporting the molecules from the signaling
model back into the appropriate cell.

Figure 6 shows the output of a simulation of 1024 cells after
10 timesteps, each red dot is a Delta molecule, each blue dot
is a NICD molecule, and DNA is shown in black, either in
free state (circles) or bound state (triangles). Suppressed cells
show a loss in Delta production and appear as white, while

cells with a free DNA promoter continue to produce Delta
and remain red. Under some specific parameter regimes, this
model is known to exhibit a so-called checkerboard pattern,
where free cells are arranged in a regular pattern. The more
noisy the system becomes, the less regular the pattern [26].

2) Implementation: We implement the single-cell model
using eGFRD [25]. We use its custom simulation feature
to both describe our model and set up reading and writing
input and output files. The signaling model is implemented
with a custom made python script. All translation scripts are
implemented as python scripts.

B. Scaling

A key feature of the framework, as implemented using
Dask, is the ability to seamlessly leverage a wide range of
parallel and distributed computing resources. To demonstrate
this flexibility we here tested the performance and scalability
when executed on a single high-end multicore machine and b)
using variable-size virtual distributed Dask-clusters deployed
over cloud infrastructure as a service (IaaS) in the SNIC
Science Cloud (SSC) [31]. For the multicore machine, a
single node of the Rackham system provided by the Uppsala
Multidisciplinary Center for Advanced Computational Science
(UPPMAX) was used. The used node had two 10-core Xeon
E5-2630 V4 processors running at 2.2 GHz (turbo 3.1 GHz).
The SSC is a community cloud based on OpenStack, and in
the same manner as public cloud providers such as AWS and
Azure, it provides general infrastructure as a service (IaaS) to
the Swedish research community.

We adapted the MOLNs orchestration toolkit [8] from
the StochSS [10] suite to deploy virtual Dask clus-
ters of variable sizes (https://github.com/ahellander/molns/
orchestral-dask). MOLNs deploy an SSHFS shared filesystem
which we use to share all the intermediate input-output data
files of the simulation.

We begin with a strong scaling study on a single node,
where we study the computation time as a function of in-
creased number of cores with a fixed model size. We simulate
an 8 × 8 grid of cells for ten seconds simulation time. We
set up Dask to use the threaded single machine scheduler and
ran the simulation on 1, 4, 8, 12, 16 and 20 cores. Figure 7
shows the parallel efficiency for splitting timesteps ∆t of 0.1,
0.5 and 1.0 second, respectively.

Using a single core, the simulation took between 40 and
140 minutes. Using the full 20 cores of the shared memory
node, the simulation took between 2 and 8 minutes, depending
on ∆t, thus demonstrating the usability of our framework for
modeling purposes. Our framework hence shows very good
parallel efficiency for all timesteps, with at slightly more than
80% parallel efficiency, with maximum efficiency obtained
with ∆t = 0.5. This can be explained by the fact that with
∆t = 1.0, the task granularity is coarse due to the relatively
low number and long duration of the tasks. With ∆t = 0.1, on
the other hand, the tasks become too short and the scheduling
overhead of Dask leads to a loss of performance.

1 4 8 12 16 20
cores

0

20

40

60

80

100

S
tr
on

g
S
ca
li
n
g
E
ffi
ci
en
cy

(%
)

Strong scaling efficiency for a 8× 8 cell grid

0.1

0.5

1.0

Figure 7: Single node strong scaling study of a 64-cell grid.
The simulation is run for 10 seconds, with timestep length set
to 1.0, 0.5 and 0.1 second. Our framework scales smoothly up
to all 20 cores of our machine, maintaining about 80% strong
scaling efficiency for all setups.

23 24 25 26 27 28

cores

0

20

40

60

80

100

W
ea
k
S
ca
li
n
g
E
ffi
ci
en
cy

(%
)

Weak scaling efficiency

0.1

0.5

1.0

Figure 8: Weak scaling study. Each simulation consists of 100
cells per node and are run for 10 timesteps. We study three
cases with timestep length ranging from 0.1 to 1.0. The results
confirm the performance of our framework up to the limits of
our cluster.

https://github.com/ahellander/molns/orchestral-dask
https://github.com/ahellander/molns/orchestral-dask

816 32 64 128 256
cores

0

50

100

150

200

250

ta
sk
s/
s

task map 1s tasks

816 32 64 128 256
cores

0

500

1000

1500

2000

ta
sk
s/
s

task map 100ms tasks

Figure 9: Weak scaling baseline benchmark focusing on Dask
performance for deterministic map tasks of 1s processing time
(top) and 100ms processing time (bottom).

