
Application of BagIt-Serialized Research Object
Bundles for Packaging and Re-execution of

Computational Analyses
Kyle Chard

Computation Institute
University of Chicago

Chicago, IL
chard@uchicago.edu

Niall Gaffney
Texas Advanced Computing Center

University of Texas at Austin
Austin, TX

ngaffney@tacc.utexas.edu

Matthew B. Jones
NCEAS

University of California at Santa Barbara
Santa Barbara, CA

jones@nceas.ucsb.edu

Kacper Kowalik
NCSA

University of Illinois at Urbana-Champaign
Champaign, IL

kowalikk@illinois.edu

Bertram Ludäscher
School of Information Sciences

University of Illinois at Urbana-Champaign
Champaign, IL

ludaesch@illinois.edu

Jarek Nabrzyski
Center for Research Computing

University of Notre Dame
South Bend, IN

jaroslaw.nabrzyski.1@nd.edu

Victoria Stodden
School of Information Sciences

University of Illinois at Urbana-Champaign
Champaign, IL
vcs@stodden.net

Ian Taylor
Center for Research Computing

University of Notre Dame
South Bend, IN

ian.j.taylor@gmail.com

Thomas Thelen
NCEAS

University of California at Santa Barbara
Santa Barbara, CA

thelen@nceas.ucsb.edu

Matthew J. Turk
School of Information Sciences

University of Illinois at Urbana-Champaign
Champaign, IL

mjturk@illinois.edu

Craig Willis†
NCSA

University of Illinois at Urbana-Champaign
Champaign, IL

willis8@illinois.edu

†Corresponding author

Abstract—In this paper we describe our experience adopting
the Research Object Bundle (RO-Bundle) format with BagIt
serialization (BagIt-RO) for the design and implementation of
“tales” in the Whole Tale platform. A tale is an executable
research object intended for the dissemination of computational
scientific findings that captures information needed to facilitate
understanding, transparency, and re-execution for review and
computational reproducibility at the time of publication. We
describe the Whole Tale platform and requirements that led to
our adoption of BagIt-RO, specifics of our implementation, and
discuss migrating to the emerging Research Object Crate (RO-
Crate) standard.

Index Terms—Reproducibility of results, Standards, Packag-
ing, Interoperability, Software, Digital preservation

I. INTRODUCTION

Whole Tale (http://wholetale.org) is a web-based, open-
source platform for reproducible research supporting the cre-
ation, sharing, execution, and verification of “tales” [?], [?].
Tales are executable research objects that capture the code,
data, and environment along with narrative and workflow
information needed to re-create computational results from
scientific studies. A goal of the Whole Tale platform (WT) is
to produce an archival package that is exportable, publishable,

and can be used for verification of computational reproducibil-
ity, for example as part of the peer-review process.

Since its inception, the Whole Tale platform has been
designed to bring together existing open science infrastructure.
Researchers can ingest existing data from various scientific
archival repositories; launch popular analytical tools (such as
Jupyter and RStudio); create and customize computational
environments (using repo2docker1); conduct analyses; cre-
ate/upload code and data; and publish the resulting package
back to an archival repository. Tales are also downloadable and
re-executable locally, including the ability to retrieve remotely
published data.

With the May 2019 release of version 0.7 of the platform
we adopted the Research Object Bundle BagIt serialization
(BagIt-RO) format [?]. By combining the BagIt-RO serial-
ization with our repo2docker-based execution framework and
the BDBag tools [?], we were able to define and implement
a standards-compliant, self-describing, portable, re-executable
research object with the ability to retrieve remotely published
data.

1https://repo2docker.readthedocs.io/



In this paper we describe the Whole Tale platform and re-
quirements that led to our adoption of the the BagIt-RO format.
The paper is organized as follows. In section II, we present
a motivating example of the use of the Whole Tale platform
followed by a brief description of the system architecture in
section III. In section IV we outline the requirements that
led to our adoption of the BagIt-RO format. In section V
we describe our implementation in more detail followed by
a discussion and conclusions.

