Extending defoe for the Efficient Analysis of
Historical Texts at Scale

Rosa Filgueira
School of Mathematical and Computer Sciences
Heriot-Watt University, UK
R Filgueira@hw.ac.uk

Beatrice Alex
EFI, School of Literatures, Languages and Cultures
University of Edinburgh, UK
balex@ed.ac.uk

Claire Grover, Vasilios Karaiskos
School of Informatics
University of Edinburgh, UK
{grover, vkaraisk} @ed.ac.uk

Sarah Van Eyndhoven, Lisa Gotthard
PPLS, Linguistics and English Language
University of Edinburgh, UK
{S1890120@ed.ac.uk, l.gotthard} @ed.ac.uk

Melissa Terras
College of Arts, Humanities and Social Sciences
University of Edinburgh, UK
m.terras@ed.ac.uk

Abstract—This paper presents the new facilities provided in
defoe, a parallel toolbox for querying a wealth of digitised
newspapers and books at scale. defoe has been extended to work
with further Natural Language Processing () tools such as the
Edinburgh Geoparser, to store the preprocessed text in several
storage facilities and to support different types of queries and
analyses. We have also extended the collection of XML schemas
supported by defoe, increasing the versatility of the tool for the
analysis of digital historical textual data at scale. Finally, we have
conducted several studies in which we worked with humanities
and social science researchers who posed complex and interested
questions to large-scale digital collections. Results shows that
defoe allows researchers to conduct their studies and obtain
results faster, while all the large-scale text mining complexity
is automatically handled by defoe.

Index Terms—text mining, distributed queries, High-
Performance Computing, XML schemas, digital tools, digitised
primary historical sources, humanities research

I. INTRODUCTION

Libraries, archives, and museums [1], [2] offer a wide range
of digital collections of textual resources, which have the
potential to provide an invaluable resource to historians, hu-
manities, and computational linguistics researchers. However,
enabling these users to take advantage of advanced com-
puting environments, analytics frameworks, and text mining
techniques to mine large scale digital collections effectively
remains challenging [3].

We have contributed to this area by creating defoe [4] ', a
scalable, parallel and portable toolbox which aims to enable
the analysis of digital historical datasets in a consistent way
and returns results for further analysis and interpretation. defoe
can be used in any HPC cluster or cloud platform, as it has

Uhttps://github.com/defoe-code

been designed to avoid imposing any specific constraints on
the compute environment.

Another aim of the design of defoe was to make it flexible so
it can consume historical textual collections scanned via OCR
from a variety of XML schemas. In this work we have added a
new XML schema in defoe to extract the knowledge from the
data collections offered by the National Library of Scotland?
(NLS), so that the system now supports four different XML
schemas. Among the digital collections offered by NLS, we
have the Encyclopaedia Britannica (see Figure 1).

Fig. 1: Page 36 of the First Edition of the Encyclopaedia
Britannica (Volume 1), and its corresponding XML file.

Working with domain researchers we discovered key func-
tionalities missing from defoe. For example, it did not provide
support for i) storing ingested and preprocessed data, ii) run-
ning several text-mining queries at once, iii) running queries
across different XML schemas, among others. In this paper we
have investigated how to extend defoe, so it supports the needs
of the research communities by enabling a better complex

Zhttps://data.nls.uk/

analysis of digital datasets at scale. The new contributions of
this work are:

o Supporting the ingestion of NLS digital collections.

« Employing new techniques to mitigate OCR errors

« Integrating geoparsing capabilities

o Extracting commonalities across
schemas

o Storing pre-processed data in different storage solutions

o Providing different query and analysis modalities.

digital collections

We demonstrate the feasibility and benefits of this work
using eight case studies, two computer infrastructures, and four
digital collections.

The remainder of the paper is structured as follows. Sec-
tion II presents defoe background and Section III reviews
relevant text analysis tools. Section IV describes the new defoe
functionalities. Section V details the features of the computer
infrastructures used in this work. Section VI describes the use
cases conducted. We conclude with a summary of achieve-
ments and outline future work.

II. BACKGROUND

This section gives an overview of our previous work on
defoe [4], providing the necessary background for the func-
tionalities presented in Section IV.

defoe is a Python toolbox that uses Apache Spark [5], an
open-source distributed HPC framework for large-scale data
processing. Spark Resilient Distributed Datasets (RDD) are
the fundamental data structures of Apache Spark, which is an
immutable distributed collection of objects partitioned across
cluster nodes.

The historical textual collections we consider can have
different XML schemas describing either the structure of a
digital document or the actual textual content, depending on
the OCR scanning technique employed. All of these schemas
are slightly different from each other, and none of them is
universally used. Therefore, we initially created three object
models (PAPERS, NZPP and ALTO) to map the physical
representations and XML schemas. These allow defoe to
ingest digital collections into Spark RDDs, which is the only
requirement to select the appropriate object model the digital
collection to analyse is mapped onto. This means that we could
only ingest collections that share the same object model at the
same time.

Previously, in the first version of defoe, we provided on-
the-fly single query analysis, which consisted of 1) ingesting
a digital collection (by using the corresponding object model)
into RDDs in memory; 2) pre-processing data; 3) running a
single text mining query in parallel; and 4) returning results
as YAML files. These four steps (we refer to them as the text
analysis pipeline — see Figure 4) are repeated every time we
want to run a text mining query over one or several collections.