Next we assessed the weak scaling properties of our im-
plementation. We used ssc.xlarge VM instances each with
8 VCPUs and 16GB RAM and kept the number of cells
simulated per core in the cluster constant as we scaled the
size of the distributed cluster. We start from a grid of 100
cells for one VM (8 VCPUs), up to 3200 cells on 32 VMs
(256 VCPUs). We run the simulation for 10 timesteps.

Again, our experiments demonstrate good parallel effi-
ciency, with more than 50% efficiency across all tested
timesteps on 16 VMs. Using 32 VMs, the efficiency drops
as we approach the hardware limits of the cluster underlying
the private cloud. It should be noted that the weak scaling
properties depends on ∆t, with the efficiency decreases with
decreasing timestep. This is explained by the fact that as the
timestep is reduced, the simulation tasks become shorter and
shorter and scheduling and communication overheads limit
scalability for the distributed system. In fact, to establish a
baseline performance of Dask as deployed on the SSC virtual
infrastructure we ran a publicly available Dask weak scaling

benchmark1 measuring the throughput for simple determin-
istic tasks. In this benchmark, each task consists of simply
incrementing an integer, and waiting for a small delay (1 s,
100 ms). The gray line shows the ideal performance. As can
be seen, Dask over SSC VMs achieve close to ideal scaling
up to 64 VCPUs, or 8 VMs, for both task granularities, with
74% and 54% efficiency for 128 and 256 cores respectively
for 1 s tasks. For 100 ms task, the corresponding figures are
57% and 47% respectively. These results are consistent with
results in the published benchmark with clusters deployed over
the Google container platform.

The weak scaling efficiency of our multicellular simulations
with Orchestral shown in Figure 8 should be seen in this
context. For ∆t = 0.1, individual tasks associated with
updating the internal state of cells by running eGFRD vary due
to stochasticity and particle counts in individual cells, but upon
manual inspection in the Dask status UI they are found to vary
in the interval 500 ms – 2 s, with the signaling module tasks
taking around 300 – 600 ms/task. This means that Orchestral
achieves a weak scaling efficiency close to the ideal case
(for this orchestrator and cloud infrastructure combination),
demonstrating the lightweight nature of our framework.

IV. DISCUSSION AND CONCLUSION

In this paper, we have presented a new framework for con-
structing and simulating high-fidelity models of multicellular
systems from existing frameworks for single-cell simulation.
The driving motivation for Orchestral is a need to be able
to conveniently combine the many existing frameworks for
single-cell resolution reaction-diffusion models with the di-
verse landscape of models of cell mechanics. When com-
bining these modeling levels, they need to be coupled via
molecular cell-cell signaling. Orchestral provides a model for
implementing such coupling, and for simulating the resulting
model massively in parallel over a wide range of distributed
computing environments. This is important, since the models
resulting from integrating single-cell simulation with multi-
cellular simulation become very computationally expensive. In
this paper, we demonstrated the potential of Orchestral by turn-
ing the popular single-cell simulation software eGFRD [25]
into a multicellular model where cells signal each other via
a simplistic model of the Notch-Delta pathway over adjacent
boundaries of individual cells.

The parallel scalability was demonstrated both in a strong
scaling experiment on a shared memory system, and in weak
scaling experiments over a multi-tenant science cloud IaaS
infrastructure. The experiments serve to highlight the depen-
dency of parallel efficiency on the splitting time step ∆t,
since this timestep determine the task sizes and hence latency
requirements of the combination of underlying orchestrator
and infrastructure. Since the choice of timestep depends on
the needed and attained accuracy of the simulation (which is
model dependent) it is not easy to a priori determine what
type of computing platform is most suitable to accelerate

1http://matthewrocklin.com/blog/work/2017/07/03/scaling

simulation. In future work, we plan to study this accuracy/per-
formance trade-off for specific combinations of models and
single-cell simulation software, in order to equip orchestral
with highly performant orchestrator implementations for a
range of timestep requirements and computing infrastructure.

