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Abstract. The data access patterns of applications running in comput-
ing grids are changing due to the recent proliferation of high speed local
and wide area networks. The data-intensive jobs are no longer strictly
required to run at the computing sites, where the respective input data
are located. Instead, jobs may access the data employing arbitrary com-
binations of data-placement, stage-in and remote data access. These data
access profiles exhibit partially non-overlapping throughput bottlenecks.
This fact can be exploited in order to minimize the time jobs spend
waiting for input data. In this work we present a novel grid computing
simulator, which puts a heavy emphasis on the various data access pro-
files. The fundamental assumptions underlying our simulator are justified
by empirical experiments performed in the Worldwide LHC Computing
Grid (WLCG) at CERN. We demonstrate how to calibrate the simulator
parameters in accordance with the true system using posterior inference
with likelihood-free Markov Chain Monte Carlo. Thereafter, we validate
the simulator’s output with respect to an authentic production workload
from WLCG, demonstrating its remarkable accuracy.

Keywords: Grid Computing - Data Access Patterns - Network Model-
ing - Discrete Event Simulation - Bayesian Deep Learning - Likelihood-
free Inference.

1 Introduction

A large number of applications from different scientific fields relies on extensive
computing resources. These resources are provided by data centers, which are
in turn aggregated to form computing grids [10]. Employing a wide range of
heterogenous hardware, the participating computing sites work together to reach
a common goal in a coordinated manner. Grids store vast amounts of scientific
data, and numerous users run computational jobs to analyze these data in a
highly distributed and parallel fashion. For example, within the World-Wide
LHC Computing Grid (WLCG) more than 150 computing sites are employed
by the ATLAS experiment at CERN. WLCG stores more than 360 petabytes of
ATLAS data, which is used for distributed analysis by more than 5000 users.
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The grid resources are typically divided into three major classes: storage
elements, worker nodes and network. Certain job types, e.g. Monte Carlo pro-
duction in the domain of High Energy Physics are data-intensive. These jobs
are executed on data grids, which posses higher storage capacities and network
throughput. The strict division of labour among classes of machines has led
to the fact that the current best practice for data access in the grid is data-
placement [24]. Given a job scheduled to run at a specific data center, its execu-
tion may commence only after the completion of the following workflow. First,
the input data needs to be placed from the remote storage element to the lo-
cal one. Secondly, the data has to be staged-in from the local storage element
into the worker node’s scratch disk. Data-placement is handled by distributed
data management (DDM) systems. For instance, the DDM system employed
by the ATLAS experiment at CERN is Rucio [12]. An alternative approach is
to stream the input data from storage elements employing remote data access.
With the contemporary proliferation of high speed local and wide area networks
remote data access is no longer prohibitively expensive. In recent years numerous
researchers have been examining its properties in WLCG [9].

In a grid computing setting it is challenging to design reproducible stud-
ies due to the highly dynamic nature of the system. Furthermore, performance
studies with high workloads interfere with the applications running in produc-
tion. A powerful tool to address these issues is a simulator, which is statistically
tested with respect to authentic logs from production workloads. In this work
we propose a novel grid computing simulator named GDAPS (Grid Data Access
Profiles Simulator). GDAPS is a discrete event simulator based on the estab-
lished SimPy framework. It supports modeling of the 3 common data access
profiles in computing grids: data-placement, stage-in and remote data access. Its
source code is publicly available at https://github.com/VolodimirBegy/GDAPS.

The rest of the paper is organized as follows. In Section 2 we present related
work in the field of simulation of data-intensive systems. Thereafter, we demon-
strate the results of empirical experiments, which we have executed in the World-
wide LHC Computing Grid. These results justify the fundamental assumptions
underlying the construction of GDAPS. Section 4 describes the architecture and
the data transfer mechanism of the simulator. Next, we evaluate the accuracy of
GDAPS by simulating an authentic production workload. Prior to the simula-
tion the tool has to be calibrated in accordance with the true system. We tune
the simulator parameters responsible for the parameterization of the system’s
latent processes. For this purpose we rely on approximate Bayesian inference.
In particular, we perform posterior inference with likelihood-free Markov Chain
Monte Carlo.

