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Abstract—An increasing number of scientific applications utilize
stream processing to analyze data feeds of scientific instruments,
sensors, and simulations. In this paper, we study the streaming
and data processing requirements of light source experiments,
which are projected to generate data at 20 GB/sec in the near
future. As beamtimes available to users are typically short, it
is essential that processing and analysis can be conducted in a
streaming mode. The development and deployment of streaming
applications is a complex task and requires the integration of het-
erogeneous, distributed infrastructure, frameworks, middleware
and application components written in different languages and
abstractions. Streaming applications may be extremely dynamic
due to factors, such as variable data rates, network congestions,
and application-specific characteristics, such as adaptive sam-
pling techniques and the different processing techniques. Conse-
quently, streaming system are often subject to back-pressures and
instabilities requiring additional infrastructure to mitigate these
issues. We propose Pilot-Streaming, a framework for supporting
streaming applications and their resource management needs on
HPC infrastructure. Underlying Pilot-Streaming is a unifying ar-
chitecture that decouples important concerns and functions, such
as message brokering, transport and communication, and pro-
cessing. Pilot-Streaming simplifies the deployment of stream pro-
cessing frameworks, such as Kafka and Spark Streaming, while
providing a high-level abstraction for managing streaming in-
frastructure, e. g. adding/removing resources as required by the
application at runtime. This capability is critical for balancing
complex streaming pipelines. To address the complexity in the
development of streaming applications, we present the Stream-
ing Mini-Apps, which supports different plug-able algorithms
for data generation and processing, e. g., for reconstructing light
source images using different techniques. We use the streaming
Mini-Apps to evaluate the Pilot-Streaming framework demon-
strating its suitability for different use cases and workloads.

I. INTRODUCTION

Stream processing capabilities are increasingly important to
analyze and derive real-time insights on incoming data from
experiments, simulations, and Internet-of-Things (IoT) sen-
sors [1]. Prominent examples are synchrotron light source ex-
periments, such as those at the National Synchrotron Light
Sources II (NSLS-II) or the X-Ray Free Electron Laser
(XFEL) light sources. Some experiments at these light sources
are projected to generate data at rates of 20 GB/sec [2]. This
data needs to be processed in a time-sensitive if not real-time
manner, to support steering of the experiments [3].
Further, an increasing number of scientific workflows integrate
simulations either with data from experimental and observa-
tional instruments, or conduct real-time analytics of simulation
data [4]. Workflows are stymied by the fact that capabilities

to continuously process time-sensitive data on HPC infrastruc-
tures are underdeveloped while they require sophisticated ap-
proaches for resource management, data movement and analy-
sis. The complex application and resource utilization patterns
of streaming applications critically demand dynamic resource
management capabilities. For example, minor changes in data
rates, network bandwidths, and processing algorithms can lead
to imbalanced and dysfunctional system.
We propose Pilot-Streaming, a framework designed to effi-
ciently deploy and manage streaming frameworks for mes-
sage brokering and processing, such as Kafka [5], Spark [6]
and Dask [7], on HPC systems. Underlying Pilot-Streaming is
a unifying architecture that decouples important concerns and
functions, such as message brokering, transport and communi-
cation, and processing. Pilot-Streaming is based on the Pilot-
Job concept and the Pilot-Abstraction [8]. Pilot-Streaming en-
ables application and middleware developers to deploy, con-
figure and manage frameworks and resources for complex
streaming applications. Acquired resources can be dynamically
adjusted at runtime – a critical capability for highly dynamic
streaming applications. Further, Pilot-Streaming serves as uni-
fying API layer for managing computational tasks in an
interoperable, framework-agnostic way, i. e. it allows the im-
plementation of streaming tasks that can run both in Spark
Streaming, Dask or other frameworks.
To further address the development and deployment challenges
of streaming apps, we develop the Streaming Mini-Apps frame-
work based on a systematic analysis of different scientific
streaming application [9]. The Mini-Apps provides the ability
to quickly develop streaming applications and to gain an un-
derstanding of the performance of the pipeline, existing bottle-
necks, and resource needs. We demonstrate the capabilities of
Pilot-Streaming and the Streaming Mini-Apps by conducting
a comprehensive set of experiments evaluating the processing
throughput of different image reconstruction algorithms used
in light source sciences.
This paper makes the following contributions: (i) It surveys
the current state of message broker and streaming frameworks
and their ability to support scientific streaming applications;
(ii) It provides a conceptual framework for analyzing scien-
tific streaming applications and applies it to a machine learn-
ing and light source analytics use case. The Mini-App frame-
work provides a simple solution for simulating characteristics
of these applications. (iii) It presents an abstraction and ar-
chitecture for stream processing on HPC. Pilot-Streaming is
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Fig. 1. Streaming Applications Architecture: The message broker decou-
ples streaming applications from incoming data feeds and enables multiple
applications to process the data. The streaming framework typically provides
a windowing abstraction on which user-defined functions can be performed.

a reference implementation of that architecture, and (iv) It
demonstrates and evaluates the described capabilities using a
set of large-scale experiments on the XSEDE machine Wran-
gler, for streaming machine learning and different light source
reconstruction algorithms.
This paper is structured as follows: In Section II we investi-
gate the architectural components of a typical streaming in-
frastructures and applications and related work. We continue
with an analysis of streaming applications in Section III. Sec-
tion IV presents the architecture, capabilities and abstractions
provided by Pilot-Streaming. The frameworks serves as basis
for the Mini-Apps discussed in Section V. In Section VI we
present an experimental evaluation of Pilot-Streaming.

II. BACKGROUND AND RELATED WORK

We define a streaming application as an application that pro-
cesses and acts on an unbounded stream of data close to real
time. In this section we describe the current state of streaming
middleware and infrastructure and related work. There is no
consensus on software and hardware infrastructure for stream-
ing applications, which increases the barrier for adoption of
streaming technology in a broader set of application (see Fox
et al. [1]). Notwithstanding the lack of consensus, in this paper
we will explore the usage of the existing Pilot-Abstractions as
a unified layer for the development of streaming applications.