All defoe text mining queries are based on a number of
operations (e.g. filter, flatMap, map, reduce, etc.) that
are combined to perform text mining analyses. Figure 2 shows
as an implementation example, the total_pages query,
in which a flatMap operation is applied to an archive

to return the list of documents it contains (e.g. volumes,
books). For each document, the map operation extracts
the number of pages, gathering the total number of documents
(volumes, books) and the total number of pages within those.

def do_query(archives, config_file=None, logger=None, \
context=None) :
[archive, archive, ...]
documents = archives.flatMap (lambda archive:\
list (archive))
[num_pages, num_pages, ...]

num_pages = documents.map (lambda document: \

document .num_pages)
result = [documents.count (), num_pages.reduce (add)]
return {"num_documents": result[0], \

"num_pages": result[1l]}

Fig. 2: defoe total_pages query: Iterates through
archives and counts the total number of documents (e.g.
volume, book etc) and total number of pages.

As an example, we run this query using the six volumes of
the 1st Edition of the Encyclopaedia Britannica (see Figure 3).

Result:
num_documents: 6
num_pages: 5462

Fig. 3: defoe total_pages query results using the six
volumes of the Ist edition of the Encyclopaedia Britannica.
This archive compromises six documents, one per volume.

defoe was complemented with defoe visualisation, a repos-
itory of Jupyter notebooks enabling researchers to visualise
and explore further the results obtained.

III. RELATED WORK

There are other computational text analysis tools that allow
scholars to explore their texts and perform textual analysis.
Some of the most relevant among those include:

o Voyant [6]* is a web-based, dashboard-style tool that
allows users to upload a corpus and visualize patterns
in various ways. For instance, users can experiment with
colorful word clusters that represent word frequency and
visualize how specific words and phrases appear across
texts in line graphs.

e Mallet [7] is a machine learning software program that
is used through the command line with Python. Though
it requires some technical skill to install and run, it can
produce powerful results by generating ‘topics’, or lists
of words that frequently appear together in corpora.

e Natural language toolkit (NLTK) [8] is a suite of
Python tools that allows users to analyze human language
data using classification, tokenizing, tagging, and more.
Though it requires some technical expertise to run, it can
be very useful for both teaching and analysis.

e spaCy [9] is an open-source library for advanced natural
language processing in Python. It is designed specifically

3https://voyant-tools.org/

for production use and helps build applications that pro-
cess large volumes of text. Some of the features provided
by spaCy are: Tokenization, Part-of-Speech (PoS) Tag-
ging, Text Classification and Named Entity Recognition
(NER).

o Google N-Grams [10] * allows users to plot single words
and short phrases over time in a large subset (5 million
books) of the corpus.

o The Stanford Natural Language Processing Group > pro-
vides statistical NLP, deep learning NLP, and rule-based
NLP tools for major computational linguistics problems,
which can be incorporated into applications with human
language technology needs. These packages are widely
used in industry, academia, and government.

o Weka [11] is Java-based data mining, visualization, and
machine learning software. The algorithms can either be
applied directly to a dataset or called from your own
Java code. Weka contains tools for data pre-processing,
classification, regression, clustering, association rules,
and visualization.

defoe complements these tools, as it has been designed
to analyse digital historical texts. With a single command-
line, users indicate a directory(ies) containing the XML files
describing a collection(s), and defoe analyses them in parallel
automatically.

IV. NEW FUNCTIONALITIES

The main improvements we have implemented set across the
text analysis pipeline mentioned in Section II and the defoe
query submission and analysis systems (see Figure 4). The
following subsections detail each of them.

Digital Collections Preprocessed storage

Object model HDFS Elasticsearch PSQL Results

Scanned

text \

=) gefoe 3 Text mining query execution

O
...... e

defoe l
\ Spark visualization

U Query *Analysis REEEIEIEEEEIE

+ Submission

1. Data ingestion

2. NLP preprocessing pipeline

4. Results gathering

Jupyter Notebook

scalable portable text mining queries large dataset
On-the-Fly i Single Query
Preprocessed Analyses Multiple Submission

Fig. 4: Overview of defoe.

A. Ingestion of NLS digital collections

The NLS Digital Scholarship Service °, has published 19
different digital textual collections. The Encyclopaedia Bri-
tannica, the Gazetteers of Scotland, or the Chapbooks printed

“https://books.google.com/ngrams
Shttps://nlp.stanford.edu/
Shttps://data.nls.uk/data/digitised-collections/

in Scotland are three of these. They use the same two XML
schemas in all their collections: METS XML schema’ for
descriptive, structural, technical and administrative metadata;
and ALTO XML schema® for encoding OCR text.

Each NLS digital collection (archive) usually compromises
several volumes or books. For example, the Encyclopaedia
Britannica has 195 volumes, and each of them has a METS
XML file. Then, for each of those volumes, it provides an
ALTO XML and one image file per page. These make up
a total of 195 METS files, 155,388 ALTO XML files, and
155,388 image files for the entire collection.

