
A
TL

-D
A

Q
-S

LI
D

E-
20

18
-9

05
06

/1
1/

20
18

Implementation of the ATLAS trigger
within the ATLAS Multi-Threaded
Software Framework: AthenaMT
IEEE eScience
29 October - 1 November 2018, Amsterdam

Tim Martin, University of Warwick
On behalf of the ATLAS Collaboration
Tim.Martin@cern.ch
Slides: http://cern.ch/go/97FW

ATLAS Trigger & Data Acquisition

2

Focus of today’s
presentation

Detector
Electronics

Hardware Dominant
Domain

Software Dominant
Domain

50k

● Process 100 kHz events in “real-time”
● Every event will PASS or FAIL.
● FAIL events are lost forever.
● Only 1% of events can PASS.
● We want events with MOONs and STARs.
● We don’t care about events with only SQUAREs.
● We cannot look at all of the data due to network bandwidth.
● We cannot reconstruct all the data due to CPU budget of 0.5 seconds/Event. 3

An Abstraction

10
00
00
01
11
00
00
11
10
01
10

10
10
11
01
01
01
00
10
10
10
01
0

10
10
01
01
01
11
01
00
10
00
11
0

00
10
01
10
01
10
10
01
11
11
01
0

10
01
00
10
01
11
01
11
01
00
11
0

10
01
10
10
10
10
10
00
11
01
11
0

10
01
01
11
10
10
10
01
01
00
00
1

01
00
10
10
10
11
01
01
00
10
10
0

10
10
11
01
10
10
10
10
10
01
01
0

10
10
10
10
11
10
01
01
01
01
10

01
01
01
11
01
00
00
01
01
01
01
0

10
10
11
01
01
01
00
01
10
10
10
0

10
11
01
01
00
10
10
10
10
00
01
0

10
11
01
01
00
10
10
10
10
00
01
0

10
10
10
10
10
10
00
01
00
01
00

100 kHz

At 1.6 MB/Event

Raw Data

Reconstructed Objects

4

Full event
reconstruction takes
O(30s), whereas the

Trigger has only 0.5s
on average.

Selected events are fully
reconstructed O(days) later in

another compute farm.

Key Principles of the Trigger
● Regional Reconstruction

○ We cannot look at all 1.6 MB of every event due to bandwidth
○ Restrict to running reconstruction algorithms within

Regions of Interest, identified in the 1st level hardware trigger.

● Early Rejection
○ Split reconstruction up into multiple Steps.
○ Filtering occurs after each Step via Hypothesis Algorithms
○ Early steps are fast, but coarse.
○ Later steps take more time, but are detailed.
○ Stop reconstructing an object as soon as it fails a selection at the end of a Step.
○ Stop reconstructing the event when all objects are rejected.

5

Region of Interest

Step 1 ? Step 2 ? Step 1 ? Step 2 ? Step 3 ?

Hypothesis Algorithms

Software Framework: Athena
● The ATLAS Software framework, Athena, is built on top of the inter-experiment

Gaudi framework (shared e.g. with the LHCb collaboration).
○ C++ Algorithms, Services, Tools etc. with Python configuration.

● For each event a sequential list of algorithm executed. Algorithms are assumed to
depend only on other algorithms scheduled earlier in the list.

● One common singleton Event Store handles transient and persistent data access.

Algorithm #0

Algorithm #1

Trigger Steering

Top Sequence● High Level Trigger uses custom
steering, regular algorithms need wrapping.

● In the High Level Trigger, multi-core machines
are currently utilised by forking the configured
HLT process instance.

● Memory is shared with copy-on-write.
Introduces overheads when pages are
modified after the fork. 6

Event Store

O(4M) lines of C++ &
O(1M) lines of python.

O(30) forks

Current Single Threaded Trigger Architecture
● Object selections are encoded in Chains. Each step runs in serial.