A. Streaming Middleware and Infrastructure

The landscape of tools and frameworks for stream processing
is heterogeneous (see [10] for survey). Figure 1 illustrates the
main components of a stream system are: the message bro-
ker, the storage and the stream processing engine. We will
investigate these in the following section.
Message Broker: The broker decouples data producers and
consumers providing a reliable data storage and transport.
By combining data transport and storage, the message bro-
ker can provide a durable, replay-able data source to stream-

Storm/Heron Spark Stream-
ing

Flink Dask
Streamz

Description Java/C++ with
Python API

Scala with Java,
Python APIs

Java Python

Architecture Continuous Mini-batch,
Continuous

Continuous Mini-batch

Windowing Yes Event time in-
troduced with
structured API

Yes with
event/pro-
cessing time

Fixed Time

Higher-
Level APIs

Streamlet API
(MapReduce)

Structured
Streaming
(DataFrames,
SQL)

Data Tables DataFrames
(state-less)

Guarantees Exactly once Exactly once Exactly once No
Integration Kafka Kafka, Kinesis Kafka Kafka

TABLE I
STREAM PROCESSING FRAMEWORKS

ing processing applications. For this purpose, the brokering
system typically provides a publish-subscribe interface. The
best throughputs are achieved by log-based brokering systems,
such as Kafka [11]. Facebook Logdevice [12] provides a sim-
ilar log abstraction, but with a richer API (record not byte
based) and improved availability guarantees. Apache Pulsar
is another distributed brokering system [13]. Other types of
publish-subscribe messaging system exist, such as ActiveMQ
and RabbitMQ, but are generally less scalable than distributed
log-based services, such as Kafka [5]. A message broker en-
ables application to observe a consistent event stream of data at
its own pace executing complex analytics on that data stream.
Kafka is one such distributed message broker optimized for
large volume log files containing event streams of data. Ama-
zon Kinesis [14] and Google Cloud Pub-Sub [15] are two mes-
sage brokers offered as “platform as a service” in the cloud.
Streaming Processing Frameworks: A heterogeneous land-
scape of infrastructures and tools supporting streaming needs
on different levels emerged. Table I summarizes the proper-
ties of four important stream processing systems. Batch frame-
works, such as Spark [6] and Dask [7], have been extended to
provide streaming capabilities [16], [17], while different na-
tive streaming frameworks, such as Storm [18], Heron [19]
and Flink [20] have emerged. Apache Beam [21] is high-level
streaming abstraction that can be used together with Flink and
Spark and is available as managed cloud service called Google
Dataflow [22]. Apache Beam’s abstraction is based on a rig-
orous model and provides well-defined and rich semantics for
windowing, transformations and other operations. The differ-
ent stream processing engines differs significantly in the ways
they handle events and provide processing guarantees: Storm
and Flink continuously process data as it arrives. Dask Streamz
and Spark Streaming rely on micro-batches, i. e., incoming
data is partitioned into batches according to a user-defined
criteria (e. g. time window). The advantage of micro-batching
is that it provides better fault tolerance, higher throughput and
exactly-once processing guarantees, while native stream en-
gines can provide lower latencies and more advanced window-
ing capabilities, e. g., tumbling and session-based windows.
Each of the described message brokers and stream processing
frameworks provides unique capabilities, e. g., specific win-
dows semantics, high-level APIs (such as streaming SQL), low
latency. However, they do not address interoperability, deploy-



ment on HPC and resource management. While all frameworks
provide an application-level scheduler, resource management
is typically a second-order concern and not addressed in a
generalized, holistic, framework-agnostic approach.

B. Related Work

There are several areas of related work: (i) frameworks that
allow the interoperable use of streaming frameworks on HPC,
(ii) the usage of HPC hardware features and frameworks (such
as MPI) to optimize data streaming frameworks, and (iii) the
exploration of data streaming in distributed applications.
Interoperable Streaming on HPC: Various tools have been
proposed to support open source Big data frameworks, such
as Hadoop and Spark on HPC environments on top of sched-
ulers like SLURM, PBS/Torque etc [23], [24]. Other more
streaming-oriented frameworks, such as Flink, Heron and
Kafka are not supported on HPC out-of-the-box and require
the manual implementation of job submission scripts.
While these script-based approaches is acceptable for small
applications, it has severe limitations with respect to main-
tainability and support for more complex stream processing
landscapes. For example, it is typically necessary to coordi-
nate resources among several tools and frameworks, such as
simulation and data acquisition, data message broker, and the
actual stream processing framework. Also, streaming appli-
cation are much more dynamic exhibiting varying data pro-
duction and process rates, than traditional simulation and data
analytics applications. Thus, in this paper we propose the us-
age of the Pilot-Abstraction as unifying layer for managing a
diverse set of resources and stream processing frameworks.
Optimizing Streaming on HPC: The ability to leverage
HPC hardware and software capabilities to optimize Big Data
frameworks has been extensively explored. Kamburugamuve
et al. [25] propose the usage of optimized HPC algorithms
for low-latency communication (e. g. trees) and scheduling of
tasks to enhance distributed stream processing in the Apache
Storm framework [18]. In [26] they investigate the usage
of HPC network technology, such as Infiniband and Omni-
path, to optimize the interprocess communication system of
Heron [19], the successor of Storm. Chaimov et al. [27] pro-
pose the usage of a file pooling layer and NVRAM to op-
timize Spark on top of Lustre filesystems. These approaches
can complimentary to the high-level resource management ap-
proach proposed in this paper and can be used to optimize crit-
ical parts of a stream processing pipeline. These approaches
mainly focus on low-level optimization of Big Data frame-
works for HPC. Pilot-Streaming address critical gaps in the
integration of these frameworks with the application and the
ability to manage resources across these frameworks in a high-
level and uniform way.
Streaming in Scientific Application: Fox et al. [10] identifies
a broad set of scientific applications requiring streaming capa-
bilities. Many aspects of these use cases have been explored:
For example, Bicer et al. [28] investigates different light source
reconstruction techniques on HPC. Du [29] evaluates stream-
ing infrastructure for connected vehicle applications. Both ap-

proaches focus solely on a specific aspect of a single use cases,
e. g., latencies or processing throughput. Proving a generalized
architecture and solution for many use cases addressing im-
portant shared concerns, such as resource management, is not
in scope of these approaches. Pilot-Streaming and the Stream-
ing Mini-Apps provide a holistic approach for addressing a
broad set of use cases end-to-end from data source, broker to
processing on heterogeneous infrastructure.
The implementation of scientific streaming applications re-
quires the integration of infrastructure, a diverse set of frame-
works: from resource management, message brokering, data
processing to advanced analytics. In most cases, the data
source is external making it essential for streaming application
to dynamically manage resources and frameworks.

