
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DARE: A Reflective Platform Designed to Enable Agile Data-
Driven Research on the Cloud
Citation for published version:
Klampanos, I, Davvetas, A, Gemünd, A, Atkinson, M, Koukourikos, A, Filgueira Vicente, R, Krause, A,
Spinuso, A, Charalambidis, A, Magnoni, F, Casarotti, E, Pagé, CM, Lindner, M, Ikonomopoulos, A &
Karkaletsis, V 2020, DARE: A Reflective Platform Designed to Enable Agile Data-Driven Research on the
Cloud. in 2019 15th International Conference on eScience (eScience). Institute of Electrical and Electronics
Engineers (IEEE), San Diego, CA, USA, pp. 578-585, Bridging from Concepts to Data and Computation for
eScience (BC2DC’19) Workshop, San Diego, California, United States, 24/09/19.
https://doi.org/10.1109/eScience.2019.00079

Digital Object Identifier (DOI):
10.1109/eScience.2019.00079

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 15th International Conference on eScience (eScience)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1109/eScience.2019.00079
https://doi.org/10.1109/eScience.2019.00079
https://www.research.ed.ac.uk/en/publications/1b773723-fc67-4d6f-a42c-ded7c36a60a9


DARE: A Reflective Platform Designed to Enable
Agile Data-Driven Research on the Cloud

Iraklis Klampanos∗, Athanasios Davvetas∗, André Gemünd†, Malcolm Atkinson‡, Antonis Koukourikos∗,
Rosa Filgueira§, Amrey Krause§, Alessandro Spinuso¶, Angelos Charalambidis∗, Federica Magnoni‖,

Emanuele Casarotti‖, Christian Pagé∗∗, Mike Lindner†† and Vangelis Karkaletsis∗
∗Institute of Informatics and Telecommunications, NCSR “Demokritos”, Agia Paraskevi, Greece

Email: iaklampanos@iit.demokritos.gr
†Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany

‡School of Informatics, The University of Edinburgh, Edinburgh, UK
§EPCC, The University of Edinburgh, Edinburgh, UK

¶Koninklijk Nederlands Meteorologisch Instituut (KNMI), Utrecht, The Netherlands
‖Istituto Nazionale Geofisica e Vulcanologia (INGV), Rome, Italy

∗∗Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France
††Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany

Abstract—The DARE platform has been designed to help
research developers deliver user-facing applications and solutions
over diverse underlying e-infrastructures, data and computa-
tional contexts. The platform is Cloud-ready, and relies on the
exposure of API, which are suitable for raising the abstraction
level and hiding complexity. It implements the cataloguing and
execution of fine-grained and Python-based dispel4py workflows
as services. Reflection is achieved via a logical knowledge base,
comprising multiple internal catalogues, registries and semantics,
while it supports persistent and pervasive data provenance. This
paper presents design and implementation aspects of the DARE
platform, as well as it provides directions for future development.

Index Terms—software platform, cloud, technology, conceptu-
alization, data-driven science, scientific workflows, provenance,
workflow optimization

I. INTRODUCTION

Modern data-driven science takes place on increasingly
distributed and diverse infrastructures. Scientific knowledge is
therefore scattered across cloud-based services, local storage,
and source code targeting specific architectures and computa-
tional contexts. Concepts reflected on such disparate sources
are hardly computer-communicable and computer-actionable
across or even within disciplines. This makes traceability,
communication of methods, provenance gathering and reusing
data and methods across disciplines harder and more time-
consuming. At the same time, commercial clouds play an
increasingly important role in large-scale scientific experimen-
tation. Examples of commercial clouds being used in large-
scale scientific contexts are found on both sides of the Atlantic:
in the European Open Science Cloud1 (EOSC) case as well as
in the massive ongoing migration of data and other resources
onto Amazon’s AWS by NASA2.

This work has been supported by the EU H2020 research and innovation
programme under grant agreement No 777413.