II. EXAMPLE SCENARIO: ANALYZING SEAL MIGRATION
PATTERNS

We begin with a motivating example to illustrate the end-to-
end Whole Tale workflow for creating, exporting, and publish-
ing a tale based on existing data archived using the Research
Workspace2, a DataONE member node. This example is based
tutorial material described in [?].

A research team is preparing to publish a manuscript
describing a computational model for estimating
animal movement paths from telemetry data. The
source data for their analysis, tracking data for
juvenile seals in Alaska [?], has been published in
Research Workspace, a DataONE network member.
Using the Whole Tale platform, the researchers
register the external dataset. They then create a new
tale by launching an RStudio environment based on
images maintained by the Rocker Project [?]. Using
the interactive environment, they clone a Github
repository, modify an R Markdown document, cus-
tomize the environment by specifying OS and R
packages via repo2docker configuration files, and
execute their code to generate outputs. They down-
load the package in a compressed BagIt-RO format
and run locally to verify their tale. Finally, they enter
descriptive metadata and publish the final package
back to DataONE to archive the package and obtain
a persistent identifier to include in publication.

This scenario is further illustrated in Figure II.

III. SYSTEM ARCHITECTURE

This section provides a brief overview of the Whole Tale
system architecture illustrated in Figure III. Whole Tale
provides a scalable platform based on the Docker Swarm
container orchestration system, exposing a set of core services
via REST APIs and Single Page Application (SPA). Key
components include:

• Whole Tale Dashboard: An Ember.js single page appli-
cation

• Whole Tale API: A REST API built using the Girder3

framework to expose key features including authentica-
tion, user/group management, tale lifecycle, data manage-
ment, and integration with remote repositories

2https://www.researchworkspace.com
3https://girder.readthedocs.io

• Whole Tale File System: A custom filesystem based on
WebDav and FUSE used to mount user and registered
data into running container environments

• Image registry: A local Docker registry used to host
images associated with tales

• Jobs and task Management: A task distribution and
notification framework based on Girder and Celery

• Data Management System (DMS): System for fetching,
caching, and exposing externally published datasets

Several aspects of the Whole Tale system are related to
the BagIt-RO serialization format including filesystem orga-
nization, user-defined environments, metadata as well as the
export and publication functions. We describe these in more
detail below.

1) Tale workspace: Each tale has a workspace (folder)
that contains user-created code, data, workflow, documen-
tation and narrative information. The workspace also con-
tains repo2docker-compatible configuration files defining the
tale environment, described below. This appears as the
workspace folder mounted into the running tale environ-
ment.

2) External data: Optionally, each tale can include refer-
ences to externally published data. The data is then registered
with the Whole Tale system and managed by the DMS.
Externally referenced data appears in the data folder, a
sibling to the workspace.

3) Environment customization: Users can optionally cus-
tomize the tale environment using repo2docker-compatible
configuration files. Whole Tale extends repo2docker via the
repo2docker_wholetale4 package, which adds build-
packs to support Rocker, Spark, and OpenRefine images.

4) Metadata: Tales have basic descriptive metadata in-
cluding creator, authors, title, description, keywords as well
as information about the selected environment, licenses, and
associated persistent identifiers. The tale metadata is included
in the metadata directory both in the manifest.json and
environment.json files. The license is included in the
BagIt payload directory, but not as part of the tale workspace.

5) Exporting tales: Tales can be exported in a BagIt-
RO serialized archive that contains the contents of the tale
workspace (code, local data, narrative, workflow, repo2docker
configuration files) as well as references to external data, tale
metadata, and a script to run the tale locally. BDBag [?] is used
to materialize “holey” bags by downloading files specified in
the fetch.txt file, initially via HTTP and eventually via
DOI, Globus, Agave schemes. The script to run locally is
stored at the root of the exported BagIt archive.