III. STREAMING APPLICATIONS

Stream processing is becoming an increasingly important for
scientific applications. While many streaming applications pri-
marily perform simple analytics (smooth averages, max de-
tection) on the incoming data, the computational demands are
growing. For example, to run complex reconstruction algo-
rithms for light source data streams or deep learning based
computer-vision algorithms, such as convolutional neural net-
works, a vast amounts of scalable compute resources are re-
quired. In this section, we develop a taxonomy for classifying
streaming applications. Further, we will discuss light source
streaming as specific applications example.

A. Applications Characteristics

In the following we investigate different types of streaming
applications in particular with respect to types data production
(simulation, experiment) and processing:
Type 1 – Experimental Data Streaming: Experimental data
generated by an instrument that is processed by a data analysis
application and/or a simulation. An example are light source
experiments (see section III-B).
Type 2 – Simulation Data Streaming: Simulation produces
data that is processed by a data analysis application. This form
of processing is referred to as in-situ processing. Different
forms of in-situ analysis exist: the analysis tasks can e. g. run
within the same HPC job or on a separate set of nodes coupled
via shared storage and/or network. An example of co-analysis
of molecular dynamics simulations data [4].
Type 3 – Streaming with Feedback/Control Loop: Data
is processed with realtime feedback, i. e. output is used to
steer simulation respectively experiment. Both type 1 and 2
applications typically benefit from the ability to integrate real-
time insights into an experiment or simulation run.
Streaming applications involve the coupling a data source
(simulation, experimental instrument), message broker and
processing. In general, these components can be deployed
across heterogeneous, distributed infrastructure. Often, it
makes sense to run some pre-processing close to the data-
source (on the edge), transmit selected data to the cloud and
do global processing in the cloud. Resource needs are highly



dynamic and can change at runtime. Thus, an in-depth un-
derstanding of application and infrastructure characteristics is
required.
The coupling between data source and processing can be (i)
direct (e. g., using a direct communication channel, such as
memory) or (ii) indirect via a brokering system. The direct
couple is used when low latencies and realtime guarantees are
required. The direct coupling approach is associated with sev-
eral drawbacks: it involves a large amounts of custom code
for interprocess communication, synchronization, windowing,
managing data flows and different data production/consump-
tions rates (back-pressure) etc. Thus, it is in most cases ad-
vantageous to de-couple production and consumption using a
message broker, such as Kafka. Another concern is the geo-
graphic distribution of data generation and processing: both
can be co-located or geographically distributed. Further, the
number of producer and consumers can vary.
The third component is the actual stream data processing: in
simply cases the application utilizes non-complex analytics on
the incoming data, e. g. for averaging, scoring, classification or
outlier detection. Typically, streaming applications utilize less
complex analytics and operate on smaller amounts of data,
a so-called streaming window. There are multiple types of
windowing, e. g. a fixed, sliding or session window. Commonly
the streaming windows is either defined based on processing
time or event time. More complex application involve combine
analytics with state and model updates, e. g. the update of a
machine learning model using incoming and historical data.
This processing type requires that the model state is retained.
Further, access to additional data is often required.
The main difference between streaming applications with tra-
ditional, data- intensive batch applications is that streaming
data sources are unbounded. While this impacts some aspects
of an applications, such as the runtime and the potentially need
to carefully reason about ordering and time constraints, other
factors remain the same, e. g., the computational complexity
of the processing algorithms. In the following, we utilize the
following sub-set of properties to characterize streaming ap-
plications:
Data Source and Transfer: describe the location of the data
source in relation to the stream processing application. The
data source can be external (e. g., an experimental instrument)
or internal to the application (e. g., the coupling of a simulation
and analysis application on the same resource). Output data is
typically written to disk or transferred via a networking inter-
face. Message brokers can serve as intermediate decoupling
production and consumption.
Latency is defined as the time between arrival of new data
and its processing.
Throughput describes the capacity of the streaming system,
i. e. the rate at which the incoming data is processed.
Lifetime: Streaming applications operate on unbounded data
streams. The lifetime of a streaming application is often de-
pendent on the data source. In most cases it is not infinite and
limited to e.g., the simulation or experiment runtime.

Time/Order Constraints defines the importance of order
while processing events.
Dynamism: is variance of data rates and processing complex-
ity observed during the lifetime of a streaming application.
Processing: This characteristics describes the complexity of
data processing that occurs on the incoming data. It depends
e. g. on the amount of data being processed (window size,
historic data) and the algorithmic complexity.

B. Streaming Application Examples

In the following we utilize the defined streaming application
characteristics to analyze two example use cases: (i) a generic
streaming analytics application (Type 1 or 2), and a more spe-
cific use case (ii) light sources analytics (Type 1). Table II
summarizes different characteristics of these applications.
1) Streaming Analytics: Use cases, such as Internet-of-
Things, Internet/Mobile clickstreams, urban sensor networks,
co-analysis of simulation data, demand the timely processing
of data feeds using different forms of analysis [1], [30]. For
example, an increasing number of scientific applications re-
quire streaming capabilities: cosmology simulations require
increasing amounts of data analytics to digest simulation
data, environmental simulation require the integration of re-
mote sensing capabilities, etc. Depending on the nature of
the data source, this type of application can be classified as
type 1 or 2 application. The number of type 3 application is
still comparable low. This can be attributed to the lack of
sufficient middleware to support such complex architectures.
While the general problem architecture of data analytics and
machine learning are similar to those of batch application,
there are some subtle differences: typically the amount of data
processed at a time is small compared to batch workloads.
While the problem architecture of many machine learning al-
gorithms remains the same, different techniques for updating
the model using the new batch of data are used (e.g., averaging
using a decay factor).
2) Light Source Sciences: X-Ray Free Electron Laser (XFEL)
are a class of scientific instruments that have become instru-
mental for understanding fundamental processes in domains
such as physics, chemistry and biology [31], [32]. Such light
sources can reveal the structural properties of proteins, molec-
ular and other compounds down to the atomic levels. The light
source emits hundreds to thousands of x-ray pulses per second.
Each pulse produces an image of the diffraction pattern as re-
sults. These images can then be combined and reconstructed
into a 3-D model of the compound serving as the basis for
a later analysis. Light sources can be used to exactly observe
what is happening during chemical reactions and natural pro-
cesses, such protein folding.
Example for light sources are the Linac Coherent Light Source
(LCLS) [33] at SLAC, the National Synchroton Light Source
II (NSLS II) [2] at Brookhaven, and the European XFEL light
sources [34]. LCLS-I averages a throughput of 0.1-1 GB/sec
with peaks at 5 GB/s utilizing 5 PB of storage and up to 50
TFlops processing [3]. The European XFEL produces 10-15
GB/sec per detector [34]. In the future even higher data rates