2 Related Work

A large body of work in the literature addresses the construction of grid and
cloud computing simulators for respective performance studies. However, none
of these simulators provide the means to realistically model the behavior of
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different data access profiles over LAN and WAN. Most simulators model the
network in overly naive and static ways and do not differentiate between data
transfer protocols. Furthermore, many authors either do not validate the accu-
racy of their simulators against authentic traces or report poor results of such
evaluations. Last but not least, many contributions are outdated with respect to
the recent advances in grid computing infrastructures. The purpose of the sim-
ulator proposed in this work is to fill these gaps. In the following paragraphs we
describe the most notable grid and cloud computing simulators. We also present
performance studies implemented on top of these or custom simulators.

In [4] Buyya et al. present GridSim. The tool models different grid compo-
nents in a highly abstract fashion, rendering it not suitable for specialized studies
with a focus on networking. In [23] Sulistio et al. extend GridSim with data grid
functionality. Concretely, the authors enable data querying, data replication and
remote data access. The authors in [3] propose Optorsim in order to enable re-
search on dynamic data replication. GangSim [8] allows to implement scheduling
and resource allocation policies. It also supports hierarchies of users. However,
the authors report large discrepancies between collected metrics in correspond-
ing simulated and real world experiments. Alea 2 [17] provides a queue/plan
based mechanism for evaluation of different scheduling algorithms. The authors
present simulations based on real traces, but do not report on their accuracy.
GroudSim [19] is a framework for modeling of scientific workflows, which are
executed on combined grid and cloud infrastructures. The toolkit improves the
runtime performance of process-based analogues by employing discrete-event
simulation. ComBos [1] simulates all components of BOINC, a middleware em-
ployed for volunteer and desktop grid computing. A thorough treatment of the
network infrastructures is left for the future work. Dobre et al. [7] present the
Monarc (MOdels of Networked Analysis at Regional Centers) simulation frame-
work, which was developed at CERN for High Energy Physics use-cases. The
authors only briefly discuss remote data access, and the demonstrated experi-
ments are based on numerous assumptions which are not tested. CloudSim [5]
extends GridSim to provide cloud-related functionality. In particular, it enables
modeling of virtual machines and analysis of provisioning algorithms with re-
spect to Quality of Service parameters and Service Level Agreements. Network-
CloudSim [11] introduces different classes of switches (edge, aggregate and root)
in order to model the data centers’ local area networks with a higher degree
of precision. EdgeNetworkCloudSim [21] further introduces users, service chains
and service request processing in the context of edge cloud computing.

The work in [22] presents multilevel hybrid scheduling algorithms based on
a dynamic time quantum. These scheduling techniques are evaluated on a dedi-
cated simulator. Ishii et al. [15] evaluate the optimization of data access patterns
in computing grids on top of a simulator. The authors consider only data replica-
tion to local sites. Furthermore, the network dynamics are not addressed in this
paper. Camarasu-Pop et al. [6] analyze the effect of application makespan and
checkpointing period on Monte Carlo jobs in the European Grid Infrastructure.
The authors conduct production experiments in order to evaluate the proposed
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analytical model and the simulator. Such extensive study allows to establish ro-
bust and realistic results. In our work we ensure the quality of the simulator in
an analogous manner. The contribution in [18] describes a 2-phase scheduling
approach implemented with Optorsim. In the first step a cluster is selected for
job execution based on data access cost. Secondly, a suitable worker from the
cluster is chosen based on the task size and the node load. The work in [16]
presents HGASA, a hybrid heuristic for optimization of data access patterns in
computing grids based on a combination of genetic algorithms and simulated
annealing. The optimization is evaluated using GridSim.

3 Empirical Analysis

In this section we analyze certain aspects of the ATLAS data grid, which are
relevant for the construction of a realistic simulator. The ATLAS data grid is part
of the Worldwide LHC Computing Grid. WLCG employs commodity hardware.
Thus, the findings from this section are universally generalizable.