In our previous work, we created an ALTO object model to
ingest METS and ALTO XMLS files. We used this object
model to ingest the British Library Books and Find My
Past collections. However, the NLS METS and ALTO XML
schemas have some differences from those: i) they employ
a different naming of documents and namespaces that affects
their XML files; ii) the XML schemas provide a larger number
of attributes. To accommodate these, we created a new object
model, called NLS. See Figure 5.

DDA archivel archive2 archive3 archive 4

Class Archive > Representation of a collection of
volumes/books

Class Document - Representation of a metadata
document (XML in METS/MODS) and an ALTO
directory _

filename . -
archive code
| document list
attributes code

. tree
attributes.

Class Page - Representation
of a page (XML in ALTO).

attributes | namespace page_tree
num_pages width
metadata height

metadata_tree

Representation
ofa

volume/book page_words

year
page_strings
publisher
page_images
place title
edition
page_codes
num_pages
publisher
place
years
date
document_type
model

page_codes

L page list

Fig. 5: New NLS object model. This allows defoe to ingest
NLS digital collections into Spark RDDs.

The new NLS object model is added to our previous
collection of object models [4]. We have used it to analyse
the Encyclopaedia Britannica, the Gazetteers of Scotland, and
the Chapbooks printed in Scotland, as described in Section VI.
Note that this object model can be used to analyse any of the
other digitised collections offered by NLS.

B. Mitigation of OCR errors

Another significant improvement over previous versions of the
tool has been the mitigation of two types of optical character
recognition (OCR) errors. To do so, we updated the NLP pre-
processing pipeline by adding a new cleaning step after each
sentence has been tokenised. See Figure 6.

This new step employs two techniques, described in [12],
to mitigate the ‘long-S’ and the line-break hyphenation OCR
errors. In most works printed before about 1800 two forms

http://www.loc.gov/standards/mets/
8https://www.loc.gov/standards/alto/

of the lower-case ‘s’ were used. One was the ‘s’ that is still
in use today; the other was the ‘long-S’, a character which
looks like ‘f” without the right-hand part of its crossbar. These
‘long-S’ characters often generate OCR errors where they
are mistaken for ‘f’ characters, resulting in misspellings (e.g.
‘Congress’ misspelled as ‘Congrefs’). Regarding hyphenation,
the OCR scanned text usually preserves the line breaks from
the original paper, which include hyphenated words (e.g. ‘de-
partment’). However, it is still desirable to remove the hyphen
(e.g. department) in order to increase text mining accuracy.
Both techniques are able to detect and fix automatically both
issues, increasing the quality of tokens generated.

sentence

token

Tl

cleaned
token

normalized
token

normalized
token

Fig. 6: Updated defoe NLP pre-processing pipeline.

Finally, after cleaning and normalising each token, we apply
stemming and lemmatisation. Details of other steps of this
pipeline can be found in [4].

C. DCOM: defoe Common Object Model

One of the drawbacks of the previous tool was only being
able to run queries across collections that share exactly the
same XML schemas, and therefore use the same object model.
To remove this barrier and allowing users to run queries
across collections, independently of their XML schemas, we
identified and extracted commonality across the four object
models (see Section IV-A for more details) currently sup-
ported. Following this, we created a new model with these
common attributes. Table I contains a description of each
DCOM attribute and an example of mapping an Encyclopaedia
Britannica page to DCOM.

In order to map digital collections to our new com-
mon object model, we have created a special query called
DCOM_mapping query (see Figure 7). This query ingests
a collection using the appropriate object model (e.g. NLS,
PAPERS, NZPP, ALTO) into Spark RDDs, pre-processes the
text of each of the text units of the collection, maps them
as DCOM objects, and stores them in one of our storage
solutions.

Note that for each of the text units of a given collection,
DCOM_mapping creates a new Spark RDD with a DCOM

%https://digital.nls.uk/encyclopaedia-britannica/archive/193108323#2c=0&
m=0&s=0&cv=71&xywh=-348%2C-499%2C6940%2C5144

Attribute

Description, Options and Examples

Title Title of the collection
Example: Encyclopaedia Britannica
Subtitle Subtitle of the collection
Example: Null
Edition Edition of the collection
Example: Seventh edition,Volume 13, LAB-
Magnetism
Authors Authors related with the collection
Example: Dugald Stewart, Sir James Mackin-
tosh, etc ...
Publishers Publishers of the collection
Example: A. & C. Black
Genre Genre of the collection
Example: Null
Topic Topic of the collection
Example: Null
Year Year of the collection
Example: /842
Place Place of the collection

Example: Edinburgh

Archive_Filename

Path of the collection
Example: ../EB/193108323/

Text_Unit

Unit representing each XML
Options: Page, Article
Example: Page

Source_Text_Filename

Path of each text unit
Example: alto/193202213.34.xml

Text_Unit_ID

Id of the unit
Example: Page72

Text_Unit_Tittle

Title of the text unit (e.g. Article title)
Example: None

Num_Text_Unit

Number of text units of the collection
Example: 810

Type_Archive

Type of archive of the collection
Options: Newspaper, Book, Volume
Examples: Volume

Model

Object model used to ingest the collection
Options: PAPERS, NZPP, ALTO, NLS
Examples: NLS.