are expected: LCLS-II is estimated to produce data at a rate of
more than 20 GB/sec. In the following, we focus on NSLS-II.
NSLS-II consists of 29 operational beamlines. Thirty more
beamlines are in development. Each beamline has different
data characteristics, therefore the need for developing man-
agement tools that acquires the data from the beamlines and
analyzes them is evident. As the beamtimes available to the
user are typically short, it essential that processing and anal-
ysis can be conducted in a timely manner. Thus, streaming
data analysis is an important capability to optimize the pro-
cess. This ensures that scientists can adjust the settings on the
beamline and optimize their experiment.
The Complex Materials Scattering (CMS) beamline is an
NSLS-II beamline, which generates 8 MB images at a rate of
10 images/minute. While this production data rate is not very
high, a single CMS experiment generates more than 17,000
images a day, equivalent to ∼140 GB of data. It is required that
this data be processed within 6 hours, to prepare for the ex-
periments the following day. The Coherent Hard X-ray (CHX)
beamline [35] is dedicated to studies of nanometer-scale dy-
namics using X-ray photon correlation spectroscopy can pro-
duce data at much higher rates of ∼4.5GB/s [36].
Light source applications are a Type 1 application. In most
cases, the instrument is co-located with some compute re-
sources. However, scientists often rely on additional compute
resource and also may need to integrate data from several
instruments. Thus, the ability to manage geographically dis-
tributed resources is important. Currently, data analysis is often
decoupled from the experiments. With increased sophistication
of the instruments, the demand for steering capabilities will
grow evolving this type of application toward Type 3.
The processing pipeline for light source data comprises of
three stages: pre-processing, reconstruction and analysis [37].
Pre-processing can includes e. g. normalization of the data,
filtering and the correction of errors. Various reconstruction
with different properties, e. g. computational requirements and
quality of the output, exist: GridRec [38] is based on a Fast-
Fourier transformation and is less computational intensive and
thus, fast. Iterative methods can provide a better fidelity. An
example of an iterative method is Maximum likelihood expec-
tation maximization (ML-EM) reconstruction [39]. A broad set
of analytics methods can be applied to the reconstructed im-
age, e. g. image segmentation and deep learning methods. For
the CMS experiment, simple statistical algorithms, such as the
computation of a circular average and peak finding is used.
3) Discussion: The requirements of streaming applications
vary: For use cases involving physical instruments with po-
tential steering requirement, e. g., X-Ray Free Electron Laser,
both latency and throughput are important. Other use cases
e. g. the coupling of simulation and analysis have less de-
manding latency and throughput requirements. The lifetime of
scientific streaming applications is often coupled to the life-
time of the data source. Time and message ordering is in con-
trast to transactional enterprise applications not important for
many scientific applications. With respect to the data trans-
fer and processing requirements, the need to support different

Streaming Analytics: K-Means Light Source
Data Source external or internal external
Latency medium/high latencies medium latencies
Throughput medium high
Duration data source runtime experiment runtime
Time/Order not important not important
Dynamism varying data rate varying data rate
Processing Model score: Assign data to cen-

troids/class O(num points ·
num clusters). Model up-
date: Update centroids with
in-coming mini-batch of data.
Model size: small (O(number
clusters))

Reconstruction: Reconstruc-
tion techniques with different
complexities (GridRec, ML-
EM). Analysis: data analysis
techniques, such as peak find-
ing, image processing models
utilizing GPUs.

TABLE II
STREAMING APPLICATION PROPERTIES

frameworks in a plug-able and interoperable way is apparent.
Another important difference is that streaming applications are
typically runtime constrained, i. e. they must process the in-
coming data at a certain rate to keep the system balanced.
Thus, a good understanding of application characteristics is
even more critical for streaming applications. Minor changes
in the data rates, the processing approach (e. g. change of the
processing window, sampling approaches or the need to pro-
cess additional historic data or available resources) can lead to
imbalance and a dysfunctional system. Thus, the ability the dy-
namically allocate additional resources to balance the system
is critical. We use the characteristics identified in this section
to design the Streaming Mini-Apps that aids the evaluation of
complex streaming systems (see section V).

IV. PILOT-STREAMING: ABSTRACTIONS, CAPABILITIES
AND IMPLEMENTATION

Pilot-Streaming addresses the identified challenges and gaps
related to deploying and managing streaming frameworks and
applications on HPC infrastructure. Pilot-Streaming makes two
key contributions: (i) it defines a high-level abstractions that
provide sufficient flexibility to the application while supporting
the resource management and performance needs of streaming
applications are essential, and (ii) the reference implementa-
tion supports different stream processing and brokering frame-
works on HPC resources in a plug-able and extensible way.
Pilot-Streaming provides a well-defined abstraction, i. e. a sim-
plified and well-defined model that emphasizes some of the
system’s details or properties while suppressing other [40], for
managing HPC resources using Pilot-Jobs and deploy stream-
ing frameworks on these. The Pilot-Stream abstraction is based
on the Pilot-Job abstraction. A Pilot-Job is a system that gen-
eralizes the concept of a placeholder job to provide multi-level
scheduling to allow application-level control over the system
scheduler via a scheduling overlay [8]. Pilot-Jobs have been
proven to provide efficient mechanisms for managing data
and compute across different, possibly distributed resources.
The Pilot-Abstraction is heavily used by many HPC appli-
cation for efficiently implementing task-level parallelism, but
also advanced execution modes, such as processing of DAG-
based task graphs. Examples for using the Pilot-Abstraction
are molecular dynamics simulations [41] and high energy ap-
plication [42]. Further, we have explored the applicability of
the Pilot-Abstraction [43] to data-intensive applications on
HPC and Hadoop environments [44], [45].