Table 1 describes the contents of an exported tale in
the BagIt-RO format. A complete example is available at
https://doi.org/10.5281/zenodo.2641314.

IV. REQUIREMENTS

The scenario described in section II highlights several key
requirements of the Whole Tale platform that led to our

4https://github.com/whole-tale/repo2docker wholetale

https://doi.org/10.5281/zenodo.2641314


Register telemetry 
dataset by digital object 
identifier:
doi:10.24431/rw1k118 

Create a Tale, entering 
a name and selecting 
the RStudio (Rocker) 
environment

A container is launched 
based on selected 
environment with an empty 
workspace and external 
data mounted read-only 

Upload/create R 
Markdown notebook 
and install.R script

Execute code/scripts 
to generate results/ 
outputs

Export the Tale in 
compressed BagIt-RO 
format to run locally for 
verification.

Publish the Tale a 
Data ONE member 
node generating a 
persistent identifier.

Enter descriptive 
metadata including 
authors, title, description, 
and illustration image

schema:author
schema:name
schema:category
pav:createdBy
schema:license

Re-execute in 
Whole Tale

Fig. 1. Example Scenario Tale Creation and Publishing Workflow, republished from [?], permission needed.

Fig. 2. Whole Tale system architecture

selection of the BagIt-RO serialization. These requirements
include:

• Interoperability with archival repositories: Since tales
will be published to archival repositories including
DataONE network members, we must adopt standard
formats and vocabularies that facilitate interoperability.
This includes the use of supported archival formats and
identifiers (e.g., digital object identifiers). We also note
here that some repositories do not support publishing
hierarchical file structures, while many research objects
contain data and code organized in folders. In the future,
we plan to support publishing to Dataverse network
members, the Dryad repository, and Zenodo.

• Interoperability with source code management
(SCM): For many researchers, source code repositories
such as GitHub are central to their workflow in the

File Description
bag-info.txt Bag metadata using the bdbag-ro-

profile5

bagit.txt Bag declaration
data/
LICENSE
workspace/
apt.txt
postBuild
requirements.txt
wt_quickstart.ipynb

Payload directory containing tale li-
cense and workspace contents including
repo2docker compatible configuration
files.

fetch.txt Fetch file
manifest-[md5,
sha256].txt

Payload manifest (checksums)

metadata/
manifest.json
environment.json

Tag directory containing RO
manifest.json and Whole Tale
environment metadata (required
by repo2docker wholetale)

tagmanifest-[md5,
sha256].txt

Tag manifest (checksums)

README.md Tale top-level readme
run-local.sh Tale local execution script

TABLE I
EXPORTED TALE CONTENTS

creation of research objects. The tale format must support
publishing research objects based on content in SCM
repositories.

• Ability to reference external data: A central feature of
the Whole Tale platform is to enable researchers to refer-
ence externally published data by persistent identifier and
include references to those items in their published tales.
Both in the Whole Tale web service and when executed
locally, externally referenced data must be resolved prior
to re-execution. Whole Tale currently supports HTTP



resources as well as those published via Globus and in
the future via the Agave Platform.

• Ability to add metadata: The tale format must sup-
port all metadata attributes required by DataCite and
schema.org as well as attributes specific to the Whole
Tale platform. In the future, we expect to also support
additional metadata required by researchers in specific
domains.

• Ability to export and re-execute: One feature of the
system is the ability for users to export tales to a local
machine. To re-run locally, we must be able to rebuild
the environment (e.g., via Docker/repo2docker) and fetch
remote data as needed.

• Ability to store provenance information: Future re-
leases of Whole Tale, tales will include computational
and archival provenance information.

• Simplicity and understandability: When users view the
contents of an exported or published tale, they should be
able to easily understand the contents and how to explore
or re-execute the tale.

• Verifiability: Future releases of Whole Tale will include
information to allow the automatic re-execution and ver-
ification of included results/outputs and computational
workflows.

• Versioning: Since researchers iterate on their tales, share
them and extend them, it is important to be able to version
them over time.