Previous work [2] has shown that the throughput of remote data access can
be modeled by the following linear regression:

T=0+a*xS+bxConTh+cxConPr. (1)

In the above equation T is the transfer time of a file, S is the file size, ConTh is
the aggregated link traffic of concurrent threads within a given job and ConPr
is the aggregated link traffic of concurrent processes within the investigated
computational campaign. The regression coefficients a, b and ¢ characterize the
transfer throughput. While a job may start multiple threads to stream different
files remotely, when employing data-placement, each file is transferred by an
individual process. Thus, we formulate the hypothesis that the throughput of
data-placement can be modeled by the following linear regression:

T=0+axS54+bxConPr. (2)

To test this hypothesis, we select two random storage elements from WLCG,
namely FZK-LCG2_-DATADISK and SLACXRD_DATADISK. We then query
the Rucio Hadoop cluster for logged metrics on more than 27,000 gsiftp file
transfers between these two storage elements in the time window 02/05/2018 -
17/05/2018. Through transformations we obtain the values of the variables T, S
and ConPr for each file transfer. Finally, we perform the linear regression, which
results in the following fit:

T = 0.24045 % S 4 0.00044 « ConPr. (3)

The fit has an F-statistic of 1.234e+05 on 2 degrees of freedom and 27021 residual
degrees of freedom and exhibits a p-value of <2.2e-16. Thus, our hypothesis
is confirmed. This proves that the finding about the relationship among the
variables generalizes well not only on data from our experiments, but also on
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independently collected data. The regression fit is displayed together with the
observations in Fig. 1.

Next, we experimentally demonstrate that the linear regression from Eq. 2
also models the throughput of stage-in transfers. In this experiment we repeat-
edly launch 1-12 concurrent jobs on a worker node at the CERN data center
(Switzerland) in the time window 08/08/2018 - 10/08/2018. Each job launches
a single process in order to stage-in files of different sizes (300MB - 3GB) us-
ing the zrdcp protocol. After data collection and transformation the resulting
dataset has more than 2,000 observations and exhibits the following fit:

T =0.036 * S + 0.012 « ConPr. (4)

The fit has an F-statistic of 8392 on 2 degrees of freedom and 2067 residual
degrees of freedom and a p-value of <2.2e-16. It is displayed is Fig. 2 along with
the observations.

Fig. 1. Data-placement regression fit Fig. 2. Stage-in regression fit

In GDAPS the communication between two hosts occurs through a virtual
link. At the current implementation stage we exclusively consider data input.
The management of jobs’ output data is neglected. Thus, a bi-directional link is
only possible between two storage elements. In order to decide, whether a link
between two storage elements needs to be modeled in an uni- or bi-directional
manner, we have performed the following analysis. Two random ATLAS storage
elements RAL-LCG2-ECHO_DATADISK and SWT2_.CPB_DATADISK are se-
lected. Then the Rucio Hadoop cluster is queried for logged metrics on all gsiftp
transfers between these two storage elements in the time window 05/12/2018
23:00 - 08/12/2018 00:59. The resulting dataset it partitioned hourly. The linear
regression from Eq. 2 is applied to each partition. The time series of regression
coefficients a and b across all partitions are depicted in Fig. 3.
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Fig. 3. Time series of regression coefficients a and b with hourly time resolution

Clearly, the coefficients do not exhibit a bi-directional throughput. We assume
that this behavior is caused by the fact that the traffic may take different paths
over WAN when the source of data in a given host pair is switched. Thus, GDAPS
models virtual links in a uni-directional manner.

4 Simulator Architecture

In this work we are focusing on data access patterns in computing grids. Thus,
we primarily model and simulate components of data grids related to networking.
The simulator is built based on assumptions, which are validated by empirical
experiments and observations in the Worldwide LHC Computing Grid at CERN,
as demonstrated in Section 3.