Source_Text_Raw

Raw text extracted from each text unit (XML)
Example: 62 LANG Language, having lived ... ,
merely by considering the nature of speech, and
the men- tal ...

Source_Text_Clean

Cleaned text from each text unit (XML)
Example: 62 LANG Language, having lived ...,
merely by considering the nature of speech, and
the mental ...

Source_Text_Norm

Normalized text from each text unit (XML)
Example: lang language having lived ... merely
by considering the nature of speech and the
mental ...

Source_Text_Lemma

Lemmatized text from each text unit (XML)
Example: lang language having ... merely by
considering the nature of speech and the mental

Source Text Stem

Stemmed text from each text unit (XML)
Example: lang languag have live ... mere by
consid the natur of speech and the mental ..

Num_Words

Number of words detected in the
Source_Text_Raw
Example: 71409

TABLE I: Description of DCOM attributes, using examples
from mapping page 72 of the Seventh Edition (Volume 13),
of the Encyclopaedia Britannica ° to DCOM. Note that some
attributes for this example do not have values, as, for this
particular collection, this information is not available in its
original XML files.

object in it. For example, the Volume 13 of the Encyclopaedia

Digital Collections/ Publications

[l
%o
elastic
NLS
NLS Object Model bcom
Collection defoe
P, Ao 1. Data Ingestion
= Object Model 2. NLP Preprocessing Pipeline DCOM
British ! 3. Mapping to DCOM — W%%sdﬂﬂﬂ
N 4. DCOM Storage

B —
PAPER
Object Model

e

NZPP
Object Model

New Zealand

Paper Past
Newspaper

Fig. 7: Overview of DCOM_mapping query, which maps
collections to DCOM and stores them in the selected storage
facility.

Britannica has 810 pages, which means that our query has
generated a list of 810 DCOM-RDDs. Once we have the
collections represented with the same model, we can run
queries across them, independently of their XML schemas.

D. DCOM Storage

The improved version of the tool provides additional solutions
to store digital collections as DCOM objects:

e Hadoop HDFS file system [13]: Very often Apache Spark
and Hadoop Clusters are installed together. Therefore,
Hadoop HDFS is very often used in combination with
Spark applications to write or read data to/from RDDs.

o ElasticSearch engine [14]: This popular engine provides
storing and indexing facilities for structured or unstruc-
tured text, which enables fast searches.

o PostgreSQL (PSQL) database [15]: As a powerful, open
source object-relational database system that uses and
PSQL combines SQL with many features to safely store
and scale data workloads.

These storage solutions bring different benefits to defoe. While
many Spark applications use Hadoop HDF'S for storing RDDs,
PSQL is very popular among researchers. ElasticSearch offers
additional functionalities with text data that complement defoe
very well. We provide support for all of these by exporting
DCOM objects to these formats, allowing users to chose which
storage solution to use depending on their familiarity with
them or availability in their computing facilities.

E. Query Submission and Analyses Types

Initially, defoe only supported on-the-fly analysis, ingesting
and pre-processing data every time a query was submitted, and
limited the analysis (performed in the same query submission)
to collections that share the same XML schema.

We have now enabled defoe to run analyses using the
pre-processed collections previously stored using any of the
solutions listed in Section IV-D. We refer to this feature as
pre-processed analysis, and it enables us to query collections

without the necessity to re-ingest and pre-process data repeat-
edly across different XML schemas.

We have also improved the ability of defoe to run more
than a single query at once. In the presented version, we can
indicate a list with multiple text mining queries that we want
to run using either of the two analyses previously described.
With this new query submission modality, data is ingested
once, and all queries indicated in the list are run against the
data loaded in memory. This modality is very efficient when
we already know what queries will be run on a collection.

F. Integrating the Edinburgh Geoparser

A further important improvement is the integration of defoe
with the Edinburgh Geoparser [16] and spaCy NLP tools for
automatically tagging place names in text and resolving them
to their correct latitude and longitude coordinates or gazetteer
entry. The Edinburgh Geoparser is a language processing
tool designed to detect place name references in English
text and ground them against an authoritative gazetteer, so
that they can be plotted on a map. The available download
on the Edinburgh Geoparser website'® was developed for
contemporary newspaper text but the Geoparser team has also
adapted it to historical [17] and literary text [18].

The geoparser is implemented as a pipeline with two steps:

e geotagging, in which place name entities are identified,
and

e georesolution, which grounds place name entities against
locations contained in a gazetteer.

the available download on our website was developed for
contemporary newspaper text but that the Geoparser team has
also adapted to historical [1] and literary text [2].

With the integration of the Edinburgh Geoparser and spaCY
we have added more ready-to-use text-mining analyses to
defoe, and enabled parallel geoparsing of text data. We also
support two different geoparsing methods by using different
tokenization and NER techniques (the geotagging step above).
These are:

e The original Edinburgh Geoparser for geotagging and

georesolution of historical text.

o Using spaCy for geotagging in combination with Edin-

burgh Geoparser georesolution.

Our aim behind this new functionality was not only to
provide a parallel geoparsing facility, but also to employ
different tokenization and NER techniques. Such re-combining
of techniques helped to develop more accurate geoparsing for
historical text collections.