• Interoperability with search engines: Google recently
unveiled Dataset Search which parses and aggregates
JSON-LD embedded on dataset landing pages as an effort
to lower barriers for finding datasets. Choosing JSON-LD
as a representation for tale metadata provides flexibility
in case we decide to expose tale information for Google.
It also allows for further integration with third party
publishers such as Dataverse and DataONE who may
expose such metadata for Google.

V. ADOPTING THE BAGIT-RO MODEL

Whole Tale uses the RDF data model to encode tale
information for export and exchange. We selected a JSON-LD
representation for human readability, extensibility, compatibil-
ity with Whole Tale APIs, and potential interoperability with
search engines and third party publishers. After developing an
ad-hoc internal format, we explored emerging standards in the
research object space and settled on BagIt-RO for serializa-
tion. Using RO-Bundle specification and BagIt serialization
in conjunction with the BDBag tools met many of our initial
requirements. Additional tale metadata attributes which were
not included in the BagIt-RO model could be added using
vocabularies such as schema.org. Throughout this section, we
use the manifest.json from the above example, with a
complete listing included in Appendix A.

A. Filesystem Artifacts

One strong point of RO-Bundle is that it treats file system
artifacts as aggregates of the manifest. Doing so satisfies

our requirement of being able to track where files belong,
enabling us to both export and re-import tales even in the
case where we must publish a hierarchical structure to a
repository that can only represent a flat structure. In the case
of Whole Tale, artifacts include data that were retrieved from
external repositories as well as files that the user created or
uploaded into the tale workspace. The tale workspace contents
are included in the payload ”data/workspace” directory and the
external data are fetched into the payload ”data/data” directory,
mirroring filesystem organization on the web-based platform.
"aggregates": [
{
"uri": "../data/workspace/wt_quickstart.ipynb"

},
{
"uri": "../data/workspace/apt.txt"

}
]

Workspace artifacts are easily described with a single URI
entry. Some files, such as the system generated README.md,
are tagged with additional metadata as shown below. In this
case the additional metadata specifies the “type” of the file as
a “HowTo”.
{
"@type": "HowTo",
"uri": "../README.md"

}

B. External data

Whole Tale supports two types of external data: data that
reside in a repository identified by persistent identifier (e.g.,
DOI) and data that exists at a generic HTTP address. In
addition to including information about external data in the
manifest.json, the URL for each remote file, regardless
of type, is included in the fetch.txt for retrieval using
BDBag tools.

Generic HTTP Data: For data that does not belong to a
remote repository, a simple bundle is created in the aggregation
section. The URI points to the HTTP address where the file
may be retrieved and the bundle object holds the filesystem
relevant information. The combination of information allows
us to retrieve the file and place it in the correct folder (i.e.,
data/data).

Repository Data: For datasets that have been published
to research repositories, additional metadata can be ingested
when files are registered with the system. The individual files
are described with a single bundle object, and linked to an
additional structure that describes the dataset in more detail.

The following snippet describes a remote dataset that resides
in DataONE and the aggregation recording the relationship
between a file in that dataset and its ultimate location after
retrieval in the payload ”data” directory:
"dataset": [
"@type": "Dataset",
"identifier": "doi:10.5065/D6862DM8",
"name": "Humans and Hydrology at High Latitudes...",
"@id": "doi:10.5065/D6862DM8"
],
"aggregates": [
{



"size": 1558016,
"schema:isPartOf": "doi:10.5065/D6862DM8",
"uri": "https://cn.dataone.org/cn/v2/resolve/urn

:...",
"bundledAs": {

"filename": "usco2000.xls",
"folder": "../data/data/"

}
}

]

C. Describing the Computing Environment

Whole Tale uses a customized version of the Binder
repo2docker package. In addition to including configuration
files in the workspace, Whole Tale exports information about
the environment including runtime information in the tale. One
shortcoming of the BagIt-RO model is that there is not a well-
defined place for this metadata. To address this need, we define
an additional tag file, environment.json, which encodes
sufficient information about the environment so that it can be
re-created. The metadata contained in this file is represented
as JSON and is not described using standard vocabularies.