The Pilot-Streaming reference implementation allows the man-
agement and deployment of different message brokers and
stream processing frameworks, currently Spark, Dask and
Kafka, as well as its ability to serve as unified access layer
to run tasks across these in an interoperable way. Further,
these frameworks can be deployed side-by-side on the same
or different distributed resources a capabilities which is criti-
cal for many streaming pipelines. The framework is designed
in extensible way and can easily be extended to support Flink,
Heron and other stream processing frameworks. Another key
capability is the ability to dynamically scale these frameworks
by adding resources. This is essential to deal with varying data
rates and compute requirements. Further, framework continu-
ously monitors the applications and thus, provides an enhanced
level of fault tolerance, which is essential as stream applica-
tions typically run longer than batch jobs. We continue with a
discussion of the Pilot-Streaming abstraction in section IV-A
and the reference implementation in section IV-B.

A. Pilot-Abstractions and Capabilities

In this section, we describe the provided abstraction from de-
veloper point of view. The abstraction is based on the Pilot-
abstraction, which provides two key abstractions: a Pilot repre-
sents a placeholder job that encapsulates a defined set of user-
requested resources. Compute-Units are self-contained pieces
of work, also referred to as tasks, that are executed on these
resources. Pilot-Streaming utilizes multi-level scheduling and
can manage Compute-Units in a framework-agnostic way. For
this purpose, Pilot-Streaming interfaces with the schedulers of
the different frameworks, e. g. the Spark scheduler, which then
manage the further execution of the Compute-Units. The key
features of Pilot-Streaming are:
Unified and Programmatic Resource Management: The
Pilot-Abstraction provides a unified resource management ab-
straction to manage streaming frameworks for processing and
message brokering on HPC environments. It allows the or-
chestration of compute and data across different frameworks.
Streaming Data Sources: While our previous work focused
on integration static datasets and compute units managed by
Pilot-Jobs [44], Pilot-Streaming extends this ability to stream-
ing data sources, such as Kafka topics.
Interoperable Streaming Data Processing: For the process-
ing of streaming data applications can utilize the Pilot-API
for defining Compute-Units. Compute-Units can either rely
on native HPC libraries and applications or can integrate with
stream processing frameworks, such as Spark-Streaming. This
enables applications to utilize the different capabilities of these
frameworks in a unified way.
Extensibility and Scalability: Pilot-Streaming is extensible
and can easily be extended to additional message brokers and
streaming frameworks. It is architected to scale to large (po-
tentially distributed) machines both at deploy and runtime.
The framework exposes two interfaces: (i) a command-line
interface and (ii) the Pilot-API for programmatic access. The
API is based on a well-defined conceptual model for Pilot-
Jobs [8]. The Pilot-API allows reasoning about resources and

performance trade-off associated with streaming applications.
It provides the means necessary to tune and optimize applica-
tion execution by adding/removing resources at runtime. List-
ing 1 shows the initialization of a Pilot-managed Spark cluster.
The user simply provides a pilot compute description object,
which is a simple key/value based dictionary.
from pilot.streaming.manager import PilotComputeService
spark_pilot_description1 = {

"service_url":
"slurm+ssh://login1.wrangler.tacc.utexas.edu",

"number_cores": 48,
"type":"spark"

}
pilot1 = PilotComputeService.create_pilot(

spark_pilot_description)

Listing 1. Pilot-Streaming: Creation of Spark Cluster

A key capability of Pilot-Streaming is the ability to dynam-
ically add/remove resources to the streaming cluster by just
referencing a parent cluster in the Pilot-Description. If the re-
sources are not needed anymore, the pilot can be stopped and
the cluster will automatically resize. This capability not only
allows application to respond to varying resource needs, but
also provides the ability to work around maximum job size
limitations imposed by many resource providers.
Pilot-Streaming provides several hooks to integrate with the
managed streaming frameworks. It supports custom configu-
rations, which can be provided in their framework native form
(e.g., spark-env format etc.) and can easily be managed on per
machine basis. This ensures that machine-specific aspects, e.g.,
amount of memory, the usage SSD and parallel filesystems,
network configurations, can optimally be considered.
Pilot-Streaming supports interoperability on several levels. The
API provides a unified way to express stream computations
agnostic to specific framework. Listing 2 illustrates how to
execute a Python function can be executed as a Compute-Unit
in a interoperable way. This is suitable for simple stream-
processing tasks, such as tasks that can be expressed as map-
only job. Using the unified API, functions can easily be
run across frameworks, e. g. to utilize advanced, framework-
specific capabilities, such as parallel processing, windowing
or ordering guarantees. For more complex tasks, the API pro-
vides the ability to access the native API of each framework
allowing the implementation of complex processing DAGs.
def compute(x): return x*x
compute_unit = pilot.submit(compute, 2)
compute_unit.wait()

Listing 2. Pilot-Streaming: Interoperable Compute Unit

Listing 3 illustrates how the Context-API provides the abil-
ity to interface with the native Python APIs from these frame-
works. The context object exposes the native client application,
i. e., the Spark Context, Dask Client or Kafka Client object.
Having obtained the context object, the user can then utilize
the native API, e.g., the Spark RDD, DataFrame and Struc-
tured Streaming API.
sc = spark_pilot1.get_context()
rdd = sc.parallelize([1,2,3])
rdd.map(lambda x: x*x).collect()

Listing 3. Pilot-Streaming: Native Spark API Integration
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B. Reference Implementation: Architecture and Interactions