Chain 1 - Step 1 Chain 2 - Step 1 Chain 3 - Step 1

ROI 1

Alg A
Alg B
Hypo C

ROI 2

Alg D
Alg E
Hypo F

ROI 1

Alg A
Alg B
Hypo G

EXECUTE
STEP 1

7

Cached
result used

…

2018: Over 1,300 active chains

Chain 1 - Step 1 Chain 2 - Step 1 Chain 3 - Step 1

Chain 1 - Step 2 Chain 2 - Step 2 Chain 3 - Step 2

ROI 1

Alg A
Alg B
Hypo C

ROI 2

Alg D
Alg E
Hypo F

ROI 1

Alg A
Alg B
Hypo G

EXECUTE
STEP 2 ROI 1

Alg H
Alg I
Hypo J

SKIPPED

SKIPPED

8

Current Single Threaded Trigger Architecture

…

…

Cached
result used

● Object selections are encoded in Chains. Each step runs in serial.

…

2018: Over 1,300 active chains

Moving on to Athena Multi-Threaded

9

● AthenaMT is built on the Gaudi Hive (Intel TBB) multi-threaded architecture.
● Offers Intra-Event parallelisation.

○ The Algorithm Scheduler is configured with the Input- and Output-Data
Handles of all algorithms. Builds a Data Dependency graph.

○ Multiple algorithms within an event can run in parallel, provided that their
input Data Handles (if any) are available.

● Offers Inter-Event parallelisation.
○ Multiple events may be being processed simultaneously: “in flight”.
○ Optimal memory efficiency if all algorithms are re-entrant, i.e. stateless

and able to run on multiple concurrent events (alternate: cloneable).
● Offers In-Algorithm parallelisation.

○ Algorithm authors may make use of e.g. parallel for-loops.

Future Athena Multi Threaded (MT)

Goal: Maximise memory efficiency & keep all threads busy.

10Goal: No Trigger-specific steering layer. No wrappers.

Thread Building Blocks (link)

https://www.threadingbuildingblocks.org/

AthenaMT

11

Thread 0

Thread 1

Thread 2

Thread 3

Event 0

Event 1

Event 2

Event 3

Event 4

…

…

Time

AthenaMT Data Dependencies

● Suppose three types of selection: , and + . Each Chain will
follow one of these three paths, with the chain’s configuration controlling object
quality & object size requirements.

● We build a dependency graph of the algorithms required to perform the
reconstruction. Like in the current system, it is split into different steps.

● Three classes of algorithm are used to control the execution.
○ Always runs at the start of each step. Responsible

for implementing Early Rejection. Returns a boolean Filter Decision to the
Gaudi MT Scheduler.

○ Provides concrete starting point for reconstruction
algorithms. Responsible for restricting reconstruction to Regions of Interest.

○ Executes hypothesis testing for all active Chains.
Provides input to next Step’s Filter(s).

Filter Algorithm

Input Maker Algorithm

Hypothesis Algorithm

12

Data Dependencies Start

Filter Step 1 Moon+StarFilter Step 1 Moon Filter Step 1 Star

Input Maker Step 1 Moon Input Maker Step 1 Star

Moon Reco Alg #0

Moon Reco Alg #1

Hypothesis Step 1 Moon

Filter Step 2 Moon

Hypothesis Step 1 Mo+St Hypothesis Step 1 Star

Star Reco Alg #0

Star Reco Alg #1

Filter Step 2 Moon+Star Filter Step 2 Star

Input Maker Step 2 Moon Input Maker Step 2 Star

= Explicit Data Dependency

= Implicit Data Dependency
 (Hidden from Scheduler)

Etc... 13

Data Dependencies Start

Filter Step 1 Moon+StarFilter Step 1 Moon Filter Step 1 Star

Input Maker Step 1 Moon Input Maker Step 1 Star

Moon Reco Alg #0

Moon Reco Alg #1

Hypothesis Step 1 Moon

Filter Step 2 Moon

Hypothesis Step 1 Mo+St Hypothesis Step 1 Star

Star Reco Alg #0

Star Reco Alg #1

Filter Step 2 Moon+Star Filter Step 2 Star

Input Maker Step 2 Moon Input Maker Step 2 Star

= Explicit Data Dependency

= Implicit Data Dependency
 (Hidden from Scheduler)