1https://ec.europa.eu/research/openscience/index.cfm?pg=
open-science-cloud

2https://aws.amazon.com/partners/success/nasa-image-library/

It follows that while potential for large scale data-driven
experimentation increases, so does complexity. At the same
time, making use of vendor-specific features may lead to
lock-in. Users directly being affected by these issues are the
research developers: domain experts who develop user-facing
solutions on behalf of their communities.

The DARE platform3, developed as the main technical ob-
jective of the DARE project4, deals with these challenges and
helps research developers make better and more transparent
use of diverse infrastructures via:

1) The facilitation of high-level programmatic methods via
the use of the fine-grained workflow specification library
dispel4py [1].

2) Mappings of workflows on different execution contexts
within and across cloud deployments.

3) Tools for tracking and analyzing data provenance in real-
time.

4) Reflection onto the e-infrastructure via a logical knowl-
edge base, describing the running cloud environment and
user information, e.g. workflows, software components,
data provenance and data.

5) Integrated big data tools, as well as connectors to
external data sources.

6) Exposing all relevant functionality via a set of RESTful
APIs that (1) effectively hide technical detail and (2)
enable research developers to build solutions that ex-
ploit multiple underlying e-infrastructures with minimal
effort.

The overarching vision behind DARE as well as its main
architectural considerations and components can be found in
[2]. This paper describes the current technical instantiation in
response to this vision, its main software components and their
interactions.

3https://gitlab.com/project-dare
4http://project-dare.eu

https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud
https://aws.amazon.com/partners/success/nasa-image-library/
https://gitlab.com/project-dare
http://project-dare.eu


II. PLATFORM DESIGN AND INTEGRATION

An overview of the platform can be seen in Figure 1.
The DARE platform is Cloud-ready and is designed primarily
for the currently under-development European Open Science
Cloud (EOSC) in mind. This does not preclude it from being
readily deployable on other research or commercial Cloud
platforms.

The basis of the DARE platform is a big-data integrator
platform, which was originally developed as part of the Big
Data Europe project [3]. Technologies that co-exist and are
integrated on the big-data integrator platform allow for the
delivery of the other core elements of the DARE platform, such
as the knowledge base components, the optimizing workflow
system and methods, the provenance subsystem, and so on.

A. Cloud-Ready Platform

The DARE platform relies on the integration of container-
ized software components. Containerized applications enable
software isolation with no impact on the application perfor-
mance. Containers share resources with the host operating
system and enable consistent development [4]. Containerized
applications are supported by cloud infrastructure providers
and are considered as cloud-native.

The Kubernetes5 orchestration enables the effortless cloud
deployment of the DARE platform. Kubernetes enables auto-
mated deployment, scaling and management of containerized
applications. Cluster management and deployment is operated
through its exposed API. Kubernetes API enables external
and internal communication exploiting user-client authentica-
tion. Kubernetes API additionally provides Role-Based Access
Control (RBAC) [5] that binds a user-client (which can be a
containerized application) to the cluster. Using RBAC makes
user authentication and access flexible and manageable by
enabling permission control for Kubernetes resources. Fur-
thermore, Kubernetes can be enriched by native add-ons such

5https://kubernetes.io/

Metadata & KBs

Data

Internal
Components

Optimisation
rules

Users &
teams  Semantics

Federator &
Internal endpoint 

PEs library

Provenance

High-level Description & Processing

External
interfaces 

Interactive tools 
(browsing,
querying,

visualisation, etc.) 

High-level
processing
descriptions 

Interpreter 

Mapper / Optimiser 

Execution Manager

Big Data Platform                                                           

DBs Big Data
Processing

3rd Party
Domain Tools

DARE tools ...

EOSC (or alternative cloud platforms)

External Resources 

Catalogues 

Data & Computing
Infrastructures 

Other resources 

(Some may live
inside EOSC) 

ML 

D
A

R
E 

Pl
at

fo
rm

D
A

R
E

U
se

-c
as

es Domain-specific
high-level

descriptions 
User interfaces 

Prov 

DARE API

Fig. 1. Overview of the DARE platform.

as DNS or GUI dashboards, as well as, Custom Resource
Definition of Services and other Kubernetes resources that
provide additional functionality.