Figure 2 illustrates the high-level architecture of Pilot-
Streaming. Pilot-Streaming provides a unified access to both
HPC and cloud infrastructure. For resource access we utilize
the SAGA Job API [46], a lightweight, standards-based ab-
straction to resource management systems, such as SLURM,
SGE and PBS/Torque. The framework provides two key capa-
bilities: the management of message broker on HPC and the
management of distributed data processing Engines on HPC.
These two capabilities are encapsulated in the message broker
and data processing module. The interface to the framework
is the Pilot-Abstraction [8], a proven API for supporting dy-
namic resource management on top of HPC machines. The
application logic is expressed using so-called Compute-Unit,
which can be executed in either (i) a task-parallel process-
ing engine, such as Pilot-Jobs (e. g., RADICAL-Pilot [47],
BigJob [43] or Dask), or (ii) a streaming framework, such as
Spark Streaming. Case (i) typically requires the manual im-
plementation of some capabilities, e. g. the continuous polling
of data. In case (ii) the developer can rely on the streaming
framework for implementing windowing. Both scenarios have
trade-offs: while scenario (i) allows the interoperable execu-
tion of CUs across frameworks, scenario (ii) is often faster to
implement. Pilot-Streaming supports both cases.
Figure 3 shows the interaction diagram for Pilot-Streaming.
In the first step the application requests the setup of Spark,
Dask or Kafka cluster using a Pilot-Description as specifica-
tion. Then the Pilot-Manager initiates a new Pilot-Job, a place-
holder job for the data processing or message broker cluster,
via the local resource manager. The component running on
resource is referred to as Pilot-Streaming-Agent (PS-Agent).
After the job and framework has been initialized, the applica-
tion can start to submit Compute-Units or initiative interactions
with the native framework APIs via the context object.
Pilot-Streaming is an extensible framework allowing the sim-
ple addition of new streaming data sources and process-
ing frameworks. By encapsulating important components of
streaming applications into a well-defined component and
API, different underlying frameworks can be used support-
ing a wide variety of application characteristics. It utilizes the
SAGA-Python [48] implementation to provision and manage
resources on HPC machines.
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Fig. 3. Pilot-Streaming Interaction Diagram: The figure shows the control
flow used by Pilot-Streaming to manage frameworks and applications.

Data Source Adhoc deployment of broker and processing close to data
Latency Framework selection, co-location of data/compute resource
Throughput Framework selection, optimization of resource configuration

to data rate
Fault Toler-
ance

Monitoring of Jobs through Pilot-Job Management and
Agent

Time/Ordering Orderting, Windowing mechanism of underlying framework
Dynamism Add/Remove resources at runtime via Pilot-Job Mechanism

TABLE III
STREAMING CHALLENGES ADDRESSED BY PILOT-STREAMING

The streaming frameworks specifics are encapsulated in a plu-
gin. A framework plugin comprises a simple service provider
interface (SPI) and a bootstrap script executed on the resource.
As depicted in Listing 4, the interface has six functions, e. g.,
to start/extend a cluster, to retrieve cluster information, such
as state and connection details.
class ManagerPlugin():

def __init__(self, pilot_compute_description)
def submit_job(self)
def wait(self)
def extend(self)
def get_context(self, configuration)
def get_config_data(self)

Listing 4. Pilot-Streaming Plugin Interface

Discussion: Data and streaming applications are more hetero-
geneous and complex than compute-centric HPC applications.
Pilot-Streaming allows the usage of different message brokers
and data processing engines in an interoperable way on HPC
infrastructures. Table III summarizes how Pilot-Streaming ad-
dresses the requirements of streaming applications.
Pilot-Streaming removes the need for application developers
to deal with low-level infrastructure, such as resource manage-
ment systems. Running Spark, Kafka and Dask clusters across
a flexible number of Pilot-Jobs provides the ability to dynam-
ically adjust resources during runtime. Further, the framework
provides a common abstraction to execute compute tasks and
integrate these with streaming data. It supports the interop-
erable execution of these CU across different frameworks.
In addition, Pilot-Streaming provides the ability to also uti-
lize the higher-level APIs provided by the frameworks. Cur-
rently, Pilot-Streaming supports Kafka, Spark, and Dask. It
can be extended via a well-documented plugin-interface. Pilot-
Streaming is open-source, maintained by an active developer
community and available on Github [49].



Mini-App Framework

Mini-App Streaming
Source

Cluster

Pilot-Streaming

Mini-App Streaming
Analytics

Kafka

MLlib TemplateTemplate

Dask Spark-
Streaming

Benchmark Suite

Fig. 4. Streaming Mini-Apps: The framework is based on Pilot-Streaming
and provides two components: the MASS (MiniApp for Stream Source) emu-
lates different streaming data sources and the MASA (MiniApp for Streaming
Analysis) provides different synthetic processing workloads.

V. STREAMING MINI-APPS
Developing streaming application pipelines is a complex task
as it requires multiple parts: data source, broker and process-
ing component. Every one of these components typically relies
on different programming and middleware systems making it
highly complex to develop such pipelines. During develop-
ment process the real data source is often not available. Often
developers have to rely on a static dataset, which results in
significant efforts for setting setup a real test and develop-
ment environment that is capable of mimicking non-bounded
datasets as well as non-functional requirements, such as dif-
ferent data rates, message sizes, serialization formats and pro-
cessing algorithms. If available, real applications are often not
as parameterizable and tunable to characterize and optimize
application, middleware and infrastructure configurations.
The Streaming Mini-Apps [50] addresses these challenges.
Figure 4 shows the architecture of the framework. The frame-
work is based on Pilot-Streaming, which provides the ability
to rapidly allocate different size of cluster environments. The
core of the framework consists of two main components: (i) the
MASS (Mini-App for Stream Source) can emulate a streaming
data source, which can be tuned to produce streams with dif-
ferent characteristics: data rates, messages size. (ii) the MASA
(Mini-App for Streaming Analysis) provides a framework for
evaluating different forms of stream data processing.
The MASS app includes a pluggable data production func-
tions. The current framework provides two types of func-
tions: A cluster source generates random data points follow-
ing certain structures, e. g., for evaluation of streaming cluster
analysis algorithms. The second type: template produces an
unbounded stream based on a static template dataset. Data
rates, message sizes etc. can be controlled via simple con-
figuration options. Using these two base data source the ma-
jority of streaming applications can be emulated. For exam-
ple, KMeans or other cluster algorithms for detecting outliers
in data streams can be developed and tested with the cluster
source. The template algorithms is great for migrating batch
workloads to streaming. It can be used to emulate important
application, such as light sources.
Similarly, the MASA app enables the user utilize machine
learning algorithms from MLlib [51] or to provide custom data
processing functions. Currently, it is based on Spark Stream-

