Implementation of the ATLAS trigger
within the ATLAS Multi-Threaded
Software Framework: AthenaMT

IEEE eScience
29 October - 1 November 2018, Amsterdam

Tim Martin, University of Warwick @

On behalf of the ATLAS Collaboration
Tim.Martin@cern.ch EXPERIMENT
Slides: http://cern.ch/go/97FW A

ATLAS Trigger & Data Acquisition

Event rates Trigger . Peak data rates
(peak) [Calo/] [Pixel [] (primary physics)
Muon) |/SCT omes
= O(60 TB/s)
40 MHz , =
Custom [€ | EI)_:IE&% [FE] [FE] §
Hardware . =
e = Level 1 Accept 7S ¢ o
Hardware Dominant i 8
Domain 4 (rop] (RoD] (RoD) 3
100 kHz Regions of \ 4
___________ — - L oL lltefe_st__ ~ 160 GB/s
] (HLTsv \ (
Software Dominant \ Readout System |
Domain) N
y 50k
= Fragments
E[[Processing Unit > \
~ Full event ~ 23 GBls
v 0O(10)
[[Data Logger]
\/ , \/
~15kHz2z | ~1.5GB/s
(CERN e 1]

An Abstraction O

Process 100 kHz events in “real-time”
Every event will PASS or FAIL.

FAIL events are lost forever. .
Only 1% of events can PASS.

We want events with MOONs and .
We don’t care about events with only SQUAREs.

We cannot look at all of the data due to network bandwidth.

Full event
reconstruction takes
O(30s), whereas the

Trigger has only 0.5s
on average.

\,\{a.\

Run: 266919
proton-proton collisions at Event: 19982211
13 TeV centre-of-mass energy 2015-06-04 00:21:24

Selected events are fully
reconstructed O(days) later in

another compute farm.

Key Principles of the Trigger

e Regional Reconstruction
We cannot |ook at all 1.6 MB of every event due to bandwidth

O

(@)

e Early Rejection

(@)

O O O O O

Step 1

CJ O %

Restrict to running reconstruction algorithms within
Regions of Interest, identified in the 1st level hardware trigger. |

Split reconstruction up into multiple Steps.

Filtering occurs after each Step via Hypothesis Algorithms
Early steps are fast, but coarse.

Later steps take more time, but are detailed.

Stop reconstructing an object as soon as it fails a selection at the end of a Step.
Stop reconstructing the event when all objects are rejected.

(

?

? [step2 Step 1 ? [step 2 ? [steps ?

(

Software Framework: Athena

e The ATLAS Software framework, Athena, is built on top of the inter-experiment

Gaudi framework (shared e.g. with the LHCb collaboration).
o C++ Algorithms, Services, Tools etc. with Python configuration.

e For each event a sequential list of algorithm executed. Algorithms are assumed to
depend only on other algorithms scheduled earlier in the list.
e One common singleton Event Store handles transient and persistent data access.

e High Level Trigger uses custom Top Sequence

steering, regular algorithms need wrapping.
e Inthe High Level Trigger, multi-core machines Algorithm #0
are currently utilised by forking the configured
HLT process instance. _ Algorithm #1
e Memory is shared with copy-on-write.
Introduces overheads when pages are Trigger Steering
modified after the fork. 6

Current Single Threaded Trigger Architecture

e Object selections are encoded in Chains. Each step runs in serial.

—(e

EXECUTE
STEP 1

=

(

Chain 1 - Step 1
ROI 1

Chain 2 - Step 1

Chain 3 - Step 1

ROIZ | ROIT |
(AigD /||| AlgA cor |
(AgE ||| || AigB

Cached
result used

Current Single Threaded Trigger Architecture

e Object selections are encoded in Chains. Each step runs in serial.