Orchestral is primarily aimed at modelers with basic script-
ing experience. Due to its modular design, it is easy to reuse
existing parts and patterns from a previous successful set up.
Our framework puts no constraint on the technology used by
the solvers, the translation scripts, or the orchestrator. All these
modules are independent programs and can be exchanged at
will. Indeed, replacing one simulation module only introduces
the requirement to adapt the translation scripts to the file
format of the new solver. In general, this is usually easily
done as it mostly entails filtering and reformating the data.

Finally, the orchestrator engine is also easily replaceable
for a user with experience in distributed parallel computing.
It is our intention for Orchestral to evolve with the help of
the community to support a wide range of orchestrators tuned
to specific platforms, for example optimized for shared mem-
ory desktop computers, for traditional HPC batch computing
schedulers, and for virtual clusters deployed in private and
public clouds. Writing a new orchestrator does not require
any specific knowledge about the actual simulation modules
or translation scripts. Therefore, programmers can focus on
performance, without worrying about model compatibility. We
found Dask to provide a good balance between simplicity,
portability and performance, and chose to use it to implement
the orchestrator that ships with Orchestral. There are however
many alternatives available [4], [29], [5], [34], [23], [33], [18],
which could potentially help us to push performance for low-
latency requirements on distributed infrastructures. In fact,
Orchestral could be used to create a comparative benchmark
of all these libraries.

Here we have presented a proof of concept of our framework
based on eGFRD as single-cell simulator. Future work on
the modeling side involves exploring and comparing new
combinations of simulators, in particular adding a module for
cell-mechanics.

Finally, within our setup it is already possible to use differ-
ent models to update different areas of the cell population, e.g.
to use highly detailed simulation modules (such as eGFRD) at
the boundary of a tissue (or generally where cells are actively
engaged in signaling) and coarser modules (such as the RDME
or even well-mixed models) in areas with less activity. In the
future we will explore adaptive multiscale methods to switch
between such models automatically.

ACKNOWLEDGMENTS

The authors would like to thank S. Mathias and F. Coulier
for constructive criticism of the manuscript. This work has
been funded by the Swedish research council (VR) under
award no. 2015-03964 and by the eSSENCE strategic collabo-
ration of eScience. Cloud computing resources were provided
by the Swedish National Infrastructure for Computing via
the SNIC Science Cloud. Other computations were performed

on resources provided by SNIC through Uppsala Multidisci-
plinary Center for Advanced Computational Science (UPP-
MAX) under project SNIC 2018/8-157.

REFERENCES

[1] Silvanus Alt, Poulami Ganguly, and Guillaume Salbreux. Vertex
models: from cell mechanics to tissue morphogenesis. Philosophical
Transactions of the Royal Society B: Biological Sciences, 372(1720),
May 2017.

[2] Steven S. Andrews, Nathan J. Addy, Roger Brent, and Adam P. Arkin.
Detailed Simulations of Cell Biology with Smoldyn 2.1. PLOS Com-
putational Biology, 6(3):e1000705, March 2010.

[3] Marco Antoniotti, Simone Rubinacci, Alex Graudenzi, Giulio Car-
avagna, Giancarlo Mauri, James Osborne, Joe Pitt-Francis, and Marco
Antoniotti. CoGNaC: A Chaste Plugin for the Multiscale Simulation
of Gene Regulatory Networks Driving the Spatial Dynamics of Tissues
and Cancer. Cancer Informatics, page 53, September 2015.

[4] Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond
Namyst, and Samuel Thibault. StarPU-MPI: Task Programming over
Clusters of Machines Enhanced with Accelerators. In Recent Advances
in the Message Passing Interface, Lecture Notes in Computer Science,
pages 298–299. Springer, Berlin, Heidelberg, September 2012.

[5] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J.
Dongarra. PaRSEC: Exploiting Heterogeneity to Enhance Scalability.
Computing in Science Engineering, 15(6):36–45, November 2013.