For each of the previous geoparsing methods, we created
two different queries (original_geoparser for the first
method and spacy_georesolver for the second one).
Both queries work either loading the preprocessed clean stored
text (using Source_Text_Clean attribute - see Table I) or
directly ingesting the collections’ XML files and executing
the queries after the NLP pre-processing pipeline shown in
Figure 6. Next, each query identifies entities by employing

0https://www.ltg.ed.ac.uk/software/geoparser/

a different geotagging technique. Finally, both queries apply
Edinburgh Geoparser georesolution to place name entities.
G. Further improvements

We also improved other aspects of defoe, while we were work-
ing on the use cases presenting in Section VI. For example,
we have doubled the number of text mining queries supported
by defoe, offering now a total of 64. We have developed new
Jupyter notebooks'! for analyzing and visualizing the results
obtained with the new defoe queries.

V. COMPUTE INFRASTRUCTURES

We have run the use cases presented in the next Section VI
with the new updated defoe in two compute environmens:

o Cirrus HPC-Cluster '>: This environment uses a state-
of-the art SGI ICE XA system with 280 compute nodes
with Lustre as the file system and CentOS Linus as the
OS, and Slurm to schedule jobs. Cirrus standard compute
nodes contain two 2.1 GHz, 18-core Intel Xeon E5-2695
(Broadwell) series processors and 256 GB of memory
with support for hyperthreading. This means that we can
use up to 72 processes per node for running defoe. In
our case, we used up to three nodes (216 processes),
depending on the size of the collection to analyse and
the cluster availability.

e Google Cloud Platform ": Offered by Google, it is a
suite of cloud computing services (such as computers and
hard disk drives, or virtual machines (VMs) that runs on
the same infrastructure that Google uses internally for its
end-user products. For this work, we have configured a
Debian VM with 500GB of disk, 96 vCPU and 1.4 TB
of memory.

Since Apache Spark is not available in Cirrus as a module,
we have created a new set of scripts to provision an Spark
Cluster on demand and for a specific period of time within
a slurm job. It starts the Spark master, Spark workers, and
registers all workers with the master '4. We also have created
another set of slurm jobs for running our text-mining analyses
on the provisioned Spark Cluster 1. defoe was installed in our
HOME directory using a conda Python3 environment.

In the case of the Google Cloud Platform, we installed
Apache Spark in the VM along with defoe, also using a conda
Python3 environment. Once again, we have documented the
full installation process '° to provide full reproducibility.

VI. USE CASES

New defoe functionalities have been evaluated using a number
of studies funded by the University of Edinburgh Centre for
Data, Culture & Society (CDCS) Text Mining Lab 7. In

https://github.com/defoe-code/defoe_visualization

Phttps://www.cirrus.ac.uk/

Bhttps://cloud.google.com/

https://github.com/defoe-code/CDCS_Text_Mining_Lab#
1-spark-installation-steps

Bhttps://github.com/defoe-code/CDCS_Text_Mining_Lab/blob/master/
Round2.slurm

16https://github.com/defoe- code/defoe/blob/master/docs/setup- VM.md

Thttps://www.cdcs.ed.ac.uk/cdcs-text-mining-lab-call- projects

these studies, we worked with several humanities and social
science researchers, using defoe to mine the Times Digital
Archive (TDA) newspapers and the NLS collections displayed
in Figure 8.

| Deset | Perlod | Stuctwe | XMLSchema | Space | Model |

I RRLTE TR 1T Gl 1510- ZIP per book METS and ALTO ~220GB ALTO
1899 - XMLmetadata schemas

- XML per page
1714- XML per issue GALEN Schema ~1TB PAPERS
Newspapers (BLN) 1950
Times Digital Archive [ENEES XML per issue GALEN Schema ~324GB PAPERS
(TDA) 2009
Papers Past New 1839- XML per 22 articles XML from a search ~4GB NzPP

Zealand and Pacific 1863 via an AP|

newspapers (NZPP)

Gazetteers of Scotland, 1803- - XML metadata METS and ALTO 4.7GB NLS
1803-1901 1901 - XML per page schema (includ.

Fig)
Encyclopaedia 1768- - XMLmetadata METS and ALTO 46GB NLS
1860 - XML per page schemas (includ.

figs)

(o EN LS IEGEI 17t to - XML metadata METS and ALTO 7.7G NLS
Scotland 19th - XML per page schemas (includ.
Century figs)

Fig. 8: Updated list of digital collections analysed with defoe.
The last three rows are the new additions to this list.

In total, we conducted eight CDCS text mining studies '8.
We are describing three of them in the following subsections.

A. Extracting articles within Encyclopaedia Brittanica

As mentioned before, for each page of the Encyclopaedia
Britannica (see Figure 8) we have an ALTO XML with the
OCR recognized text. However, these do not tell us when an
article of the encyclopaedia starts or when it finishes within
pages. In this study we have focused on extracting the articles
represented in the encyclopaedias, so they can be analysed
independently without the surrounding text.