Etc... 14

Data Dependencies Start

Filter Step 1 Moon+StarFilter Step 1 Moon Filter Step 1 Star

Input Maker Step 1 Moon Input Maker Step 1 Star

Moon Reco Alg #0

Moon Reco Alg #1

Hypothesis Step 1 Moon

Filter Step 2 Moon

Hypothesis Step 1 Mo+St Hypothesis Step 1 Star

Star Reco Alg #0

Star Reco Alg #1

Filter Step 2 Moon+Star Filter Step 2 Star

Input Maker Step 2 Moon Input Maker Step 2 Star

= Explicit Data Dependency

= Implicit Data Dependency
 (Hidden from Scheduler)

Etc... 15

Data Dependencies Start

Filter Step 1 Moon+StarFilter Step 1 Moon Filter Step 1 Star

Input Maker Step 1 Moon Input Maker Step 1 Star

Moon Reco Alg #0

Moon Reco Alg #1

Hypothesis Step 1 Moon

Filter Step 2 Moon

Hypothesis Step 1 Mo+St Hypothesis Step 1 Star

Star Reco Alg #0

Star Reco Alg #1

Filter Step 2 Moon+Star Filter Step 2 Star

Input Maker Step 2 Moon Input Maker Step 2 Star

= Explicit Data Dependency

= Implicit Data Dependency
 (Hidden from Scheduler)

Etc... 16

● Introduce a second Control Flow graph, built from two types of node (Sequencers).
■ The OR node cannot exit early. It will schedule all of its children to

execute in parallel, and return the logical OR of its children’s filter
decisions upon completion.

●
■ The AND node can exit early. It will schedule its children to run

sequentially, one after the other. Should a child return False, the
sequencer will halt execution and return False to its parent.
Otherwise, it will return the filter decision of its final child.

● The Data Dependency graph on the previous slide is not enough on its own.
○ We need a mechanism to stop from running before

a has executed and returned.

Control Flow

Filter Step 2 Moon
Hypothesis Step 1 Moon

All algorithms must be “unlocked” in the Control Flow graph before they can be Scheduled to run. 17

OR

AND

AND
ROOT

Control Flow
Start

Filter Step 1 Moon+Star

Filter Step 1 Moon

Filter Step 1 Star

Run Step 1 Moon

AND
STEPS Etc...

OR
FILT.1

OR
STEP1

Note: AND Nodes
execute left-to-right

Filter Step 1 Moon

AND
OR

AND
OR

Filter Step 1 Moon+Star

Run Step 1 Moon +on

Filter Step 1 Star

Run Step 1 Star

AND
OR

OR
FILT.2

OR
STEP2

Note: Algorithms appear more than
once on the CF graph, but will only

execute once.

18

AND
ROOT

Control Flow
Start

Filter Step 1 Moon+Star

Filter Step 1 Moon

Filter Step 1 Star

Run Step 1 Moon

AND
STEPS Etc...

OR
FILT.1

OR
STEP1

Note: AND Nodes
execute left-to-right

Filter Step 1 Moon

AND
OR

AND
OR

Filter Step 1 Moon+Star

Run Step 1 Moon +on

Filter Step 1 Star

Run Step 1 Star

AND
OR

OR
FILT.2

OR
STEP2

Note: Algorithms appear more than
once on the CF graph, but will only

execute once.

19

AND
ROOT

Control Flow
Start

Filter Step 1 Moon+Star

Filter Step 1 Moon

Filter Step 1 Star

Run Step 1 Moon

AND
STEPS Etc...

OR
FILT.1

OR
STEP1

Note: AND Nodes
execute left-to-right

Filter Step 1 Moon

AND
OR

AND
OR

Filter Step 1 Moon+Star

Run Step 1 Moon +on

Filter Step 1 Star

Run Step 1 Star

AND
OR

OR
FILT.2

OR
STEP2

Note: Algorithms appear more than
once on the CF graph, but will only

execute once.

20

AND
ROOT

Control Flow
Start

Filter Step 1 Moon+Star

Filter Step 1 Moon

Filter Step 1 Star

Run Step 1 Moon

AND
STEPS Etc...