Through its deployment, the DARE platform can make use
of Big Data Processing tools provided by the BigDataEurope
platform 6. The Big Data Europe platform includes cloud-
native and ready to deploy containerized versions of big data
tools such as Apache Hadoop, Apache Kafka, the PostgreSQL
database, Flink, etc. Intuitively, any cloud-native containerized
software component such as Databases or Third party domain
tool that is necessary for DARE use-cases can be deployed
as a part of the DARE platform and can be accessed by its
internal components.

1) Provisions for the EOSC: The DARE platform has been
designed to accommodate the European Open Science Cloud
on two levels. On one hand, the platform and services have
been designed to complement existing services offered through
EOSC instead of duplicating work. For example, for long-term
storage, it is designed to interface to the EUDAT B2SAFE
service7. On the other hand, the stack has been designed and
packaged so that it is easily deployable on EOSC infrastructure
services. To achieve the latter goal, DARE offers ready-to-
use infrastructure descriptions and deployment recipes based
on the well-known Ansible by Red Hat8 and Terraform by
HashiCorp9. Terraform is used to automatically deploy a set
of Virtual Machines with the required infrastructure properties
such as CPU, memory, storage and network interfaces on an
IaaS Cloud of choice. Supported Cloud backends include e.g.
AWS, GCP, Microsoft Azure and OpenStack10.

DARE primarily targets the EGI Federated Cloud11, which
is part of the EOSC and offers access to the OpenStack API
on the sites of its federation. After the Virtual Machines have
been started, Ansible installs and configures the Kubernetes
stack, and starts complementing add-ons, such as networking
(based on Calico12) and storage (based on Rook13 Ceph). The
DARE stack running on top of Kubernetes in turn makes
extensive use of Helm Charts to package and manage the
Kubernetes resources and applications. This also facilitates
usage on existing Kubernetes clusters.

Furthermore, to seamlessly integrate with EOSC, the plat-
form’s authentication and authorization mechanisms have been
designed to be interoperable with existing Authentication and
Authorization Infrastructure (AAI). To that end, the DARE
platform employs OAuth2 with OpenID Connect. The same
technology is the basis for the EOSC portal14, EGI Check-In15

and EUDAT B2Access16. Through the use of an own Key-

6https://github.com/big-data-europe
7https://www.eudat.eu/b2safe
8https://www.ansible.com/
9https://www.terraform.io/
10https://www.openstack.org
11https://www.egi.eu/federation/egi-federated-cloud/
12https://projectcalico.org
13https://rook.io/
14https://eosc-portal.eu/
15https://access.egi.eu/
16https://b2access.eudat.eu/

https://kubernetes.io/
https://github.com/big-data-europe
https://www.eudat.eu/b2safe
https://www.ansible.com/
https://www.terraform.io/
https://www.openstack.org
https://www.egi.eu/federation/egi-federated-cloud/
https://projectcalico.org
https://rook.io/
https://eosc-portal.eu/
https://access.egi.eu/
https://b2access.eudat.eu/


Execution
API

PEs
Library

Kubernetes
API

MPI
Cluster

2. Submit workflow for distributed execution 3. Create container replicas
    of execution context 
    (spawn MPI cluster)

4. Retrieve workflow code and CWL specification

5. Execute workflow
6. Monitor execution status
          (asyncronous)

7. Delete container replicas
    of execution context
    (delete MPI cluster)

1. Register dispel4py
    workflow

Fig. 2. The executions of a dispel4py workflow using the DARE API. This figure shows all the underlying steps as well as the entities that are involved
during execution. Steps 1, 2 and 4 are HTTP calls. Steps 3, 6 and 7 are executed within python, while step 5 is executed using CWL.

cloak17 deployment, the DARE platform allows community
administrators the choice to implement own identity databases
or integrate with all providers or proxies that implement the
OAuth2 with OpenID Connect technology. These include the
ones mentioned above as well as many other providers, such
as Google, Facebook, Github, etc.

