UC Davis
UC Davis Previously Published Works

Title
SPARCS: Stream-Processing Architecture applied in Real-time Cyber-physical Security

Permalink
https://escholarship.org/uc/item/3pj19498

ISBN
9781728124513

Authors

Gentz, Reinhard
Peisert, Sean
Boverhof, Joshua

Publication Date
2019-01-27

DOI
10.1109/escience.2019.00028

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3pj19498
https://escholarship.org/uc/item/3pj19498#author
https://escholarship.org
http://www.cdlib.org/

m For submission to eSience 2019

SPARCS: Stream-Processing Architecture
applied in Real-time Cyber-physical Security

Reinhard Gentz, Sean Peisert, Joshua Boverhof, Daniel Gunter

Abstract—In this paper, we showcase a complete, end-to-end,
fault tolerant, bandwidth and latency optimized architecture for
real time utilization of data from multiple sources that allows
the collection, transport, storage, processing, and display of both
raw data and analytics. This architecture can be applied for a
wide variety of applications ranging from automation/control to
monitoring and security. We propose a practical, hierarchical
design that allows easy addition and reconfiguration of software
and hardware components, while utilizing local processing of data
at sensor or field site (‘“fog computing”) level to reduce latency
and upstream bandwidth requirements. The system supports
multiple fail-safe mechanisms to guarantee the delivery of sensor
data. We describe the application of this architecture to cyber-
physical security (CPS) by supporting security monitoring of
an electric distribution grid, through the collection and analysis
of distribution-grid level phasor measurement unit (PMU) data,
as well as Supervisory Control And Data Acquisition (SCADA)
communication in the control area network.

I. INTRODUCTION

Real-time data holds potentially high value for business and
control decisions but it also comes with a perishable expiration
date. If the value of this data is not realized in a certain window
of time, its value is lost and the opportunity for corrective
action lost. Such data is acquired continuously and quickly,
therefore, we call it streaming data. Data streaming requires
prompt attention as sensor readings change rapidly. A blip in
log file, sudden price change, or detected system attacks may
hold immense value but only if it alerted in time.

Real-time streaming and analysis of multi-source sensor
data is an especially challenging task, and efficient architecture
designs are complex and difficult to deploy. For our require-
ments we need a system that has a small bandwidth footprint
on the sensor networks, low latency, scale-ability, while allow-
ing (central) human oversight and providing fail-safe operation
when systems fail. From the systems perspective, a design
challenge is dealing with the big data problem of managing
the collection of measurements in the field.

In this paper we showcase the architecture that we have
developed for our cyber-physical security (CPS) system for the
electrical grid. It supports the combined analysis of multiple
sensors and sensor types, results are computed as soon as
enough sensors are aggregated i.e., “fog computing” (or edge
computing) [1] and cloud computing. Due to the fog sensor
network’s low bandwidth and our computational center’s lim-
ited resources, our facilities cannot produce real time events
given the constraints unless we reduce network usage and
computational load. We accomplished this by offloading initial

R. Gentz (rgentz@Ibl.gov), S. Peisert, J. Boverhof, D. Gunter are with
Lawrence Berkeley National Laboratory.

processing and analysis to small inexpensive mini computers
that perform sensor readings. The fog networks limited band-
width is of particular concern in metered or shared wireless
connections. For example for the in sensors commonly used
wireless standard IEEE 802.15.4 (i.e., used in the Zigbee
standard [2]) only has a data-rate of 250kbyte per second that
have to be shared by all wireless clients in range of each
other (see [3] and references therein). Thus a reduction and
prioritization of traffic can be very important.

We also address problems of resiliency by incorporating this
data and its analysis in the monitoring systems. For example
in our case, to identify hardware failures or potential cyber
attacks on the electrical grid. The CPS system we have de-
veloped can show early signs of cyber-physical attacks by uti-
lizing the combined data analysis on measurements from both
sensors in the physical domain (in our case distribution phasor
measurement units (PMUs)) and data from the cyber domain
(sniffed supervisory control and data acquisition (SCADA)
network traffic), to identify malicious network intrusions and
compromised distribution controllers in near-real time.

A. Related Works

Most notable prior work is the implementation of Apache
Kafka [4]. The Kaftka ingest and messaging systems follows
the same design principles of distributed clusters and publisher
subscriber messaging system. Major differences to the pro-
posed work is that data driven compression, and prioritization
throughout the pipeline is not supported. Further Amazon
Kinesis [5] offers an all in one cloud solution for real time
streaming. Most notably it also works only in the cloud. This
means that all data has to travel to a central location, i.e., the
cloud, and gets processed. Because all data has to be sent to the
cloud local processing for latency, reliability and prioritization
is not available.