The architecture of GDAPS is presented in Fig. 4 by a class diagram. The
central components of the simulator and their tasks are as follows. Storage ele-
ments persist replicas of files for the long term. Worker nodes execute compu-
tational jobs. Their performance is determined by the million instructions per
second attribute. Worker nodes may also stage-in data from local storage ele-
ments into their scratch disks. Distributed Data Management System (DDM)
is responsible for the monitoring of storage elements, enforcement of quotas on
data-placement transfers and clean-up of outdated replicas. Workload Manage-
ment System (WMS) monitors worker nodes and submits jobs in accordance
with the specified resource provisioning policies. A virtual link has a pair of
communicating hosts. Its fixed physical bandwidth is fairly allocated among all
processes and threads. The latent loads of a link are parameterized by a normal
distribution and an update period. Data centers are linked collections of storage
elements and worker nodes. They are further aggregated to form the grid. Repli-
cas are realizations of files. They are persisted in storage elements and may be
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streamed remotely by jobs, staged-in by worker nodes or copied by the DDM. An
access profile is characterized by the employed data transfer protocols and the
classes of the communicating hosts. A computational job has a list of assigned
replicas, which is synchronized with a list of respective access profiles. Within a
single job numerous threads may concurrently stream input replicas.

Host Link

+sender: Host DDM
+receiver: Host
+bandwidth: float

+id: uuid
+storage_capacity: float

+transfer_quotas: dict
+replica_catalog: dict

+load_distribution: NormalDistribution
2 \——0* +load_update_period: int +set_transfer_quotas()
1. | +background_load: int +request_data_placement() Protocol
WorkerNode +campaign_load: int +clean_up() +overhead: float
+MIPS: int . | #transfer_chunk() +description: string
+job_slots: Resource | 1+ 1
1.* -
+execute_job() 5
+stage_in() Grid
i A Profile
1 |+DCs: list<DataCenter> WMS
s il +links: dict 1 1 +protocols: list<Protocol>
torageElement +ddm_system: DDM - +job_queues: dict +description: string
icas: li i +wms_system: WMS
+replicas: list<Replica> T Vs Y : +submit_job()
+replicate() +link_machines()
+delete_replica() +update_background_load()
“ \ Job
~ *
1 L. +id: uuid
Replica File DataCenter +assigned_replicas: list<Replica>
- - — +access_profiles: list<AccessProfile>
*'fi- uu!d I +'d- uuid +id: ”L“_d +remote_data_access_threads: int
+file: File 0..* |+size: float +SEs: list<StorageElement>
+accessed_at: int +replicas: list<Replica> +WNs: list<WorkerNode> +run()
+stream_data()
R ! /

Fig. 4. Class diagram of GDAPS

A virtual connection between two hosts can be modeled with various degrees
of abstraction. Many factors affect the data throughput of such connections,
among others: amount of concurrent data flows passing through a congested
router; configuration of routers (buffer settings, packet scheduling policies, ... );
characteristics of data transfer protocols (stateful or stateless, congestion con-
trol, ...); a single protocol may have differing implementations across various
operating systems; bandwidths, latencies and highly dynamic loads of all links
across the communication path; performance of hosts’ network interface cards.
In practice, it is not possible to model communication links of a data grid with
this extreme degree of precision. The mentioned low-level metrics are typically
not centrally accessible. Thus, following the end-to-end arguments in system
design [20] we base our modeling on metrics obtainable through experiments ex-
ecuted in the application layer. A link in GDAPS transfers data in small chunks.
Each chunk is transferred during a single simulation tick, which abstracts a sec-
ond. A link allocates its physical bandwidth equally to all concurrent processes.
The processes originate either from a simulated bag of jobs, or an unknown
background load. The background load is parameterized by a normal distribu-
tion and an update period. It is able to encapsulate all latent processes affecting
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the link throughput. Once per the update period a new value for the background
load attribute is sampled from the respective distribution. A computational pro-
cess fairly divides the allocated bandwidth among its threads. Finally, a small
fraction of the chunk is neglected due to the coordination overhead of the data
transfer protocol. This mechanism is summarized by the following code snippet:

chunk = (link.bandwidth / (link.background_load + link.
campaign_load)) / job.n_threads
chunk -= chunk*protocol.overhead