ing, but the framework can easily ported to other streaming
frameworks as it is based on Pilot-Streaming. The processing
function is data-parallel by nature. The machine learning algo-
rithms provided by MLlib are capable of utilizing distributed
resources supporting both data and model parallelism. In par-
ticular, we provide pre-configured support for KMeans cluster-
ing [52] and for reconstructing light source data. The K-Means
algorithm has a complexity of O(cn) where c is the number of
cluster centroids and n is the number of data points. The light
source reconstructing algorithm is based on Tomopy [37], a
framework that is commonly used for pre-processing raw light
source data, e. g., image reconstructions, and for further anal-
ysis. Different reconstruction algorithms are supported by the
Mini-Apps, e. g., GridRec [38] and ML-EM [39].
In summary, the Streaming Mini-Apps provide optimal cus-
tomizability with the ability to plug in custom data produc-
tion and processing functions and control various configura-
tion parameters, such as data rates, message sizes, etc. The
framework provides comprehensive performance analysis op-
tions, e. g. it includes standard profiling probes that enables to
measure common metrics, such as production and consump-
tion rate allowing the benchmark of application and stream-
ing middleware components making it easy to understand per-
formance bottlenecks as well as the impact of changes. This
is an essential capability to develop, test and tune streaming
pipelines under complex, real world loads. In particular com-
ponents like the message broker are difficult to analysis as the
write/read load can vary significantly depending on the num-
ber consumers and producers. Further, the Mini-Apps allow
for easy reproducibility of such experiments. The Streaming
Mini-Apps provide a powerful tool to develop, optimize ap-
plications, and empirically evaluate streaming frameworks and
infrastructure. In contrast to other approaches [53], the stream-
ing mini app framework focuses on data-related characteris-
tics, in particular the need to produce, transport and process
data at different rates. In addition, the framework can emulate
the application characteristics of K-Means application.

VI. EXPERIMENT AND EVALUATION

The aim of this section is to investigate different infrastruc-
ture configuration with respect to their ability to fulfill defined
application requirements in terms of latency and throughput.
For this purpose, we use the Mini-Apps to simulate differ-
ent data production and processing characteristics. All exper-
iments are conducted on Wrangler, an XSEDE machine de-
signed for data-intensive processing. Each Wrangler nodes has
128 GB of memory and 24 cores.

A. Startup Overhead

There are two main steps for setting up Spark and Kafka on
HPC: (i) Running the batch job that sets up the Kafka/Spark
cluster and (ii) initiating an actual session with the broker
respectively starting a Spark job by initializing a Spark session.
Figure 5 compares the startup times for different size Kafka,
Spark and Dask clusters. The startup time for Kafka increase
significantly with the number of nodes indicating that some
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Dask startup times did not significantly change for larger clusters.

optimizations are necessary for larger clusters. Spark and Dask
utilize parallelism to startup the cluster and thus, show no
significant increase.
The measured startup times are short compared to the overall
runtime of streaming application. In particular, considering the
benefits of Pilot-Streaming: improved isolation of application
components, the ability to independently scale parts of the
streaming pipeline to the application needs, better diagnose-
ability, debug-ability and predictability of the application, this
is an acceptable overhead.

B. Producer Throughput

In this section, we analyze the performance for publishing
data into the Kafka system using the MASS app. The pro-
duces batches of random 3-D points, which are serialized to
a string and pushed to Kafka using PyKafka [54]. We utilize
different data source types: (i) KMeans: every message con-
sists of 5,000 randomly generated double precision points.
The average serialized size of message is 0.32 MB; (ii) Light-
source Micro-Tomography (Light-MT): every message con-
sists of raw input dataset in the APS data format and an av-
erage encoded message size of 2 MB. (iii) Lightsource CMS
(Light-CMS): every message consists of one image generated
from the CMS Beamline. The size of each image is 8 MB
(HDF5) and 18 MB (serialized). The scenarios were chosen to
demonstrate the variety characteristics with respect to number
messages and message sizes streaming application can exhibit.
We investigate the throughput and its relationship to different
MASS types and configurations as well as to different Kafka
broker cluster sizes. For the experiment, we utilize different re-
source configuration parameters determined in a set of micro-
experiments: the number partitions is fixed at 12 per node. On
every producer node, we run 8 producer processes in Dask.
While each node possesses 24 cores, the performance per node
deteriorated drastically when using more producers/node due
to network and I/O bottlenecks. We evaluate four scenarios:
KMeans-Random, KMeans-Static, Light-MT and Light-CMS.
The KMeans-Random scenario uses the cluster MASS plugin
to generate points randomly distributed around a defined num-
ber of centroids. Kmeans-Static and both light scenarios use
a static message at a configured rate.
Figure 6 shows the results. The KMeans-Random configura-
tion is bottlenecked by the random number generator. Thus, the
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Fig. 6. MASS Producer Throughput for Different Data Sources Types
and Resource Configurations: We utilize up to 16 producer nodes with 8
processes/node and 4 Kafka nodes. The achievable throughput depends on the
message size: KMeans: 0.3 MB, Light-MT: 2 MB and for Light-CMS: 18 MB.

KMeans-Static setup has on average a 1.6x higher throughput
than KMeans-Random. The light scenarios show a significant
MB/sec throughput mainly due to larger message sizes: Light-
CMS uses a much larger message size (18 MB) compared to
Light-MT (2 MB), thus the throughput is in many cases higher
for Light-CMS than for Light-MT. As expected, the message
throughput is lower for Light-CMS due to the larger message
sizes. Both the message throughput and high variance in the
measured bandwidth indicate that the performance is network
bound. Also, it must be noted that the network is a shared
resource and external factors likely lead to the high variance
in the measured bandwidths for Light-CMS and Light-MT.
The usage of more brokers does not improve the performance
in all scenario due to the overhead associated with access-
ing a multi-node Kafka cluster, e. g. concurrent connections
and partitioning overhead. A multi-node Kafka cluster is par-
ticular advantageous when a larger number of medium-sized
messages need to be handled, such as for Light-MT.