The DARE implementation makes use of Kubernetes side-
car containers based on the Keycloak Gateway, which are au-
tomatically injected with application containers on Kubernetes
pods and act as a reverse proxy to the application. Connections
to the service go to the sidecar proxy first, which checks if
the user is already authenticated and if not sends a forward
header to the login page. If the user is authenticated, the
request is forwarded to the service with additional HTML
headers injected, which allow the application to identify the
user. The application only has to worry about the identity,
while the proxy deals with session identifiers, invalid sessions
and tokens. The project is currently setting up a demonstration
platform which will make use of EOSC Cloud resources and
will use an integrated AAI.

B. Workflows-as-a-Service and the DARE API

DARE API is a composition of RESTful Web APIs exposed
by the containerized versions of the underlying DARE plat-
form components. Exposing the Web APIs of otherwise iso-
lated software components of DARE platform enables across
component communication, as well as, its coupling with any
user interface appropriate for DARE use-cases. Essentially, the
DARE API acts as a gateway between the cloud deployed
DARE platform components and the interactive user inter-
faces.

During its first iteration DARE API consists of the Exe-
cution API and PEs library API to allow for a Workflows-

17https://www.keycloak.org

as-a-Service functionality in DARE’s pilot use-cases, as well
as the s-provflow that provides Provenance. Execution API is
mainly responsible for the distributed and scalable execution
of Dispel4Py workflows [1] or Specfem3D simulations [6].
The Execution API allows the submission of execution jobs
through exposed web service resources. Therefore, allowing
for scalable integration of additional execution contexts, since
the individual execution contexts are containerized compo-
nents instantiated from the Execution API.

For the purposes of scalable and distributed execution,
Execution API is deployed with ”unlimited access” role to
the Kubernetes resources. During the submission of any job
the user can specify the amount of nodes or workers that are
required for the distributed execution of their workflow. Execu-
tion API spawns replicas of the specified execution context in
order to be used within a Master/Worker model. Additionally,
it launches an asynchronous function that monitors the status
of running jobs and redirects their logs. After the end of the
execution the container cluster of replicas is deleted to release
the occupied resources. The above steps can be also observed
in Figure 2 and Figure 3.

For all execution contexts the Common Workflow Language
(CWL) [7] is utilized during run time. CWL is a workflow
specification that besides workflow description allows for
transparency and standardization. In the execution contexts
of DARE API, CWL allows the dynamic parameterization
of executions. In the Specfem3D context, CWL is used as
a higher level workflow description. It describes the steps that
are necessary in order to perform a single simulation, the input
and output of each step, the running order of steps and the
scripts that have to be executed. On the other hand, on the
context of executing dispel4py workflows, CWL is used to
describe and dynamically parameterize distributed dispel4py
execution on command level.

Post execution logs and outputs are stored within a shared

https://www.keycloak.org


Execution
API

Kubernetes
API

MPI
Cluster

2. Create container replicas
    of execution context
    (spawn MPI cluster)

4. Execute Simulation
5. Monitor execution status
          (asyncronous)

6. Delete container replicas
    of execution context
    (delete MPI cluster)

1. Start distributed 
    Specfem3D simulation

3. Download Specfem3D
    Parameter Files

Fig. 3. Specfem3D waveform simulation execution overview using DARE API. This figure depicts all the underlying steps as well as the entities that are
involved during execution. Step 1 is an HTTP call. Steps 2, 5 and 6 are executed within python and steps 3 and 4 are part of the CWL workflow execution.

file system between the Execution API and all spawned
container clusters using the cloud-native storage Rook-Ceph18.
The Execution API creates a folder structure for each run in
order to store generated outputs. Users of DARE platform can
interact with the shared file system through the Execution API
in order to upload input files, to review generated outputs
or download files. Users also have the choice to download
and reference files through the Execution API by using the
B2DROP service of EUDAT19.

PEs library provides the functionality of registering work-
flow entities, such as processing elements (PEs), functions
and literals. It aims at storing and presenting information
regarding workflows. A processing element is a single compu-
tational unit that is utilized inside dispel4py in order to create
workflow graphs. The PEs library facilitates the storing of
code implementation for such computational units to enable
the sharing and collaboration. For that purpose, it provides
workspace structures for registering workflow entities that
enable user individuality. It additionally, provides transparency
and reproducibility of workflow executions.