We have developed a new query, called
extract_articles_eb for this end, which loads
pages directly into memory from one of our storage solutions
(using the Source_Text Clean attribute - see Table I).
Alternative, the query can also ingest the Encyclopaedia
Britannica XML files into memory using the NLS object
Model introduced in Section 5, and to pre-process the text
of each page by applying the updated NLP pre-processing
pipeline (see Figure 6). After the text in each page is cleaned
and loaded in memory, the query detects in parallel the
articles contained within each page by making use of page
headers and text patterns. We have detected two types of
articles with two different patterns at page level:

« Short articles we refer to as ’articles’: Usually presented
by a term in the main text in uppercase, followed by a
“)” (e.g. ACQUEST)) and then a description of the term
(similar to an entry in a dictionary). This description is
normally one or two paragraphs long, but of course there
are exceptions. An example of a page containing ‘articles’
is shown in Figure 9

18https://github.com/defoe-code/CDCS_Text_Mining_Lab

o Long articles we refer to as ‘topics’: In this case, the
encyclopaedia introduces a term in the header of a page
(which is not the case for short articles). A ‘topic’ is
typically described across several pages, often combining
text, pictures, tables, etc. For example, the topic Language
is described across 34 pages. An example of a page
describing the Language topic is available online'®.

Fig. 9: List of ‘articles’ extracted from Page 36 of the First
Edition (Volume 1) of the Encyclopaedia Britannica.

Our query is able to detect both ‘articles’ and ‘topics’, and
classify each page accordingly. An Encyclopaedia Britannica
page can contain just ‘articles’, or a ‘topic’, or can have a
mix of both 2. An Encyclopaedia Britannica page may also
contain information not related to articles, such as the cover
of a volume, preface, tables, figures, etc. Therefore, our query
performs pages classification (‘articles’, ‘topic’, ‘mix’, ‘other’)
depending on the type of articles detected.

Since the aim of detecting articles is to perform further
analyses on them, we have enabled storing the extracted
information in several formats, e.g. files (YAML or CSV) and
in our storage facilities described in Section IV-D.

In summary, the extract_articles_eb query auto-
matically extracts the articles (if any) within pages, along with
metadata, such as the number of articles per page, the number
of words per article, header, and page classification. Figure 9
shows a list of ‘articles’ extracted by our new query using the
example introduced in Section I.

B. Geoparsing the Scottish Gazetteers

The Gazetteers of Scotland ?! is a collection of twenty volumes
of the most popular descriptive historical gazetteers of Scot-
land in the 19th century, providing ‘dictionaries’ of places such
as towns, cities, castles and antiquities. In this study, we have

https://digital.nls.uk/encyclopaedia- britannica/archive/193108323#2c=0&
m=0&s=0&cv=71&xywh=-348%2C-499%2C6940%2C5144

2Onttps://digital.nls.uk/encyclopaedia-britannica/archive/14413390 1#2c=0&
m=0&s=0&cv=99&xywh=37%2C-207%2C3751%2C2780

2l https://data.nls.uk/data/digitised- collections/gazetteers-of-scotland/

applied the new defoe geoparsing functionalities introduced in
Section IV-F to the Gazetteers of Scotland (see Figure 8).

15 Places most mentioned using
the Original Geoparser across all Scottish Gazetteers

12000
V]
!
® 10000 -
o
45 80001
)
2 6000
E
T 4000
[d]
—_
Y= 20001
-
(%] v < T & O o
2 §,§ M§ .g"o g 28> E’.g]
5552 500 g5 &~
S 3w £a oG5 TS DL v
O Qm g < & N
o7 Y B [T, LE > g
wsOg g 2 T g
w = a IS
(7]
o
<
Places
15 Places most mentioned using
SpaCy and the Georesolver across all Scottish Gazetteers
12000
n 4
& 10000
V]
o
o 8000
—
o
> i
O 6000
c
[]
3 4000 4
o
(7]
—
L 20004

(%] cL o v n
23548 gz 2L Lg%
mmka’q,.cw S =STWwW cCc o
Fosfa 2P 05 U8FG
S o o T S h = IS
F6£2 F8 <7 Fgss

G= as 5§70
~ o
Q
<
Places

Fig. 10: Most frequent georesolved locations using both defoe
geoparsing queries

Figure 10 shows the 15 most frequent places names
extracted using the original_geoparser (above) and
spacy_georesolver (bellow) queries from the Gazetteers
of Scotland. Note that the five most frequent locations men-
tioned among both techniques are Edinburgh, Scotland, Glas-
gow, Inverness and Perth. More preliminary results of geop-
arsing the Gagzetteers of Scotland can be found in [19].

Furthermore, we have wused the results of the
original_geoparser query to create an interactive
map for visualising the detected places from the Gazetteers
of Scotland (see Figure 11). For each place name on the map
we have access to snippets of the text where the place name
is mentioned, number of mentions per edition, or population.
For the mapping visualisation we used OpenLayers 22, a
javascript library which allows us to display the place names

22https://openlayers.org/

on a base map (OpenStreetMap in this case). Figure 11 shows
the mentions of Aberchalder in the Gazetteers over a given
period (1802-1845) in the right panel. These also include
a link to the respective page of the digitised edition of the
Gazetteer. Extracted place names that fit the search criteria
but for which no map coordinates are given are listed in the
bottom left. A historic map of Scotland (Arrowsmith, 1807 2%)
is overlayed on top of OpenStreetMap.