Err e (S

EXECUTE
STEP 2

Cached
result used

Chain 1 - Step 1 Chain 2 - Step 1 Chain 3 - Step 1
ROIT | ROIZ | [ROIT |

Alg A YY)

Moving on to Athena Multi-Threaded

Future Athena Multi Threaded (MT)

e AthenaMT is built on the Gaudi Hive (Intel TBB) multi-threaded architecture.
e Offers Intra-Event parallelisation.
o The Algorithm Scheduler is configured with the Input- and Output-Data
Handles of all algorithms. Builds a Data Dependency graph.
o Multiple algorithms within an event can run in parallel, provided that their
input Data Handles (if any) are available.
e Offers Inter-Event parallelisation.
o Multiple events may be being processed simultaneously: “in flight”.
o Optimal memory efficiency if all algorithms are re-entrant, i.e. stateless
and able to run on multiple concurrent events (alternate: cloneable).
e Offers In-Algorithm parallelisation.
o Algorithm authors may make use of e.g. parallel for-loops.
[Goal: Maximise memory efficiency & keep all threads busy. |
[Goal: NoTrigger-specific steering layer. No wrappers. |

https://www.threadingbuildingblocks.org/

AthenaMT

Thread 0

Thread 1

Thread 2

Thread 3

Event 1

Event 2

1

AthenaMT Data Dependencies

e Suppose three types of selection: (,*and (+* Each Chain will

follow one of these three paths, with the chain’s configuration controlling object
quality & object size requirements.

e We build a dependency graph of the algorithms required to perform the
reconstruction. Like in the current system, it is split into different steps.

e Three classes of algorithm are used to control the execution.

O

Always runs at the start of each step. Responsible

for implementing Early Rejection. Returns a boolean Filter Decision to the

Gaudi MT Scheduler.

O Input Maker Algorithm

algorithms. Responsible for restricting reconstruction to Regions of Interest.

Provides concrete starting point for reconstruction

Executes hypothesis testing for all active Chains.

Provides input to next Step’s Filter(s).

12

Data Dependencies

Start

Input Maker Step 1

(Reco Alg #0

(Reco Alg #1

=

/ = Explicit Data Dependency

/ = Implicit Data Dependency
(Hidden from Scheduler)

\ Y
<''> Reco Alg #0
NIE

Reco Alg #1

Tt

Input Maker Step 2

Etc...

——
Input Maker Step 2 S’
v =

Data Dependencies |} sttt
B F—

!

Input Maker Step 1 . I Input Maker Step 1 VE
;o QA / = Explicit Data Dependency v
A

- Reco Alg #0 | / = Implicit Data Dependency :’ \7 Reco Alg #0
T (Hidden from Scheduler) ‘/A\‘ *

- Reco Alg #1 I Reco Alg #1
o]

ﬁ
P
oy >

Input Maker Step 2

14

Input Maker Step 2 yEl
Etc... v

Data Dependencies I

‘A

o

 ——— -
Input Maker Step 1 . nput Maker Step 1 *1
/ = Explicit Data Dependency
(Reco Alg #0 / = Implicit Data Dependency . * Reco Alg #0
(Hidden from Scheduler)
(Reco Alg #1 . * Reco Alg #1
e

(S s
(59 [

. put Maker Step 2 :
15

Input Maker Step 2

Data Dependencies
_ . 2

SI¢ K

L

I T
BN

IS T Recomart

* x
¢

n —— *‘

nput wakor Step 1 (-
N

B I |

—(Reconom L

= Explicit Data Dependency

/ = Implicit Data Dependency
(Hidden from Scheduler)

Input Maker Step 2

Control Flow

e The Data Dependency graph on the previous slide is ngt enough on its own.
o We need a mechanism to stop
has executed and returhted.

from running before

e Introduce a second Control Flow graph, built from two types of node (Sequencers).

m The OR node cannot exit early. It will schedule all of its children to
execute in parallel, and return the logical OR of its children’s filter
decisions upon completion.

m The AND node can exit early. It will schedule its children to run
sequentially, one after the other. Should a child return False, the
sequencer will halt execution and return False to its parent.
Otherwise, it will return the filter decision of its final child.