OR
FILT.1

OR
STEP1

Note: AND Nodes
execute left-to-right

Filter Step 1 Moon

AND
OR

AND
OR

Filter Step 1 Moon+Star

Run Step 1 Moon +on

Filter Step 1 Star

Run Step 1 Star

AND
OR

OR
FILT.2

OR
STEP2

Note: Algorithms appear more than
once on the CF graph, but will only

execute once.

21

AND
ROOT

Control Flow
Start

Filter Step 1 Moon+Star

Filter Step 1 Moon

Filter Step 1 Star

Run Step 1 Moon

AND
STEPS Etc...

OR
FILT.1

OR
STEP1

Note: AND Nodes
execute left-to-right

Filter Step 1 Moon

AND
OR

AND
OR

Filter Step 1 Moon+Star

Run Step 1 Moon +on

Filter Step 1 Star

Run Step 1 Star

AND
OR

OR
FILT.2

OR
STEP2

Note: Algorithms appear more than
once on the CF graph, but will only

execute once.

22

AND
ROOT

Control Flow
Start

Filter Step 1 Moon+Star

Filter Step 1 Moon

Filter Step 1 Star

Run Step 1 Moon

AND
STEPS Etc...

OR
FILT.1

OR
STEP1

Note: AND Nodes
execute left-to-right

Filter Step 1 Moon

AND
OR

AND
OR

Filter Step 1 Moon+Star

Run Step 1 Moon +on

Filter Step 1 Star

Run Step 1 Star

AND
OR

OR
FILT.2

OR
STEP2

Note: Algorithms appear more than
once on the CF graph, but will only

execute once.

23

Regional Reconstruction: Event Views
● Gaudi Hive will allow each algorithm to execute at most once per event.
● But Regional Reconstruction requires algorithms to run once per Region of Interest.
● ATLAS Extension: Event Views.

○ Spawn one Event View per Region of Interest, Schedule algorithms per View.
○ Event View Implements the Event Store interface.
○ Completely transparent to the algorithm. It does not know it’s in a view.
○ On completion, merge back to a single collection within the full event context.

24

(...But it can find out)

Input Maker
View 0 Context

View 1 Context

View 2 Context

Etc...

Spawns

Event Store

Event Store

Event Store

Event Store

Alg #0 Alg #1
Alg #2 Alg #3 Alg #4

Alg #0 Alg #1
Alg #2 Alg #3 Alg #4

Alg #0 Alg #1
Alg #2 Alg #3 Alg #4Merge Algorithm

Merges

Wrapping Up

● AthenaMT project will allow for greater scalability to the reality of a multi-core
world where memory per core comes at a premium.

● The two key principles of trigger processing: Early Rejection and Regional
Reconstruction are implementable in native Gaudi Hive using a combination
of Data Dependencies, Control Flow and ATLAS’ Event View extension.

● Will provide greater unification of the framework by removing Trigger-specific
steering and wrappers.

● Working on implementation of framework and physics selections for use in
LHC Run 3 in 2021.

25

Note: In this talk: squares are jets, moons are electrons & stars are muons. The size of the shape is a proxy for its pT

Backup

26

● In this design, all Filter algorithms run first in a Step.
○ Check if any Chains which utilise the filter are still active and return True if so.
○ If all Filters in a Step return False the parent OR node will also return False:

implements Early Rejection.
● Reconstruction algs are unlocked by the Filters which still have active Chains.

○ Algorithms can be unlocked by multiple Filters, they will still only run once.
○ Input Maker algorithms have no explicit Input Data Dependencies, they will

be scheduled to execute first when a Step is unlocked.
○ Reconstruction Algorithms consume the explicit outputs of the Input Maker.
○ The Hypothesis Algorithm is the terminal Data Dependency. It tests the

Hypothesis of each active Chain against the reconstructed objects.
● Once all unlocked Hypothesis Algorithms return, the next Stage is unlocked.

○ All Filter algorithms read in the previous stage’s Hypothesis and checks if any
Chains are still active.

Control Flow & Data Dependencies - In Words

And so on... 27