[6] Dask Development Team. Dask: Library for dynamic task scheduling.
2016.

[7] Julien Delile, Matthieu Herrmann, Nadine Peyriéras, and René Doursat.
A cell-based computational model of early embryogenesis coupling
mechanical behaviour and gene regulation. Nature Communications,
8:13929, January 2017.

[8] B. Drawert, M. Trogdon, S. Toor, L. Petzold, and A. Hellander. MOLNs:
A Cloud Platform for Interactive, Reproducible, and Scalable Spa-
tial Stochastic Computational Experiments in Systems Biology Using
PyURDME. SIAM Journal on Scientific Computing, 38(3):C179–C202,
January 2016.

[9] Brian Drawert, Stefan Engblom, and Andreas Hellander. URDME:
a modular framework for stochastic simulation of reaction-transport
processes in complex geometries. BMC Systems Biology, 6:76, 2012.

[10] Brian Drawert, Andreas Hellander, Ben Bales, Debjani Banerjee, Gio-
vanni Bellesia, Bernie J. Daigle, Geoffrey Douglas, Mengyuan Gu,
Anand Gupta, Stefan Hellander, Chris Horuk, Dibyendu Nath, Aviral
Takkar, Sheng Wu, Per Lötstedt, Chandra Krintz, and Linda R. Pet-
zold. Stochastic Simulation Service: Bridging the Gap between the
Computational Expert and the Biologist. PLOS Computational Biology,
12(12):e1005220, 12 2016.

[11] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochem-
ical systems into spatial domains of opposite phases. IEE Proceedings
- Systems Biology, 1(2):230–236, December 2004.

[12] Stefan Engblom. Stochastic simulation of pattern formation in growing
tissue: a multilevel approach. arXiv:1802.01039 [cs, q-bio], February
2018.

[13] Stefan Engblom, Daniel B. Wilson, and Ruth E. Baker. Scalable
population-level modeling of biological cells incorporating mechanics
and kinetics in continuous time. arXiv:1706.03375 [q-bio], June 2017.

[14] Daniel T. Gillespie, Andreas Hellander, and Linda R. Petzold. Per-
spective: Stochastic algorithms for chemical kinetics. The Journal of
Chemical Physics, 138(17), May 2013.

[15] Thomas E. Gorochowski. Agent-based modelling in synthetic biology.
Essays In Biochemistry, 60(4):325–336, November 2016.

[16] Thomas E. Gorochowski, Antoni Matyjaszkiewicz, Thomas Todd,
Neeraj Oak, Kira Kowalska, Stephen Reid, Krasimira T. Tsaneva-
Atanasova, Nigel J. Savery, Claire S. Grierson, and Mario di Bernardo.
BSim: An Agent-Based Tool for Modeling Bacterial Populations in
Systems and Synthetic Biology. PLOS ONE, 7(8):e42790, August 2012.

[17] François Graner and James A. Glazier. Simulation of biological cell
sorting using a two-dimensional extended Potts model. Physical Review
Letters, 69(13):2013–2016, September 1992.

[18] Samuel Lampa, Jonathan Alvarsson, and Ola Spjuth. Towards agile
large-scale predictive modelling in drug discovery with flow-based
programming design principles. Journal of Cheminformatics, 8:67,
November 2016.

[19] F. A. Meineke, C. S. Potten, and M. Loeffler. Cell migration and
organization in the intestinal crypt using a lattice-free model. Cell
Proliferation, 34(4):253–266, August 2001.

[20] Gary R. Mirams, Christopher J. Arthurs, Miguel O. Bernabeu, Rafel Bor-
das, Jonathan Cooper, Alberto Corrias, Yohan Davit, Sara-Jane Dunn,
Alexander G. Fletcher, Daniel G. Harvey, Megan E. Marsh, James M.
Osborne, Pras Pathmanathan, Joe Pitt-Francis, James Southern, Nejib
Zemzemi, and David J. Gavaghan. Chaste: An Open Source C++ Library
for Computational Physiology and Biology. PLOS Computational
Biology, 9(3):e1002970, March 2013.