Furthermore, PEs library is a manageable way to allow users
to execute arbitrary code within the DARE platform. Arbitrary
workflow execution raises multiple security concerns. In cases
of suspected malicious activity, the PEs library can be utilized
to monitor the workflow registration and execution activity.
Despite that, the workflows are executed in temporary con-
tainer clusters with no public entry points or cloud access
after their registration.

C. Knowledge Base, Provenance Tracking and Metadata

As per its reference architecture [2], the DARE platform
implements a logical knowledge-base as a series of stores and

18https://rook.io/
19https://eudat.eu/services/b2drop

registries. The semantification and tighter integration of these
constituent stores and registries is ongoing work.

The current implementation of the DARE knowledge-base
comprises the following components:

1) Workflows and PEs Registry: This component is de-
signed to primarily describe dispel4py workflows and
processing elements. It exposes a RESTful API and is
able to manage workspaces in order to isolate work
between users, while at the same time to allow col-
laboration and exchange of methods and ideas. DARE
requires a workflow to be registered before it can be
executed. This enforces a checkpoint and helps to avoid
executing arbitrary and unchecked code on the platform.
The current implementation is based on a relational
schema. An introduction to its data model, entities and
intended use can be found in [8].

2) The Provenance store: This component is the store
for all provenance information gathered within DARE.
Provenance is a big part of DARE platform, with
the component S-ProvFlow being natively supported
by dispel4py. S-ProvFlow continuously captures data
provenance associated with: computation unit distribu-
tion and parallelization, run-time changes, metadata and
generated data products. It enables the reproduction
of generated data outputs and real-time monitoring of
resource use. The current implementation is based on
MongoDB in order to allow responsiveness while also
being flexible with respect to the data model.

3) Internal components catalogue: This catalogue captures
information regarding the available components that are
deployed in the cloud environment. The metadata cap-
tured in the internal components catalogue are exploited
for informed resource acquisition as well as optimized
execution context selection. The current implementation

https://rook.io/
https://eudat.eu/services/b2drop


is currently based on the Kubernetes API, with future
work directed on improving and extending it.

4) Data catalogue: The main purpose of the data catalogue
is to provide a list of internal to DARE, as well as ex-
ternal datasets along with their semantics (e.g. domain-
specific descriptions and interlinking). Additionally, it
should provide an additional level of abstraction between
conceptual descriptions and their digital representations
(e.g. formats, data types, locations, etc.). The data
catalogue should enable collaboration and sharing of
reusable data products. The current implementation is
based on linked data technologies, however it covers
a small fraction of the target requirements with future
work being directed at improving and extending it.

In addition to the registries and catalogues described above,
DARE may require additional components in order to cover
emerging requirements of optimizing workflows, identifying
users, anonymizing data and metadata, etc. (Figure 1).

III. AN END-TO-END EXAMPLE USE-CASE

In this section we present a simple but complete use-case
of using the DARE platform in order to execute a workflow
in a scalable, flexible and distributed manner.

The executed workflow is described in Algorithm 1. In this
simple use case, we create a computational graph consisting of
four processing elements. Split processing element distributes
a list of number into equal parts, for uneven divisions be-
tween length of list and workers is being compensated by
replacing it with the smallest integer value. Mult is a function
that multiplies the elements of a list by two. Each worker
independently calls this function on its part of the split list.
The Merge processing element merges back all the multiplied
parts from the individual workers into a new single list of
elements. The Fwrite processing element simply writes the
contents of a list into a text file.

In the case the PEs above are not already available in the
DARE Workflows and PEs registry, to execute this simple use-
case using the DARE API one must follow the steps below.
(Information on the Workflows and PEs registry entities and
intended use can be found in [8].)