Additional work such as [6] and [7] and references herein
are modular and scalable, but again do not support analytical
processes at multiple locations and thus cannot prioritize the
data accordingly when propagating it through the network,
nor can operate locally for fail safe reasons. Other researchers
implemented aggregation algorithms that can perform compu-
tations with aggregation nodes [8] these systems however miss
out on the ability of data driven prioritization as they ignore
the information value in the transported data for prioritization
purposes. Others [9] ignore the need for authentication/security
and are vulnerable by simple man in the middle attacks or
unauthenticated/untrusted third party nodes.

B. Contributions

The contributions of this work are as follows:

m For submission to eSience 2019

o A unified, stream-processing architecture

e Local or fog processing of data where possible for
improved latency and reliability

e prioritization/compression of the upstream data-flow, and
reducing the need of upstream networking and computa-
tion resources.

o Increased resilience to equipment or networking failures

o Modular and exchangeable components

o Simple API for processing and sharing historical and live
data.

o Easy and secure deployment

II. OVERVIEW OF THE STREAM-PROCESSING
ARCHITECTURE FOR REAL-TIME CYBER-PHYSICAL
SECURITY (SPARCS)

An overview of our architecture is seen in Fig. 1. The

API/ User interface
Long Term
Database

Short Term
»| Database
(cassandra) i h

1 A 1
r

Central Messaging Layer

(RabbitMQ)

Messaging Layer (RabbitMQ) |« .-
A -

Central
Cloud

[}

Other Messaging
Layer locations

Sensor 1 Sensor 2 Sensor 3

Fig. 1. Stream-Processing Architecture Overview

main novelty of our architecture lies in the application of
fog computing/on-site computation where possible. This ap-
proach has two major benefits. First the local portion of the
data analysis allows for minimal latency to react on local
events, even in situations where wide area communications
are not available (and could have protected against the attacks
described in, for instance [10]). This also includes means of
triggering an alert that is propagated to both a local and central
alerting system. Second, the paradigm of fog computing also
allows prioritization and annotation of upstream data flows
when anomalies are detected by local scripts. This is shown
in Fig 2, where local analysis performs triage on sensor data
and computed results, routing it to a queue based on urgency
and other factors. This ensures that important analysis results
and data can be handled with priority by the rest of the
infrastructure.

In order for the prioritization to work for the remaining
system we need to use a high performance messaging system

' Sensor Data

Analysis Locally React
\

Priotization

and data
driven
compression
High Priority Low Priority
Queue Queue

Fig. 2. Prioritization of traffic based on local data analysis

that can handle massive data ingest and allows for queue
prioritization. We decided to use the well supported RabbitMQ
messaging system [11] for data transport between the com-
ponents for the following reasons. Data Prioritization is the
first and the most important reason for choosing RabbitMQ
as messaging system is ability to prioritize individual queues.
Secondly, the RabbitMQ messaging system is designed for
scalability and can be deployed across a computing cluster. A
single queue can be spanned over multiple hosts for scaling
and performance advantages. Third, we can deploy RabbitMQ
as interconnected decentralized clusters, allowing a layered
deployment as seen in Figure 1 Lastly, data fan-out allows
each sensor to publish its data once, RabbitMQ handles data
replication to multiple recipients. The distribution of the data
to all the analysis functions that need this data is handled by
the RabbitMQ Cluster and can handle alerting and reacting
to alerts (see Fig 3). In addition to data This mechanism

Central
React to Alarm

1Alarm found

Fog > Central Cloud
Priotitized

Datasteam

Locally Fog
React to Alarm React to Alarm

3 3

Alarm found Alarm found

\J

Priotitized
Datasteam

Local Analysis

Fig. 3. Alerts can be triggered and reacted to by any stage in the process,
and will be propagated upstream.

has the positive side effect of reducing the network load on
each sensor and shifting network load to the well-connected
RabbitMQ Cluster, reducing the network load on potentially

m For submission to eSience 2019

wireless and or metered connections common at the network
edge/fog.

In our own system we have deployed one central RabbitMQ
cluster and multiple lower level RabbitMQ clusters in a
tree like structure. Further we have deployed data-ingesting
analytical processes co-located at each RabbitMQ cluster.
This ensures that we can execute all analysis scripts with
the minimal latency as close to the data source as possible,
only going upstream if non-local data is required. This local
processing allows us to prioritize the data at each level of
aggregation and importantly discard (or heavily compress)
uneventfully, uninteresting data, as determined by the analysis
algorithm. This discarding of uneventful data significantly
reduces the load on upstream computing resources as well
as storage requirements for archiving.