[21] James M. Osborne, Alexander G. Fletcher, Joe M. Pitt-Francis, Philip K.
Maini, and David J. Gavaghan. Comparing individual-based approaches
to modelling the self-organization of multicellular tissues. PLOS
Computational Biology, 13(2):e1005387, February 2017.

[22] Johan Paulsson, Otto G. Berg, and Måns Ehrenberg. Stochastic focusing:
Fluctuation-enhanced sensitivity of intracellular regulation. Proceedings
of the National Academy of Sciences, 97(13):7148–7153, June 2000.

[23] Emanuel H. Rubensson and Elias Rudberg. Chunks and Tasks: A
programming model for parallelization of dynamic algorithms. Parallel
Computing, 40(7):328–343, July 2014.

[24] O Shaya and D Sprinzak. From Notch signaling to fine-grained
patterning: Modeling meets experiments. Current Opinion in Genetics
& Development, 21(6):732–739, December 2011.

[25] Thomas R. Sokolowski, Joris Paijmans, Laurens Bossen, Martijn
Wehrens, Thomas Miedema, Nils B. Becker, Kazunari Kaizu, Koichi
Takahashi, Marlieen Dogterom, and Pieter Rein ten Wolde. eGFRD in
all dimensions. arXiv:1708.09364 [cond-mat, physics:physics, q-bio],
August 2017.

[26] David Sprinzak, Amit Lakhanpal, Lauren LeBon, Leah A. Santat,
Michelle E. Fontes, Graham A. Anderson, Jordi Garcia-Ojalvo, and
Michael B. Elowitz. Cis-interactions between Notch and Delta generate
mutually exclusive signalling states. Nature, 465(7294):nature08959,
April 2010.

[27] Marc Sturrock, Andreas Hellander, Anastasios Matzavinos, and Mark
A. J. Chaplain. Spatial stochastic modelling of the Hes1 gene regula-
tory network: intrinsic noise can explain heterogeneity in embryonic
stem cell differentiation. Journal of The Royal Society Interface,
10(80):20120988, March 2013.

[28] Tamás Székely and Kevin Burrage. Stochastic simulation in systems bi-
ology. Computational and Structural Biotechnology Journal, 12(20):14–
25, November 2014.

[29] Enric Tejedor, Montse Farreras, David Grove, Rosa M. Badia, Gheorghe
Almasi, and Jesus Labarta. ClusterSs: A Task-based Programming
Model for Clusters. In Proceedings of the 20th International Symposium
on High Performance Distributed Computing, HPDC ’11, pages 267–
268, New York, NY, USA, 2011. ACM.

[30] Bryan C. Thorne, Alexander M. Bailey, and Shayn M. Peirce. Combin-
ing experiments with multi-cell agent-based modeling to study biological
tissue patterning. Briefings in Bioinformatics, 8(4):245–257, July 2007.

[31] S. Toor, M. Lindberg, I. Fällman, A. Vallin, O. Mohill, P. Freyhult,
L. Nilsson, M. Agback, L. Viklund, H. Zazzi, O. Spjuth, M. Capuccini,
J. Moller, D. Murtagh, and A. Hellander. SNIC Science Cloud (SSC):
A National-scale Cloud Infrastructure for Swedish Academia. Proc. of
the 13th IEEE international conference of eScience 2017, in press.

[32] José M. G. Vilar, Hao Yuan Kueh, Naama Barkai, and Stanislas Leibler.
Mechanisms of noise-resistance in genetic oscillators. Proceedings of
the National Academy of Sciences, 99(9):5988–5992, April 2002.

[33] Afshin Zafari, Elisabeth Larsson, and Martin Tillenius. Ductteip : An
efficient programming model for distributed task based parallel comput-
ing. Computing Research Repository, (1801.03578), unpublished.

[34] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram
Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott
Shenker, and Ion Stoica. Apache spark: A unified engine for big data
processing. Commun. ACM, 59(11):56–65, October 2016.

	I Introduction
	II A parallel framework for multiscale simulation of cells
	II-A Simulation modules
	II-A1 Internal cell dynamics module
	II-A2 Cell signaling module

	II-B Translation scripts
	II-C Orchestration

	III Results
	III-A Setup
	III-A1 Model
	III-A2 Implementation

	III-B Scaling

	IV Discussion and conclusion
	References