1) Authenticate against the Workflows and PEs registry
(PEs library API)

2) Create a workspace on PEs library (PEs library API)
3) Create processing element signature of the workflow

(PEs library API)
4) Create processing element implementation of the work-

flow - Register workflow implementation source code
(PEs library API)

5) Submit registered workflow for execution (Execution
API)

Additionally, a user might want to run these optional steps:
1) Monitor status of spawned container cluster (Execution

API)
2) List user directories (Execution API)
3) List files within certain directory (Execution API)

4) Download / Get B2DROP link of generated output text
file (Execution API)

Algorithm 1 Simple use case
Input: Python list of numbers
Output: List of numbers multiplied by 2, text file

function splitPE(list):
Get input list, split list
into equal length parts

function mult(list):
return list numbers multiplied by 2

function mergePE(parts of list):
merge list parts into a single list

function fwritePE(list):
write elements of list in file

Initialize list: numbers
Graph:

splits = splitPE(numbers)
mult(splits)
new_numbers = mergePE(splits)
fwritePE(new_numbers)

Execute Graph using dispel4py

In Figure 4 we illustrate the interactive visualization of the
lineage recorded during the execution of the Split and Merge
workflow and offered by the S-ProvFlow component. This
Figure also illustrates the dynamic creation of PE instances, in
this case making use of MPI parallelization and the dispel4py
corresponding mapping.

IV. SCIENTIFIC USE-CASES

In this section we provide the description of two scientific
pilot use-cases the DARE platform directly responds to. These
use-cases are being developed as part of the DARE project and
are described in more detail in [2].

A. Seismology
The first use-case is on seismology, where we consider the

case of ground motion Rapid Assessment (RA). The objective
of this use-case is to analyze seismic wavefields immediately
after the occurrence of large earthquakes and produce in-
time, on-demand estimates of ground motion parameters as
peak values of ground velocity or acceleration. The Rapid
Assessment use-case can be useful during emergency contexts
in order to create maps that will compare observation data
along with synthetic data in order to get a better understanding
of the ground behaviour.

For the Rapid Assessment use-case, the first step is to run
the Specfem3D waveform simulation based on a provisional
1D Time Domain Moment Tensor (TDMT) source solution
in order to generate synthetic data. The following steps after
waveform simulation are:

1) download observed data for the chosen earthquake from
stations through the Federation of Digital Seismographic
Network (FDSN)



Fig. 4. Provenance visualization of the execution of the Split and Merge workflow in S-ProvFlow. The left panel shows a runtime monitor of the workflow’s
processes. For each instance of a PE, the interface displays the timestamp of the last data produced, the worker node where the PE runs, the count of the
generated data and the occurrence of system messages. The right panel instead offers the possibility to analyze the data-lineage associated with a particular
PE output (circles). Arrows represent the provenance relationship wasDerivedFrom. Yellow circles indicate that the data is materialized and can be accessed
at a specific location. For visual compression the circles’ labels show the name of the PE generating the data. Users interacts with the graph in order to access
detailed metadata about the data and its generating process.

2) pre-process synthetic and observed seismograms
3) calculate and compare ground motion parameters be-

tween observed and synthetic data, and
4) plot ground motion parameters for both data

In DARE, all the aforementioned steps are implemented as
dispel4py workflows, which means that they have to be
preceded by API calls used to authenticate and create the
appropriate entries in the Workflows and PEs registry. Then,
each step-workflow can be executed via the Execution API.

B. Climate Change Impact

Climate4Impact20 is a platform of services providing also a
web front-end. It is aimed at climate change impact modellers,
impact and adaptation consultants, other researchers using
climate data. It has been developed in the EU funded IS-ENES
projects since 2009. The objective of Climate4Impact is to
enhance and open up the use of climate modelling data for
research. Further, it allows for visualization and download of
data from global climate models, regional climate models and
downscaled high resolution climate data. It also provides on-
demand downscaling, subsetting, regridding and processing of
data. The purpose of this use-case is to enhance, accelerate and
ensure scalability of users’ on-demand calculations using the
Climate4Impact platform, by delegating those to the DARE
platform and bringing back the results to the Climate4Impact
front-end. This delegation has to be transparent to the end
users.