A. Central location

When data is received by the central RabbitMQ cluster it is
processed by the final set of analysis algorithms. In addition
to real time streaming data, these algorithms can also utilize
the Historian archive. The historian consists both of short
and long term databases, is deployed at the central location
and allows one to (re)evaluate historical measurements. The
Historian is especially useful for newly-developed algorithms
or configuration updates that can be tested and evaluated
on a substantial corpus of real data. For machine learning
applications, this historical data can be used to train the
necessary machine learning models. The short-term database
is intended to enable rapid searches and complete queries,
and stores the (compact) analysis reports from the various
subsystems and recent raw data for easy visualization. If the
database system is running low on storage space, the oldest
raw data is automatically removed, as it is duplicated in the
long-term database.

B. Long-term database

For the the long-term database we combine multiple sen-
sor samples together in one small package, utilizing using
Google’s Protocol Buffers [12] format. The protocol buffer
encoding results in much reduced data size as compared to
JSON and other formats. This reduces the access 1O required
for our analyses, which typically requires many consecutive
samples. Other analyses with more random data access re-
quirements might optimally use fewer samples per package.
Before deciding on using Protocol buffers for the packaging
step we compared the performance of protocol buffers with
MsgPack [13] and JSON in terms of size and computation
time on the BeagleBoneBlack (BBB) minicomputer using both
python and C++ with the results shown in Table. I, averaged
over 1000 runs. We did these test on a low performance
minicomputer to confirm that even low power fog devices
can perform the (de)serialization at real-time speeds, while
still being able to do the analysis task required. We can see in
Table. I, that the Protobuf is the best in terms of transportation
size, which comes largely from the fact that Protobuf is not
self-describing and requires the use of a static description file.
MsgPack and JSON on the other hand are a lot bigger in

TABLE I
SIZE OF TRANSPORTATION CONTAINERS FOR ONE SECOND WORTH OF
PMU DATA (6304 BYTES RAW DATA LENGTH) AND COMPUTATION TIME
ON A BEAGLEBONEBLACK MINICOMPUTER.

| Protobuf MsgPack JSON
size (Bytes) 7703 13408 15487
serialization Python(ms) 47.0197 0.6806 6.4709
deserialization Python(ms) | 48.6306 0.3453 2.0404
serialization C++(ms) 0.79528 0.47313 0.18463
deserialization C++(ms) 0.66304 0.29642 0.29469

size, but are self-describing and only differ from each other
in the encoding of the data stream. The speed we found is
largely impacted by the language, in which the individual
packaging solution is written. The Protobuf solution in C++ is
heavily optimized for this purpose, while the Protobuf python
solution uses wrappers that reduce the speed dramatically as
seen from Table. I. Msgpack in python on the other hand is
very fast. JSON is by default integrated into python and is
the largest container in terms of size. Since there is no default
implementation for JSON in C++ we use [14], which has the
fastest speed among the tested packaging solutions. In general,
all of the solutions are acceptable for our application in terms
of the speed, and we ended up using the Protobuf solution in
C++ due to the data size advantage over the other solutions.
Thus in our real time application of PMU-data a CPU load of
0.8% 1is used to perform this task on our BBB.

Lastly we store this data package in a commercial database
[15] and compressed, using the built-in "DEFLATE” com-
pression algorithm [16]; Combining packaging and deflate
compression algorithm has resulted for us in a data size
reduction of 9% compared to raw data. Note that this includes
descriptive metadata added to describe the raw data such as
the unique identifier of the data source (e.g., sensor or network
security monitor) and timestamps, that are not included in the
raw data byte-count.

C. Short-term database

In the short term Historian database we do not package
sensor samples together, as we want to be able to quickly
do on-demand computations on the data. In particular we are
utilizing this for displaying data to the user in the requested
time resolution. We are using the Elasticsearch search service
for this purpose as it allows for server-side aggregation of
data-points for the users display and caching of results.

In addition to the aforementioned databases the central
RabbitMQ cluster will support any third party systems and
software that understand JSON formatted data. We have ver-
ified this with streams to commonly used tools for operation
tasks (such as the *OSISoft PI Server’) and security tools (such
as ’Splunk SIEM’).

D. Deployment

All of our server code is deployed in docker containers for
ease of maintenance and scalability. This approach is fairly
standard in the industry these days and not further discussed
here. For the first analysis stage of sensor data, we support
next to docker the option of utilizing local computing with a

m For submission to eSience 2019

bastion host. Cheap minicomputers such as the Raspberry Pi or
BeagleBoneBlack have sufficient computing power to handle a
single real time stream. The benefit for this deployment is not
only the option of prioritization and data driven compression
as discussed before but also allows isolating the sensor from
the rest of the network. This reduces the attack vector on each
sensor dramatically as with this deployment only the deployed
bastion host has to be kept secure, not the sensor itself. This
fact is important as sensor vendors are often slow in updating
their software to the latest security standards, if updated at all.
Therefore the deployment of cheap bastion host can extend
the lifetime of a sensor by protecting against security flaws of
many sensor vendors at the cost of the attack vector against a
single regularly updated open-source system.