D. Describing Additional Attributes

A number of properties that describe additional tale at-
tributes (e.g., authors, keywords, description, license) are de-
fined at the manifest root. Schema.org’s vocabulary sufficed
for describing these general metadata fields.

Attributing authorship to a tale is a requirement for tracking
researcher contributions and is also used during metadata
generation with publishers. The Provenance, Authoring, and
Versioning (PAV) vocabulary is used instead of schema be-
cause it is already included in by RO-Bundle:

{
"@id": "https://orcid.org/0000-0002-7523-5539",
"@type": "schema:Person",
"schema:familyName": "DeBruine",
"schema:givenName": "Lisa"

}

E. Provenance Tracking

A planned feature of Whole Tale is the ability to track
executions and steps in researchers’ workflows, which we
call computational provenance. The BagIt-RO model includes
the ability to provide provenance information through the
inclusion of the provenance.json file. However, this is
intended to capture more archival provenance information
and it is unclear whether computational provenance should
be included here. Whole Tale plans to use the Prov-ONE
ontology6, an extension to W3C PROV7.

The URI of each file in the manifest can be referenced
inside the provenance.json file, enabling rich linkings
of information. This information can also be transcribed to
publisher-specific formats, provided that they support PROV.
Figure 3 illustrates how provenance information is rendered
in DataONE.

6https://purl.dataone.org/provone-v1-dev
7https://www.w3.org/TR/prov-overview/

Fig. 3. Provenance rendering of a file in DataONE

VI. DISCUSSION

In this section, we highlight and discuss several issues
related to our implementation of BagIt-RO that we hope will
be of interest to workshop participants and possible input into
current work on the RO-Crate specification. We discuss the
importance of re-executability; the ability to reference and
retrieve external data; the relationship between tales and source
control repositories; and our ongoing work on computational
provenance and verification workflows.

A. Executable research objects

Tales are executable research objects. By this we mean
that the research object itself may be built and re-executed
for exploration, re-use, reproducibility, and verification. This
is not a unique capability as many systems have recently
been developed to support the creation of similar artifacts
(for example Binder, CodeOcean). Executable research objects
contain not only data, code, and documentation, but also
information about the computational environment. This exe-
cutability leads to additional capabilities, such as generation
and comparison of computational provenance or methods of
automated verification.

The FAIRDOM infrastructure initiative has made use of
the Research Object framework to employ a standards based
method to group its components into container platforms
including BagIt [?]. We extend this approach into the Whole
Tale framework and include the capability for externally
referenced data and general research pipelines. Our efforts
are more general than ReproZip, which gathers and bundles
dependencies for command line executions [?]. The Collective
Knowledge (CK) framework gathers research objects with
unique IDs and metadata in the JSON format but does not
ensure re-executability [?]. Sciunits on the other hand are
self-contained bundles guaranteed to re-execute regardless of
deployment, and targeted at scientific experiments [?], [?].

B. External data

In the Whole Tale platform, users are presented with a fixed
filesystem hierarchy that includes “workspace” and “data”
directories. The workspace directory contains code, local data,



and additional files (e.g., documentation) and the sibling ”data”
directory contains externally referenced data files (read-only).

In our v0.7 release, the BagIt payload directory of an
exported tale similarly contains “workspace” and “data” di-
rectories. The manifest.json contains information about
remotely registered datasets that is also included in the BagIt
fetch.txt. When BDBag tools are used to fetch remote
datasets, they are downloaded to the payload/data directory,
matching the online filesystem organization and system ca-
pabilities. The concept of the fetch.txt, while primitive,
is surprisingly effective when used with BDBag. We also
foresee taking advantage of other BDBag capabilities, such
as transferring Globus data or using DOI resolution. However,
there is redundancy in tracking external information in both
in the BagIt fetch.txt and the RO manifest.json.