5 Accuracy of the Simulator

To demonstrate the accuracy of the proposed tool we simulate a production work-
load. The structure of the authentic workload is as follows. Various amounts of
concurrent jobs (1-12) are assigned to a single worker node at the CERN data
center (Switzerland). Once per 15 minutes in the period of 28.04.2018 00:00 -
28.04.2018 06:15 the jobs initiate remote accesses to the storage element GRIF-
LPNHE_SCRATCHDISK at the GRIF-LPNHE data center (France). The data
transfer is realized by the WebDAYV protocol. At each step the jobs launch various
amounts of concurrent threads (up to 4). The threads stream files of different
sizes (300MB - 3GB). This allows us to sample a wide range of data for the
variables T, S, ConTh and ConPr. Each launched file access is treated as an
observation in the final dataset. After such sampling and transformations we de-
rive 106 authentic observations. We then simulate the same workload in GDAPS,
logging 106 simulated observations. Thereafter, we apply the linear regression
from Eq. 1 to both the datasets. The true dataset is summarized by the following
fit:

T = 0.02385 * .S + 0.04886 * ConTh + 0.00117 * ConPr. (5)

The true fit has an F-statistic of 1.956e+04 on 3 degrees of freedom and 103
residual degrees of freedom and a p-value of <2.2e-16. The regression coefficients
of this fit characterize the data throughput of the production workload. We assess
the accuracy of the simulated coefficients based on the following error metric:

E(coefsim) = abs(coeftrue - coefsim)/coeftrue~ (6)
However, the following issue needs to be addressed before stochastic simulations
can be executed. The simulator parameters have to be calibrated with respect to
the true system. In our study this concerns the parameters of the data transfer
mechanism. While we could estimate the link bandwidth to be 10,000 Mbps,
quantifying the protocol overhead or determining the parameters (u and o) of
the background load distribution are non-trivial tasks. These 3 parameters form
the simulator setting @, which needs to be inferred:

overhead
6= L . (7)

g
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The inference procedure will rely on true observations Xt,ue, which are the re-
gression coefficients of the authentic fit:

Gtrue 0.02385
Xirue = | Derue | = | 0.04886 | . (8)
Ctrue 0.00117

The Bayes’ rule allows one to calculate the posterior distribution p(€|x) ana-
lytically. However, in our study neither the likelihood p(x | ), nor the marginal
p(x) are tractable. A further difficulty lies in the fact that our generative model,
which produces simulated observations Xg;,, is a non-differentiable simulator. To
estimate the posterior in this setting we employ likelihood-free Markov Chain
Monte Carlo with approximate likelihood ratios [13,14]. In this method, a param-
eterized classifier is trained to distinguish samples from the marginal p(x) and
the likelihood p(x | @). The classifier’s output is then used to construct likelihood
ratios r(x, 0;,8’) across different parameter settings, which represent the states
of the Markov Chain. The likelihood ratios are in turn employed by MCMC to
either accept a proposed state 8’ or once again sample the current state 8;. Once
the sampling is completed, the histograms over the chain’s states approximate
the posterior density p(0 |x).

We realize the parameterized classifier by a deep neural network with 4 hid-
den layers, 128 hidden units and SELU nonlinearities. For each simulator param-
eter we have assumed a uniform prior distribution with the following bounds:

— WebDAV overhead: (0, 0.1)
— u, the mean of the background load distribution: (0, 100)
— 0, the standard deviation of the background load distribution: (0, 100)