The following is done transparently by the Climate4Impact
platform itself, taking input from the front-end parameters
and workflows specified by the end users. It first needs
to authenticate and register the necessary workflows in the
Workflows and PEs registry. The Climate4Impact processing
service then uploads a json file in the shared file system
which is referenced within the workflow as its input. The

20https://climate4impact.eu

workflow aims at providing access to and reducing NetCDF
files obtained from Earth System Grid Federation (ESGF).
It also performs post-processing analysis to prepare data for
potential further processing or presentation to end-users. Once
the workflow has been registered with the DARE platform it
is executed via the Execution API, on behalf of the user.

V. RELATED WORK

The DARE platform further extends tools and advances
made in earlier projects. It integrates technologies in ways
that enable new types of interaction with the underlying
systems and e-infrastructures, making it easier for research
developers and scientists to describe and execute data-driven
computational experiments. Workflow-as-a-Service compo-
nents dispel4py [1], s-ProvFlow [9] and the dispel4py PEs
and workflows library21 were originally developed as part of
the VERCE project22 [10]. One of VERCE’s final deliverables
was a workflow-driven e-Science gateway for seismology. The
VERCE gateway was targeted at the Seismology scientist and
offered largely fixed functionality. DARE exploits these tech-
nologies, integrating them further and collectively exposing
them via its APIs to offer workflows-as-a-service functionality
to research developers.

The BigDataEurope integrator platform [3] was designed in
order to democratize big data technologies and to expose them
to policy makers and to the general public. The integration
and testing of the platform was driven and evaluated via
a series of use-case pilots that covered all seven societal
challenges set out at the time by the European Commission23.
The DARE platform assimilates know-how and technology
from the BigDataEurope platform as its technological basis
on top of which the complete solution is integrated.

21VERCE Architecture and Tools for Data-Intensive Applications: http://
www.verce.eu/Repository/Deliverables/RP3/D-JRA2.1.2.pdf

22http://verce.eu
23https://ec.europa.eu/programmes/horizon2020/en/h2020-section/

societal-challenges

https://climate4impact.eu
http://www.verce.eu/Repository/Deliverables/RP3/D-JRA2.1.2.pdf
http://www.verce.eu/Repository/Deliverables/RP3/D-JRA2.1.2.pdf
http://verce.eu
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges


The DARE project and platform aims to be readily de-
ployable on Cloud platforms, with a specific focus on the
European Open Science Cloud (EOSC)24. EOSC is a loose
federation of cloud resources, providers and policies that offers
domain-specific and generic services to scientists and the
general public. As integration with EOSC is of priority, the
DARE platform has been designed with input from influential
initiatives that shape the presence and future of EOSC, such
as EOSC-Hub25, OpenAIRE26, and others.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented the design, implementation
and integration of core technologies in the DARE platform.
DARE has been designed to help research developers deliver
high-quality user-facing applications to their target scientific
domains. DARE is Cloud-ready and exploits technologies such
as containerization and cataloguing in order to execute high-
level, fine-grained workflows on behalf of its users. The use of
such workflows, as well as other functionality that is exposed
via Web APIs allow for the hiding of details of underlying
e-infrastructures, data and computational contexts, as well as
it protects research developer from getting locked into vendor-
specific technologies. The presence of persistent and pervasive
provenance allows for research results to be communicable and
reproducible.

In the near future we aim to improve the DARE platform in
a number of ways, including: (1) providing smart enactment
over DARE-managed resources on the Cloud, (2) extending
and unifying the internal catalogues and registries in order
to reach a more consistent view of the DARE knowledge
base, (3) improving internal data representation and resolution
and (4) further integration with 3rd-party e-infrastructures and
platforms.

REFERENCES

[1] R. Filguiera, A. Krause, M. Atkinson, I. Klampanos, and A. Moreno,
“Dispel4py: A Python framework for data-intensive scientific com-
puting,” International Journal of High Performance Computing
Applications, 2017.