C. Relationship to SCM

Many researchers use source control repositories (e.g.,
GitHub) to organize and collaborate on research projects.
Repositories can be released and published via external tools
such as Zenodo or Whole Tale. In the Whole Tale platform, the
“workspace” directory can be mapped to a version controlled
repository. This raises the question of whether or not the
workspace (or repository) should contain everything, includ-
ing information currently stored in the manifest.json
or environment.json. This information is essential to
the understandability and re-executability of the tale, but is
currently modeled as external to the primary tale contents
(as is common with descriptive metadata). During the local
execution process, for technical reasons we bind mount files
from the “metadata” directory into the workspace to support
building the tale image. In future releases, we are considering
exposing the manifest information along with computational
provenance information (below) as part of the workspace
instead of external to it. This means that even simple metadata
would be in the workspace and easily added to version control.

D. Reproducibility and computational provenance information

Computational provenance refers to methods of capturing
provenance (“the source or origin of an object”) for com-
putational tasks [?] and is a subset of the larger notion of
reproducibility of data- and computationally-enabled results
[?], [?], [?], [?], [?]. We are beginning to explore methods of
capturing and storing computational provenance information
to enable reproducibility on computational findings in tales.
In the RO-Bundle specification, provenance information is
defined as “describing creators, dates, and sources” and is
more concerned with the provenance of the research object
itself, which we term archival provenance. Computational
provenance information is internal to the tale and could be
generated by the user or the Whole Tale system directly.
We view computational provenance information as a key
component of transparency for evaluation and verification of
tales and part of enabling reproducibility.

E. Supporting reproducibility via verification workflows

Research communities and journals are increasingly adopt-
ing artifact review processes that include re-execution of com-
putational analysis in support of reproducibility [?]. Examples
include the workflow implemented by the Odum Institute for
the American Journal for Political Science [?], the Journal of
the American Statistical Association8, Biostatistics [?], and
the ACM Transactions on Mathematical Software (TOMS)
Replicated Computational Results9 program. We see tales and
related research objects being used to simplify and possibly
automate aspects of the verification process. Having a standard
format for the exchange of research objects that fits into
these enhanced curatorial and verification workflows may
significantly reduce the burden on research communities.

F. BagIt Understandability

One drawback of the BagIt serialization is that the BagIt
configuration is foregrounded and difficult to understand for
the average researcher/user while the “payload” directory is
less apparent and confusingly named “data”. Although out of
scope for the RO discussion, we are supportive of the idea
of a “.bagit” directory that contains the relevant configuration
information and is largely hidden from the average user.

G. Migrating to RO-Crate

Since our adoption of the BagIt-RO model, the community
has moved forward on the Research Object Crate (RO-Crate)
specification10. In this section, we report the results of a
preliminary analysis of changes needed to migrate to the new
format. Doing so will require versioning the tale export format
and we are unlikely to make changes until the community
settles on a near-final version of the specification.

RO-Crate 0.2-DRAFT introduces the following changes
from the RO-Bundle 1.0

• Addition of ro-crate-metadata.jsonld (RO-
Crate Metadata File). The relationship to the RO-Bundle
manifest.json is unclear, since the RO-Crate Meta-
data File “does not necessarily list or describe all files
in the package.” We have viewed the manifest.json
as an inventory of all files in the RO (excluding those
introduced by BagIt).

• The RO-Crate metadata file changes vocabulary from
the set used by RO-Bundle to primarily schema.org, no
longer using ore:aggregates. This also adds support
for referencing external datasets, a feature not available
in RO-Bundle but added in our tale format.

• The “bagged” RO-Crate structure will differ from
the BagIt-RO structure as the “metadata” folder
is no longer included. Our assumption is that
the ro-crate-metadata.jsonld along with our
environment.json will now be included in the BagIt
payload. We’ve come to a similar conclusion about the

8https://magazine.amstat.org/blog/2016/07/01/jasa-reproducible16/
9http://toms.acm.org/replicated-computational-results.cfm
10https://researchobject.github.io/ro-crate/



tale format – that this metadata belongs in the payload
not external to it.

