
UC Davis
UC Davis Previously Published Works

Title
Workflow Automation in Liquid Chromatography Mass Spectrometry

Permalink
https://escholarship.org/uc/item/4cg7w3k7

ISBN
9781728124513

Authors
Gentz, Reinhard
Martin, Héctor García
Baidoo, Edward
et al.

Publication Date
2019-01-27

DOI
10.1109/escience.2019.00095
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4cg7w3k7
https://escholarship.org/uc/item/4cg7w3k7#author
https://escholarship.org
http://www.cdlib.org/


Workflow Automation in
Liquid Chromatography Mass Spectrometry
Reinhard Gentz

Lawrence Berkeley National Lab
Berkeley, CA USA

rgentz@lbl.gov

Héctor Garcı́a Martin
Joint BioEnergy Institute

Emeryville, USA
hgmartin@lbl.gov

Edward Baidoo
Joint BioEnergy Institute

Emeryville, USA
eebaidoo@lbl.gov

Sean Peisert
Lawrence Berkeley National Lab

Berkeley, CA USA
sppeisert@lbl.gov

Abstract—In this document, we describe the fully automated
workflow path that was developed for the ingest and analysis of
liquid chromatography mass spectrometry (LCMS) data. With
the help of this computational workflow, we were able to replace
two human work days to analyze data with two hours of
unsupervised computation time. In addition, this tool also can
compute confidence intervals for all its results, based on the noise
level present in the data. We leverage only open source tools and
libraries.

Index Terms—liquid chromatography mass spectrometry,
LCMS, automation, workflow, noise detector, analysis

I. INTRODUCTION

Since the industrial revolution, humans have replaced man-
ual labor with automation and machines. In this paper, we
describe the toolset that we have delveoped for automating the
workflow to ingest, analyze, and store liquid chromatography
mass spectrometry (LCMS) data. This process contains of
several steps that are linked together to achieve the desired
automation goal. The input to the workflow are proprietary ‘.d’
files from an Agilent LC-MS machine and the outputs of the
workflow are mass distribution vectors (MDVs) and chemical
concentrations. MDVs comprise the fractions of carbon 13
within a molecule group, while chemical concentration is
defined as the concentration of each molecule per liter.

The most important programming library utilized by this
workflow is Mzmine [1], which is used to extract signal peaks
and signal areas from the data stream. This signal will be,
along with the noise level detected, used to compute the
desired outputs. Alternative tools include the also open source
software XCMS [2] and the proprietary Agilent Masshunter
software. We chose Mzmine over XCMS for its simple work-
flow with batch processing. The Agilent Masshunter software
was not a consideration since it is proprietary software that
cannot be freely redistributed with our workflow.

This work was part of the DOE Joint BioEnergy Institute
(https://www.jbei.org) and the DOE Joint Genome Institute
(https://jgi.doe.gov) supported by the U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research, and was part
of the Agile BioFoundry (http://agilebiofoundry.org) supported by the U.S.
Department of Energy, Energy Efficiency and Renewable Energy, Bioenergy
Technologies Office, through contract DE-AC02- 05CH11231 between
Lawrence Berkeley National Laboratory and the U.S. Department of Energy.
Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect those of the
sponsors of this work.

II. STEPS OF THE WORKFLOW

In this section we describe the workflow steps necessary
to go from the input, the LC-MS machine, to the state of
having the fully-analyzed output stored in the database. Our
goal is complete automation of each task, with the human in
the loop only being present for quality assurance (QA) spot-
checking. We therefore have automated each step completely,
and generate several graphs on the way for manual QA.

A. Fill the LC-MS machine with samples

First the user is required to fill the LC-MS machine with the
samples, blanks, and standards to be analyzed. In the future
we plan to use an automated robot to perform this step.

B. Run the analysis

To run the analysis, we generate a configuration script for
the LC-MS that defines how the samples are to be processed.
For example, this script determines the naming of each data
output and the order of samples and blanks, and defines the
parameters of the LC-MS sensors. This configuration script is
produced from a CSV file in which the user enters the desired
parameters, that are then converted with a Python script to
machine-usable code for the LCMS. This configuration file
defines all the manual inputs needed by following steps.

1) Detection of new files on the LC-MS machine: The LS-
MS machine is running on a Windows Computer that is co-
located with the sensing elements and controls it. We are
running a powershell script that is monitoring the sensors
output folder for new files using the Windows build in ”File
System Watcher”. This path is very efficient as the operating
system will notify our code of any changes and we do not
actively have to poll the directory. Once a new file is detected it
is copied over to a remote compute server where the computing
resources do not compete with the LC-MS sensor’s operation.
On the computer server the script doing the next steps are
triggered as we describe next.