Given these priors we have pre-simulated more than 12.7 million of (0, Xgim)-
tuples, which form the training set. The dataset is projected onto the inter-
val (0,1) to stabilize the training. The net is trained for 263 epochs using the
ADAM optimization algorithm with a learning rate of 0.0001. Once the classi-
fier is trained, we start the posterior MCMC sampling in the middle of the prior
bounds. Firstly, we sample 100,000 burn-in states in order to reach a stable region
in the parameter space. Thereafter, we collect 1,000,000 actual MCMC samples.
The histograms of the resulting Markov Chain approximate the multivariate
posterior density. These histograms are presented along with their covariances
by a cornerplot in Fig. 5. The 0.5 quantile is reported above each histogram.
While the density of the overhead parameter is almost uniform, clear modes are
identified for p and o. Given this approximate posterior, we pick the optimal
simulator setting 8 which maximizes the density along each axis:

overhead* 0.02
0" = w* =1369]. 9)
o* 14.4

Employing the optimal parameter setting 8* we execute 16,000 stochastic sim-
ulations of the production workload. At the end of each simulation we regress
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the produced dataset the same way as the authentic dataset. The simulated co-
efficients are accumulated to form samples. The histograms of these samples are
shown along with their covariances in Fig. 6. The 0.5 quantile is indicated above
each histogram. The values of the true coefficients are superimposed in red.

Overhead = 0.05+$:%3 a = 0.03175883

= 35.12+802 b = 0.030%3813

A o =26.51:388

c =0.001+3:3%

I IS IO I T TS S PSP S S R Y
FTIFIFEF PR SR PR RS

Overhead 1} o a b c

Fig.5. Approximate posterior density Fig.6. Coefficients simulated under the
over the simulator setting 6 optimal parameter setting 0

Since the distributions of the simulated coefficients recover the true coefficients,
we conclude that the likelihood-free MCMC has succeeded in calibrating the
simulator parameters. Based on our experience, the naive picking of random
parameter settings is unable to perform this task. Thus, it is evident that GDAPS
executes highly realistic simulations. A number of concrete tuples of simulated
coefficients are presented in Table 1 along with the respective errors. The errors
are calculated using the metric from Eq. 6.

Table 1. Example simulated coefficients

Asim E(asim) bsim E(bslm) Csim E(csim) Z E
0.02352| 1.4% | 0.049 | 0.3% |0.00114 | 3.3% | 5%
0.02427| 1.7% |0.05038| 3.1% |0.00118 | 0.4% |5.2%
0.02408| 0.9% |0.05006| 2.5% |0.00121 | 3.1% |6.5%
0.02477| 3.8% |0.04810| 1.6% (0.001206| 2.8% |8.2%
0.02458| 3% |0.04668| 4.5% |0.00116 | 0.7% |8.2%
0.02467| 3.4% |0.04693| 4% |0.001185| 1% |8.4%
0.02538| 6.4% |0.04854| 0.7% |0.00115| 2% |9.1%
0.02298| 3.6% |0.05121| 4.8% |0.00118 | 0.8% |9.2%
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6 Conclusions and Future Work

In this paper we have presented a novel grid computing simulator. GDAPS
allows one to model and simulate data access profiles of computing jobs in data-
intensive systems. The fundamental assumptions underlying the construction of
our simulator are justified by empirical experiments performed in the Worldwide
LHC Computing Grid.

To study the accuracy of the simulations produced by our tool we have
executed an authentic production workload from WLCG. Prior to the simula-
tions we have successfully calibrated the simulator parameters with respect to
the true system. The calibration relied on approximate Bayesian inference with
likelihood-free Markov Chain Monte Carlo. It allowed us to obtain the approxi-
mate posterior density over a set of simulator parameters, which affect the data
transfer mechanism. Given the optimal parameter setting 8*, the distributions
of the simulated regression coeflicients were able to recover the true coefficients.

The future work will confront the thorough modeling of the ATLAS data
grid in GDAPS. Thereafter, we will perform evolutionary optimization of data
access patterns in bags of jobs with the objective to minimize the joint data
transfer time. This constitutes a constrained optimization problem. The fitness
of proposed solutions will be evaluated on top of GDAPS, since we can rely
on its accuracy. Lastly, we will extend the simulator with further functionality,
such as management of jobs’ output data, support for more resource provisioning
algorithms and virtual organizations.
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