• It is unclear whether there will be support for separate
provenance metadata or whether this will need to be
included in the payload.

RO-Crate promises many benefits that align with Whole
Tale, namely the adoption of schema.org as the primary
vocabulary and its ability to be used alongside a variety of
serialization formats.

VII. CONCLUSIONS

By implementing an extension to RO-Bundle with BagIt
serialization and leveraging existing open science infrastruc-
ture tools including repo2docker and BDBag, we were able to
effectively create an exportable, publishable, and executable
research object package, in short taking a step toward the
publication of “really reproducible research” [?]. While not a
perfect fit, BagIt-RO met many of our platform requirements.
We expect to continue work in this area as we add support for
computational provenance information and automated verifi-
cation and hope to contribute to the use cases and discussions
that inform the development of a broader community standard.

ACKNOWLEDGMENT

This work is supported by National Science Foundation
Award OAC-1541450.

VIII. APPENDIX A

{
"createdBy": {

"@type": "schema:Person",
"schema:givenName": "Craig",
"@id": "willis8@illinois.edu",
"schema:email": "willis8@illinois.edu",
"schema:familyName": "Willis"

},
"schema:description": "Demonstration of how to use

Whole Tale to develop custom analysis and
visualization for data published externally via
DataONE. See https://wholetale.readthedocs.io/en/
stable/users_guide/quickstart.html for more
information.",

"@context": [
"https://w3id.org/bundle/context",
{

"schema": "http://schema.org/"
},
{

"Datasets": {
"@type": "@id"

}
}

],
"schema:author": [

{
"@type": "schema:Person",
"schema:givenName": "Craig",
"@id": "https://orcid.org/0000-0002-6148-7196",
"schema:familyName": "Willis"

}
],
"schema:version": 7,
"schema:identifier": "5cb4ffead9323600016c4d4c",
"schema:image": "http://use.yt/upload/dc1da723",
"Datasets": [

{
"@type": "Dataset",
"identifier": "doi:10.5065/D6862DM8",
"name": "Humans and Hydrology at High Latitudes

: Water Use Information",

"@id": "doi:10.5065/D6862DM8"
}

],
"createdOn": "2019-04-15 22:04:26.970000",
"schema:name": "Example Water Tale",
"schema:category": "Examples",
"aggregates": [

{
"uri": "../data/workspace/wt_quickstart.ipynb"

},
{

"uri": "../data/workspace/apt.txt"
},
{

"uri": "../data/workspace/requirements.txt"
},
{

"uri": "../data/workspace/postBuild"
},
{

"size": 1558016,
"schema:isPartOf": "doi:10.5065/D6862DM8",
"uri": "https://cn.dataone.org/cn/v2/resolve/

urn:uuid:62e1a8c5-406b-43f9-9234-1415277674
cb",

"bundledAs": {
"filename": "usco2000.xls",
"folder": "../data/data/"

}
},
{

"schema:license": "CC-BY-4.0",
"uri": "../data/LICENSE"

},
{

"@type": "schema:HowTo",
"uri": "../data/README.md"

}
],
"@id": "https://data.wholetale.org/api/v1/tale/5

cb4ffead9323600016c4d4c"
}
\end{verbatim}


	Introduction
	Example scenario: Analyzing seal migration patterns
	System architecture
	Tale workspace
	External data
	Environment customization
	Metadata
	Exporting tales


	Requirements
	Adopting the BagIt-RO Model
	Filesystem Artifacts
	External data
	Describing the Computing Environment
	Describing Additional Attributes
	Provenance Tracking

	Discussion
	Executable research objects
	External data
	Relationship to SCM
	Reproducibility and computational provenance information
	Supporting reproducibility via verification workflows
	BagIt Understandability
	Migrating to RO-Crate

	Conclusions
	Appendix A