2) Proprietary data conversion: The data files output by
our LC-MS machine are in a proprietary Agilent ‘.d’ format.
These files have to be converted to a standard ‘.mzML’ format
that can be used by our remaining tools. For this purpose we
use the ’ProteoWizard MSconvert’ [3] software, which can be
invoked via command line and can convert one file per CPU
core. We have written a Python wrapper around this software



to invoke the binary in parallel fro the command line. The
number of parallel executions is dependent on the number of
cores on the system and the available amount of memory, as
each ‘.d’ file conversion needs about 2GB of memory.

This conversion tool is the only tool that needs to be run on a
Windows machine—all other tools used are platform-agnostic
and use either Python or Java.

3) Peak detection: Peak detection accuracy is critical for
the automated workflow. As described in the introduction, we
settled on using the MZmine tool. This tool can process files
from command line with a matching configuration file. This
configuration file is simple XML that we generate from a user-
defined CSV file with a Python script. An additional input file
contains the masses and retention times of the molecules of
interest, which are calculated from the chemical formula and
experimentally found retention times. Prior to automation, it
was this process that was the most human-labor intensive—a
trained human could have taken about 2 days for a batch of
30 samples. With the automated process, we can reduce this
time to under two hours on a two-core laptop. We note that
the computation is not bound by the compute speed, as the
process runs effectively in real time, as the LC-MS sensor is
slower in acquiring the data than the computer is in processing
it.

C. Noise detector
We wrote our own noise level detector to find the signal-to-

noise level for each peak found in the previous step. This noise
level is not constant for each peak, as each ‘mass’ has its own
unique noise level. To compute the noise level, we decode the
‘.mzML’ file with the pymzML [4] library. pymzML decodes
results in raw samples which our workflow immediately filters,
while decoding is in processing, for the ‘masses’ of interest
to reduce the memory footprint of the computation. To find
the noise, we use a window of one minute (in retention time
space) before the peak with an offset of 0.2 minutes. To ensure
that we do not include the signal of another peak for our noise
calculations, we exclude other peaks with a z-score.

D. Normalize MDVs and compute concentration
The output form the peak detection and the noise detector

is a ‘count’ of the element. MDVs comprise the fractions
of carbon 13 within a molecule group and can be directly
computed from the ‘count.’ In order to find the confidence
interval for our computations, we take the noise signal that was
found and make a ‘worst case,’ respective best case analysis.
For the worst/best case we subtract/add the noise from the
signal of the molecule isotope in question while for other
isotopes we add/subtract the l2norm of the noises to their
signal.

To compute the concentration of each molecule we compare
the ‘count’ each sample against a known standard’s ‘count’ for
which we do know the concentration.

E. Upload to database
Finally, our workflow formats and uploads our results to our

“Experiment Data Depot” database [5], so data can be accessed

by the experimenter, shared, or computed on. We also ensure
that all chemical compounds comply with the international
chemical identifier for portability and easy data sharing.

III. RESULTS

In Fig. 1 we show a comparison of the accuracy of au-
tomated MDV generation to manual detection by a trained
person. We can see that the results match very well. In
addition, the automated results provide a confidence interval
on how trustworthy each peak is, given the noise present in
the data (which is lost in the manual detection).

Fig. 1. Manual and automated MDV generation of glutamic acid.

We also compute the concentrations of various chemicals
present in the samples and we can see that the system can
detect the concentration with a tight confidence interval.

Fig. 2. Concentrations of various chemical compounds.

REFERENCES

[1] T. Pluskal, S. Castillo, A. Villar-Briones, and M. Orešič, “Mzmine
2: Modular framework for processing, visualizing, and analyzing mass
spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11,
no. 1, p. 395, 2010.

[2] C. A. Smith, E. J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak,
“XCMS: Processing Mass Spectrometry Data for Metabolite Profiling
Using Nonlinear Peak Alignment, Matching, and Identification,” Analyt-
ical Chemistry, vol. 78, no. 3, pp. 779–787, 2006. PMID: 16448051.

[3] R. Adusumilli and P. Mallick, “Data conversion with ProteoWizard
msConvert,” in Proteomics, pp. 339–368, Springer, 2017.

[4] T. Bald, J. Barth, A. Niehues, M. Specht, M. Hippler, and C. Fufezan,
“pymzMLPython module for high-throughput bioinformatics on mass
spectrometry data,” Bioinformatics, vol. 28, no. 7, pp. 1052–1053, 2012.

[5] W. C. Morrell, G. W. Birkel, M. Forrer, T. Lopez, T. W. H. Backman,
M. Dussault, C. J. Petzold, E. E. K. Baidoo, Z. Costello, D. Ando,
J. Alonso-Gutierrez, K. W. George, A. Mukhopadhyay, I. Vaino, J. D.
Keasling, P. D. Adams, N. J. Hillson, and H. Garcia Martin, “The
Experiment Data Depot: A Web-Based Software Tool for Biological
Experimental Data Storage, Sharing, and Visualization,” ACS Synthetic
Biology, vol. 6, no. 12, pp. 2248–2259, 2017. PMID: 28826210.