Note: AND Nodes
execute left-to-right

Etc...

Control Flow

Start

Note: Algorithms appear more than
once on the CF graph, but will only
execute once.

Run Step 1 (: Rur: IStep I1I
[][][|
[] (][]

Run Step 1
[][][]

18

Control Flow

4

Note: AND Nodes
execute left-to-right

execute once.

Note: Algorithms appear more than
once on the CF graph, but will only

Etc...

o
(o)

Run Step 1
[1][

=(

Run Step 1

Run Step 1

19

Note: AND Nodes
execute left-to-right

Etc...

Control Flow

V.
Note: Algorithms appear more than
once on the CF graph, but will only
execute once.

Run Step 1 Run Step 1
L]] [1 1]

[11 1] 20

Run Step 1
[1 1]

Note: AND Nodes
execute left-to-right

Etc...

Control Flow

V.
Note: Algorithms appear more than
once on the CF graph, but will only
execute once.

Run Step 1 Run Step 1
L]] [1 1]

[11 1] 21

Run Step 1
[1 1]

Note: AND Nodes
execute left-to-right

Control Flow

V.
Note: Algorithms appear more than
once on the CF graph, but will only
execute once.

Etc...

Run Step 1

Run Step 1 (Run Step 1
CoOCaOC—EEm C—Cl
OO = A

22

Note: AND Nodes
execute left-to-right

Control Flow

V.
Note: Algorithms appear more than
once on the CF graph, but will only
execute once.

Etc...

Run Step 1

Run Step 1 (Run Step 1
CoOCaOC—EEm C—Cl
OO = A

Regional Reconstruction: Event Views

e Gaudi Hive will allow each algorithm to execute at most once per event. W
e But Regional Reconstruction requires algorithms to run once per Region of Interest.
e ATLAS Extension: Event Views.

o Spawn one Event View per Region of Interest, Schedule algorithms per View.

o Event View Implements the Event Store interface.

(...But it can find out)
o Completely transparent to the algorithm. It does not know it’s in a view.
o On completion, merge back to a single collection within the full event context.

Spawns Alg #0 Alg #1 View 0 Context

> m\ Event Store

Input Maker —: Alg #2 0 Alg #4
Alg #0 Alg #1 View 1 Context Event Store

Ao 72 1o [Al HA Ao

Alg #0 Alg #1 :

Merges ‘m\ View 2 Context Event Store

Merge Algorithm | €¢——— Alg #2 2 Alg #4

Etc...

24

Wrapping Up

e AthenaMT project will allow for greater scalability to the reality of a multi-core
world where memory per core comes at a premium.

e The two key principles of trigger processing: Early Rejection and Regional
Reconstruction are implementable in native Gaudi Hive using a combination
of Data Dependencies, Control Flow and ATLAS’ Event View extension.

e Will provide greater unification of the framework by removing Trigger-specific
steering and wrappers.

e Working on implementation of framework and physics selections for use in
LHC Run 3 in 2021.

Note: In this talk: squares are jets, moons are electrons & stars are muons. The size of the shape is a proxy for its p,

25
D

Backup

26

Control Flow & Data Dependencies - In Words

e [n this design, all Filter algorithms run first in a Step.
o Check if any Chains which utilise the filter are still active and return True if so.
o If all Filters in a Step return False the parent OR node will also return False:
implements Early Rejection.
e Reconstruction algs are unlocked by the Filters which still have active Chains.
o Algorithms can be unlocked by multiple Filters, they will still only run once.
o Input Maker algorithms have no explicit Input Data Dependencies, they will
be scheduled to execute first when a Step is unlocked.
o Reconstruction Algorithms consume the explicit outputs of the Input Maker.
o The Hypothesis Algorithm is the terminal Data Dependency. It tests the
Hypothesis of each active Chain against the reconstructed objects.
e Once all unlocked Hypothesis Algorithms return, the next Stage is unlocked.
o All Filter algorithms read in the previous stage’s Hypothesis and checks if any

Chains are still active. _ -