:

Fig. 11: Map of Scotland showing placenames starting with
‘aber’ in the Gazetteers of Scotland for the period 1802-1845.
Marker numbers show locations with multiple place names.

While the other two use cases presented in Section VI
were run on Cirrus, this particular use case was run on
Google Cloud. This is mainly because the Ediburgh Geoparser
georesolution needs access to online gazetteers to ground place
names. Cirrus nodes (as many other HPC-Clusters) cannot
directly access the Internet because they have a private IP.
This is not the case for Google Cloud.

C. ‘Scots for the masses’? Exploring the use of Scots in 19th
century digitised Chapbooks

Since the 16th century, Scots has been increasingly influenced
by English, particularly in writing. Written Scots came to be
seen as less appropriate or lucrative for text genres such as
newspapers. On the basis of this, in this study we explored the
use of written Scots in the digitised 19th century Chapbooks
collection 24, to investigate (i) whether Scots survives in the
printed world, and, if so, (ii) in what contexts Scots is used
and how this indicates the status it had as a written medium
during this time.

Scots in print was increasingly rare in this time period,
as printing practices were heavily modelled on English print
culture, with works aimed at the (larger) English audience.
To perform this study, we run five defoe queries (available
at %) across the Chapbooks collection (see Figure 8), using
two lexicons, one for English words, and the other for Scots
words 2. These queries allow us to obtain the frequencies

Zhttps://maps.nls.uk/joins/747 html
24https://data.nls.uk/data/digitised-collections/
chapbooks-printed-in-scotland/
Zhttps://github.com/defoe-code/CDCS_Text_Mining_Lab/tree/master/
Round2_Requirements/Sarah_Lisa#defoe-queries
26https://github.com/defoe-code/CDCS_Text_Mining_Lab/blob/master/
Round2_Requirements/Sarah_Lisa/Lexicon_Scots_English.xIsx

of words in each lexicon by applying two different hit-
counting methods (by page and by term) and grouping the
results by time and by words. Figure 12 shows the normalised
frequencies results (dividing the total instances of terms per
year between the total number of words per year) of four Scots
terms and their corresponding English terms.

Fig. 12: N-grams for visualising the normalised frequencies of
four Scots terms (above): ‘nou’, ‘begg’, ‘goand’ and ‘laird’;
and their corresponding English terms (bellow): ‘now’, ‘beg’,
‘goes’, ‘lord’.

Despite these anglicising pressures, the results obtained
from the previous defoe queries indicate that Scots clearly
had not disappeared from the public eye entirely. Through
defoe, we were able to extract Scots tokens from previously
unmined historical data, but also important metadata attributes
about the text such as genre and place — factors that we
will take into consideration in our analysis of which factors
encouraged or suppressed possible use of Scots in these
publications. To obtain these attributes, we created a new
query, extract_metadata, to extract all the information
associated with this collection (see Figure 13).

Fig. 13: Snapshot of metadata from the first 12 Chapbooks.
We are currently updating the extract_metadata query
to extract metadata in Dublin-Core format [20].

The results indicate that written Scots was still present in
print, but primarily in narrative prose, with a clear preference
for Scots in garlands, humorous material and verse. Thus,
using the results from the defoe queries, we can statistically
analyse the normalised frequency of Scots by chapbook, topic,

genre and author. The notebooks and visualisations 27 were

useful to get an overview of the data, and to do initial
explorations of the results.

VII. CONCLUSIONS

The new defoe functionalities described in this paper enable
us to mine different historical collections more efficiently,
supporting the research of different disciplines such as the
social sciences, history, and computational linguistics. defoe
has been enriched with a larger number of analyses readily
available to users and has also been integrated with further
NLP tools such as the Edinburgh Geoparser. We have also
enabled defoe to run multiple queries at once across digital
collections. We have proposed a new DCOM model to map
collections independently of their XML schemas, and store
them in several storage facilities. We provide support for
analysing both i) XML files (on-the-fly analysis); and ii) pre-
processed data stored (preprocessed analysis). And we have
also created a new NLS object model for ingesting NLS digital
collections and employing new techniques to mitigate more
OCR errors. With all these improvements, we have made
defoe more efficient for searching and analysing large-scale
historical textual data. Most of the current analyses supported
by defoe are keyword searches or frequencies, in which users
can configure several parameters. In the future we plan to
extend this work, and employ more sophisticated analyses by
using more advanced machine learning and NLP algorithms.

VIII. ACKNOWLEDGEMENTS

This work was partly funded by the Data-Driven Innovation
Programme as part of the Edinburgh and South East Scotland
City Region Deal, by the University of Edinburgh, and by
Google Cloud Platform research credits program. The authors
wish to thank Lisa Otty at the University of Edinburgh Centre
for Data, Culture & Society, Mike Bennett at the University
of Edinburgh Library, and Sarah Ames at the National Library
of Scotland for their help and support during this work.

REFERENCES

[11 A. Verheusen, Mass digitisation by libraries: Issues concerning organ-
isation, quality and efficiency., LIBER Quarterly (Issue 18(1)) 28-38.
doi:http://doi.org/10.18352/1q.7902.