C. Processing Throughput
We use the MASA Mini-App to investigate the throughput of
three different processing algorithms: a streaming KMeans that
trains a model with 10 centroids and makes a prediction on
the incoming data, and two light source reconstruction algo-
rithms: GridRec and ML-EM. We use the distributed KMeans
implementation of MLlib and the GridRec, ML-EM of To-
moPy. In the experiment we utilize the MASS Mini-App with
1 node and 8 producer processes to continuously produce mes-
sages of 0.3 MB/5000 points for KMeans and 2 MB/1 point
for the light source scenarios. This way are able to simulate a
complex read/write workloads on the Kafka broker. We use 12
partitions/node for the Kafka topic. The Mini-App uses Spark
Streaming with a mini-batch window of 60 sec.
Figure 7 shows the results of the experiment. The processing
throughput depends on various aspects, such as the bandwidth
to the message broker, computational complexity, and the scal-
ability of the processing algorithm. The KMeans application
shows the highest throughput. It scales both increasing num-
ber of processing nodes. For example, it is apparent that in the
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GridRec shows a higher throughput than ML-EM as it less computation com-
plex. Scaling of both reconstruction algorithms is limited by I/O contention.

1 and 2 broker scenario, the I/O to the broker constraints the
performance. With additional broker nodes, the available band-
width and parallelism increasing. Spark Streaming assigns 1
task per Kafka partition. This is visible in a significant in-
crease in throughput. With KMeans we were able to achieve
a maximum throughput of 277 messages/sec and thus, were
easily able to sustain the generated data rate.
The throughput of the light source reconstruction algorithms
is significantly worse with maximum 63 message/sec for
GridRec and 22 messages/sec for ML-EM. As describe it-
erate algorithms, such as ML-EM are more demanding than
GridRec. Additional broker nodes yielded in significant perfor-
mance improvements. Additional processing nodes improved
the performance as long the bandwidth to the resource broker
was able to keep up with the additional processing resources.
The amount of data transferred is with 2 MB/message sig-
nificant larger than in the KMeans scenario. Further, we ob-
served some resource contentions caused by running multiple
instances of the algorithm on the same node and the need
to buffer a significant number of messages. The results show
the importance of resource management - only if the band-
width and read-parallelism to the data source or broker is large
enough additional compute resources are beneficial.
Discussion: As demonstrated, the overhead for Pilot-
Streaming is small: the startup time for dynamically starting
Kafka, Dask and Spark clusters is outweighed by the bene-
fits of improved flexibility, resource isolation (per application
components), and the ability to scale components indepen-
dently (at runtime if needed). We demonstrated the scalability
of the framework by managing large streaming landscapes
of Dask, Spark and Kafka concurrently on up to 32 nodes,
1536 virtual cores, and 4 TB of memory achieving through-
puts of up to 390 MB/sec for the lightsource scenario. This
throughput is large enough to sustain the LCLS-I data stream
with a high enough sampling rate. At the current setup, the
processing side is the bottleneck. We are only able to pro-
cess a fraction of the data. Scaling stream processing is more
difficult than scaling batch analytics workload as it requires
a careful balance of bandwidth to/from the data source re-
spectively the broker and compute resources. In particular,
it can be difficult to diagnose bottlenecks in the broker, as

the varying mixture of write/read I/O makes the performance
often unpredictable. Pilot-Streaming provides the necessary
abstractions to manage resources effectively at runtime on
application-level.
The Streaming Mini-Apps simplify streaming application de-
velopment and performance optimizations. Using the Stream-
ing Mini-Apps, we were able to emulate various complex ap-
plication characteristics. It is apparent that the different frame-
works and application components each have unique scaling
characteristics and resource needs. Even for optimization of
just one component a large number of combinations of exper-
iments is required. On streaming application-level this leads
to a combinatorial explosion of configurations. The Stream-
ing Mini-Apps and Pilot-Streaming provide essential tools for
automating this process. In the future, we will use both frame-
works as foundation for higher-level performance optimization
approaches, e. g., modeling the performance of each compo-
nent, the usage of experimental design and machine learning
techniques for performance predictions.

VII. CONCLUSION AND FUTURE WORK

Pilot-Streaming fills an important gap in supporting stream
processing on HPC infrastructure by providing the ability to
on-demand deploy and manage streaming frameworks and ap-
plications. This capability is crucial for an increasing number
of scientific applications, e. g., light source sciences, to gener-
ate timely insights and allow steering. The landscape of tools
and frameworks for message brokering, data storage, process-
ing and analytics is diverse. Pilot-Streaming currently inte-
grates with Kafka, Spark Streaming, Dask and Flink. Its flex-
ible, plug-in architecture allows the simple addition of new
frameworks. Streaming applications can have unpredictable
and often, external induced resource needs, e. g. driven by the
data production rate. Pilot-Streaming addresses these needs
with a well-defined resource model and abstraction that allows
the adjustments of the allocated resources for each component
at runtime. Another important contribution are the Stream-
ing Mini-Apps, which simplifies the development of streaming
pipelines with the ability to emulate data production and pro-
cessing. We demonstrated the variety of features of this frame-
work with several experiments using a streaming KMeans and
different light source analysis algorithms.
This work represents the starting point for different areas of
research: We will extend Pilot-Streaming to support highly
distributed scenarios enabling applications to push compute
closer to the edge for improved data locality. The Streaming
Mini-Apps will be the basis for the development and charac-
terization of new streaming algorithms, e. g. additional recon-
struction algorithms and deep learning based object classifi-
cation algorithms. We will explore the usage of accelerators
(such as GPUs) to support compute-intensive deep learning
workloads. Another area of research are steering capabilities.
Further, we will continue to utilize the Streaming Mini-Apps
to improve our understanding of streaming systems and em-
bed this into performance models that can inform resource and
application schedulers about expected resource needs.
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