[2] M. Atkinson, R. Filgueira, I. Klampanos, A. Koukourikos, A. Krause,
F. Magnoni, C. Pag, A. Rietbrock, and A. Spinuso, “Comprehensi-
ble control for researchers and developers facing data challenges,” in
Proceedings of the 15th IEEE International Conference on eScience (to
appear), 2019.

[3] S. Auer, S. Scerri, A. Versteden, E. Pauwels, A. Charalambidis,
S. Konstantopoulos, J. Lehmann, H. Jabeen, I. Ermilov, G. Sejdiu,
A. Ikonomopoulos, S. Andronopoulos, M. Vlachogiannis, C. Pappas,
A. Davettas, I. A. Klampanos, E. Grigoropoulos, V. Karkaletsis,
V. de Boer, R. Siebes, M. N. Mami, S. Albani, M. Lazzarini,
P. Nunes, E. Angiuli, N. Pittaras, G. Giannakopoulos, G. Argyriou,
G. Stamoulis, G. Papadakis, M. Koubarakis, P. Karampiperis, A.-
C. N. Ngomo, and M.-E. Vidal, “The BigDataEurope Platform -
Supporting the Variety Dimension of Big Data,” in 17th International
Conference on Web Engineering (ICWE2017), 2017. [Online].
Available: http://jens-lehmann.org/files/2017/icwe bde.pdf

[4] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

24https://www.eosc-portal.eu
25https://www.eosc-hub.eu
26https://www.openaire.eu

[5] D. Ferraiolo and R. Kuhn, “Role-based access control,” in In 15th
NIST-NCSC National Computer Security Conference, 1992, pp. 554–
563.

[6] D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti,
P. Le Loher, F. Magnoni, Q. Liu, C. Blitz, T. Nissen-Meyer, P. Basini,
and J. Tromp, “Forward and adjoint simulations of seismic wave
propagation on fully unstructured hexahedral meshes,” Geophysical
Journal International, vol. 186, no. 2, pp. 721–739, 08 2011. [Online].
Available: https://doi.org/10.1111/j.1365-246X.2011.05044.x

[7] P. Amstutz, M. R. Crusoe, N. Tijani, B. Chapman, J. Chilton,
M. Heuer, A. Kartashov, D. Leehr, H. Mnager, M. Nedeljkovich,
and et al., “Common workflow language, v1.0,” Jul 2016. [Online].
Available: https://figshare.com/articles/Common Workflow Language
draft 3/3115156/2

[8] M. Atkinson, M. Galea, and I. Klampanos, “D-JRA2.1.2: VERCE
Architecture and Tools for Data-Intensive Applications,” Tech. Rep.,
2013. [Online]. Available: http://verce.eu/Repository/Deliverables/RP3/
D-JRA2.1.2.pdf

[9] A. Spinuso, “Active provenance for data-intensive research,” Ph.D.
dissertation, The University of Edinburgh, 2018.

[10] M. Atkinson, M. Carpene, E. Casarotti, S. Claus, R. Filgueira, A. Frank,
M. Galea, T. Garth, A. Gemund, H. Igel, I. Klampanos, A. Krause,
L. Krischer, S. H. Leong, F. Magnoni, J. Matser, A. Michelini, A. Ri-
etbrock, H. Schwichtenberg, A. Spinuso, and J. P. Vilotte, “VERCE
delivers a productive e-science environment for seismology research,”
in Proceedings of the 11th IEEE International Conference on eScience,
2015.

http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://www.eosc-portal.eu
https://www.eosc-hub.eu
https://www.openaire.eu
https://doi.org/10.1111/j.1365-246X.2011.05044.x
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2
http://verce.eu/Repository/Deliverables/RP3/D-JRA2.1.2.pdf
http://verce.eu/Repository/Deliverables/RP3/D-JRA2.1.2.pdf

	Introduction
	Platform Design and Integration
	Cloud-Ready Platform
	Provisions for the EOSC

	Workflows-as-a-Service and the DARE API
	Knowledge Base, Provenance Tracking and Metadata

	An End-to-End Example Use-Case
	Scientific Use-Cases
	Seismology
	Climate Change Impact

	Related Work
	Conclusions and Future Work
	References