[2] M. Terras, Opening access to collections: the making and using of open
digitised cultural content Volume 39 (Issue 5) (2015) 733-752. doi:
10.1108/0ir-06-2015-0193.

[3] M. Terras, The potential and problems in using high performance
computing in the arts and humanities: the researching e-science analysis
of census holdings (reach) project.

URL http://discovery.ucl.ac.uk/171144/

[4] R. Filgueira Vicente, M. Jackson, A. Roubickova, A. Krause, R. Ahnert,
T. Hauswedell, J. Nyhan, D. Beavan, T. Hobson, M. Coll Ardanuy,
G. Colavizza, J. Hetherington, M. Terras, defoe: A spark-based tool-
box for analysing digital historical textual data, in: 2019 IEEE 15th
International Conference on e-Science (e-Science), Institute of Electrical
and Electronics Engineers (IEEE), United States, 2020, pp. 235-242,
2019 IEEE 15th International Conference on e-Science (e-Science),
e-Science 2019 ; Conference date: 24-09-2019 Through 27-09-2019.
doi:10.1109/eScience.2019.00033.

URL https://escience2019.sdsc.edu/

2Thttps://github.com/defoe-code/defoe_visualization/tree/master/Round_2/
Lisa_Sarah

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, 1. Stoica, Apache spark: A unified engine
for big data processing, Commun. ACM 59 (11) (2016) 56-65. doi:
10.1145/2934664.

G. Rockwell, S. Sinclair, Teaching text analysis with voyant, in: 8th
Annual International Conference of the Alliance of Digital Humanities
Organizations, DH 2013, Lincoln, NE, USA, July 16-19, 2013, Confer-
ence Abstracts, Alliance of Digital Humanities Organizations (ADHO),
2013, pp. 21-22.

URL http://dh2013.unl.edu/abstracts/workshops-011.html

A. K. McCallum, Mallet: A machine learning for language toolkit,
http://mallet.cs.umass.edu (2002).

E. Loper, S. Bird, Nltk: The natural language toolkit, in: Proceedings
of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics -
Volume 1, ETMTNLP 02, Association for Computational Linguistics,
Stroudsburg, PA, USA, 2002, pp. 63-70. doi:10.3115/1118108.
1118117.

URL https://doi.org/10.3115/1118108.1118117

M. Honnibal, M. Johnson, An improved non-monotonic transition sys-
tem for dependency parsing, in: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics, Lisbon, Portugal, 2015, pp. 1373-1378.
Google, Google ngram viewer, http://books.google.com/ngrams/datasets
(2012).

URL http://books.google.com/ngrams/datasets

E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H. Witten,
‘Weka: A machine learning workbench for data mining., Springer, Berlin,
2005, pp. 1305-1314.

URL http://researchcommons.waikato.ac.nz/handle/10289/1497

B. Alex, C. Grover, E. Klein, R. Tobin, Digitised historical text: Does
it have to be mediocre?, in: Proceedings of KONVENS 2012 (LThist
2012 workshop), 2012, pp. 401-409.

K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed
file system, in: Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), MSST °’10, IEEE
Computer Society, USA, 2010, p. 1-10. doi:10.1109/MSST.
2010.5496972.

URL https://doi.org/10.1109/MSST.2010.5496972

elasticsearch, elasticsearch/elasticsearch (2015).

URL https://github.com/elasticsearch/elasticsearch

T. P. G. D. Group, Documentation PostgreSQL 10.3 (2018).

C. Grover, R. Tobin, K. Byrne, M. Woollard, J. Reid, S. Dunn,
J. Ball, Use of the Edinburgh Geoparser for georeferencing digitized
historical collections, Philosophical Transactions of the Royal Society
A 368 (1925) (2010) 3875-3889.

URL https://doi.org/10.1098/rsta.2010.0149

B. Alex, K. Byrne, C. Grover, R. Tobin, Adapting the edinburgh geop-
arser for historical georeferencing, International Journal of Humanities
and Arts Computing 9 (1) (2015) 15-35. doi:10.3366/1ijhac.
2015.0136.

B. Alex, C. Grover, R. Tobin, J. Oberlander, Geoparsing historical
and contemporary literary text set in the city of edinburgh, Language
Resources and Evaluation 53 (4) (2019) 651-675, springer Compact
Gold OA. doi:10.1007/s10579-019-09443~-x.

R. Filgueira Vicente, C. Grover, M. Terras, B. Alex, Geoparsing the
historical gazetteers of scotland: Accurately computing location in mass
digitised texts, in: Proceedings of the 8th Workshop on Challenges
in the Management of Large Corpora, European Language Resources
Association (ELRA), 2020, p. 24-30, 8th Workshop on the Challenges
in the Management of Large Corpora, CMLC-8 ; Conference date: 16-
05-2020 Through 16-05-2020.

URL http://corpora.ids-mannheim.de/cmlc-2020.html

DCMI Usage Board, DCMI metadata terms, DCMI recommendation,
Dublin Core Metadata Initiative, published online on December 18th,
2006 at http://dublincore.org/documents/2006/12/18/dcmi-terms/ (De-
cember 2006).

URL http://dublincore.org/documents/2006/12/18/dcmi-terms/