Each component in our system is communicating encrypted
and authenticated with other system members. Because we
deploy identical containers/pre-configured BBB at multiple
locations, we are using a distributed key management system
[17], that like our architecture is also resilient to node and link
failures, allowing automated key distribution and revocation.

E. Fail-Over and Resilience

In the presented architecture we have several methods to
mitigate failures in devices and networking connections. In
particular we have deployed clusters for the central messaging
and historian solution, that offer redundancy. Furthermore we
have deployed a buffer system at each stage that allows tempo-
ral storage of data, to mitigate any outages of upstream systems
without loosing data. Important to note is that all analysis
processes that are downstream of a failure will continue to
work even if all upstream cluster members fail. This allows
each system to locally react on events observed in the sensor
data.

For fog nodes we did not deploy clusters for economic
reasons and only use a buffer. We did this because our
deployed analysis algorithms are tolerant to missing single
measurements, thus we do not require a fail-over cluster; In
particular because the sensors who are delivering data are also
not 100% reliable thus analysis algorithms have to tolerate
single sensor outages.

F. User Interface and API

To access the real time data, one can simply subscribe to
a sensors or analytic processes data stream at any messaging
layer and the requested data is delivered. By utilizing descrip-
tive tags for each sensor measurement even subsection of data
can be requested, such as only a particular tag or a down-
sampled data-stream. This method ensures that each process
is getting exactly the data it requires.

Central locations in addition to real-time data, can access
the historian databases. This can be useful for testing new
analysis processes quickly based on historic data; or training
machine learning models. We did not deploy any historian at
any other layers as this would significantly increase storage
requirements as duplicates would be needed.

Furthermore we are utilizing this database access for a user
interface to view the data-streams as a time series with the

server side computations and caching as described in section
II-C.

III. CONCLUSION

In this project we have designed, developed and deployed
a real-time streaming architecture that has the unique feature
of prioritization and data-driven compression, utilizing single
or multiple data sources/sensors.

REFERENCES

[11 F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its Role in the Internet of Things,” in Proc. Workshop on Mobile Cloud
Computing (MCC). ACM, 2012, pp. 13-16.

[2] Z. Alliance, “Zigbee specification,” in ZB Alliance - ZigBee Document
053474r06, 2004.

[3] R. Gentz, A. Scaglione, L. Ferrari, and Y. . P. Hong, “Pulsess: A pulse-
coupled synchronization and scheduling protocol for clustered wireless
sensor networks,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
12221234, Dec 2016.

[4] ApacheKafka, https://kafka.apache.org/, 2019.

[5] AmazonKinesis, https://aws.amazon.com/kinesis/, 2019.

[6] T. Li, K. Keahey, K. Wang, D. Zhao, and I. Raicu, “A dynamically
scalable cloud data infrastructure for sensor networks,” in Proceedings
of the 6th Workshop on Scientific Cloud Computing. ACM, 2015, pp.
25-28.

[71 R. Rajagopalan and P. K. Varshney, “Data aggregation techniques in
sensor networks: A survey,” 2006.

[8] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” in Proceedings of the 13th ACM
conference on Computer and communications security. ACM, 2006,
pp. 278-287.

[9] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Efficient algorithms

for maximum lifetime data gathering and aggregation in wireless

sensor networks,” Computer Networks, vol. 42, no. 6, pp. 697 — 716,

2003. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1389128603002123

R. Smith, “Assault on california power station raises alarm on potential

for terrorism,” Wall Street Journal, vol. 5, 2014.

RabbitMQ, https://www.rabbitmq.com/, 2017.

K. Varda, “Protocol buffers: Googles data interchange format,” Google

Open Source, vol. 72, 2008.

MsgPack, https://msgpack.org/, 2017.

“Niles lohmann’s json implementation for c++11,” https://github.com/

nlohmann/json, 2016.

Cassandra, https://cassandra.apache.org/, 2019.

P. Deutsch, “Deflate compressed data format specification version 1.3,”

Tech. Rep., 1996.

DisruptionTolerantKeyManagement, https://github.com/pnnl/ADTKM/,

2018.

S. Peisert, R. Gentz, J. Boverhof, C. McParland, S. Engle, A. El-

bashandy, and D. Gunter, “LBNL Open Power Data,” https://powerdata.

Ibl.gov, 2017.

[10]

[11]
[12]

[13]
[14]

[15]
[16]

(17]

(18]

