
Serverless Containers – rising viable approach to Scientific Workflows

Krzysztof Burkata, Maciej Pawlika, Bartosz Balisa, Maciej Malawskia, Karan Vahib, Mats Ryngeb, Rafael Ferreira da Silvab, Ewa
Deelmanb,

aAGH University of Science and Technology, Department of Computer Science, Krakow, Poland
bUniversity of Southern California, Information Sciences Institute, Marina del Rey, CA, USA

Abstract

Increasing popularity of the serverless computing approach has led to the emergence of new cloud infrastructures working in
Container-as-a-Service (CaaS) model like AWS Fargate, Google Cloud Run, or Azure Container Instances. They introduce
an innovative approach to running cloud containers where developers are freed from managing underlying resources. In this
paper, we focus on evaluating capabilities of elastic containers and their usefulness for scientific computing in the scientific
workflow paradigm using AWS Fargate and Google Cloud Run infrastructures. For experimental evaluation of our approach,
we extended HyperFlow engine to support these CaaS platform, together with adapting four real-world scientific workflows
composed of several dozen to over a hundred of tasks organized into a dependency graph. We used these workflows to create
cost-performance benchmarks and flow execution plots, measuring delays, elasticity, and scalability. The experiments proved that
serverless containers can be successfully applied for scientific workflows. Also, the results allow us to gain insights on specific
advantages and limits of such platforms.

1. Introduction

Serverless computing is a general execution model for
distributed applications running on the cloud [1, 2]. In this
model, the responsibility for managing underlying resources
rests solely on the cloud provider, therefore it allows developers
to focus on the user side of development, simplifying the
process of creating, deploying, and running applications.
The serverless architecture supports elasticity and scalability,
meaning it can provision and de-provision many cloud
instances dynamically on the fly, depending on the demand.
These features of serverless computing make it an attractive
execution model for scientific workflows. Such workflows
usually consist of multiple stages, each of which may contain
from several to even thousands of tasks, thus elasticity is
a key requirement. The last important serverless feature is
its fine-grained pay-as-you-go pricing model wherein users are
only charged for what they actually use with typical accuracy
of 100ms. Usually, the cost is calculated as the amount of
used resources (e.g., memory) multiplied by the amount of
execution time units and by the price per execution time unit.
This approach frees developers from manual management of
resource allocation and can save money in comparison to on-
premises infrastructure.

A prime example of serverless approach is Function-as-a-
Service (FaaS) model. In this model, developers write single-
purpose functions in various programming languages, which
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are then deployed onto cloud platforms and can be triggered by
specified events to perform a specified action. It is therefore
an event-based architecture. FaaS is sometimes refereed as
serverless because of its simplicity and elasticity. Most popular
FaaS implementations are AWS Lambda1, Google Cloud
Functions2, Azure Functions3, and IBM Cloud Functions4.
All of them can execute binary code, which makes them a
viable choice for general purpose computing tasks that form
a scientific workflow.

Another, relatively new in cloud computing, model is
Container-as-a-Service (CaaS). Its main feature is the
utilization of a container-based virtualization. In comparison to
FaaS, CaaS adds additional layer in a form of a container, which
bundles user applications. The container is deployed onto the
cloud platform and when triggered, container instances are
provisioned and de-provisioned on the fly depending on current
demands. Container wrapping adds additional complexity,
but it also gives more capabilities for configuring runtime
environment and executing applications. AWS Fargate, Google
Cloud Run, and Azure Container Instances are the main
examples of such elastic containers. Similarly to FaaS, CaaS
can be utilized for scientific workflow executions, as we show
here.

In this paper, our goal is to determine usefulness of a Container-
as-a-Service model for executing scientific workflows on a
CaaS, such as the Fargate or Cloud Run services. We also

1https://aws.amazon.com/lambda/
2https://cloud.google.com/functions/
3https://azure.microsoft.com/en-us/services/functions/
4https://cloud.ibm.com/functions/

Preprint submitted to Elsevier October 23, 2020

ar
X

iv
:2

01
0.

11
32

0v
1 

 [
cs

.D
C

] 
 2

1 
O

ct
 2

02
0



aim to characterize their capabilities and possible challenges.
We present an experimental evaluation using the HyperFlow
workflow engine [3] and four real-world scientific workflows
that execute on these infrastructures.

The main contributions of the paper are threefold:

• We discuss the advantages and limitations of serverless
containers and their application to scientific workflows.

• We extend the HyperFlow workflow engine to support
Fargate and Cloud Run services.

• We evaluate the proposed approach using four real-life
scientific workflow applications of various characteristics
and measure the performance of the container platforms.

To our best knowledge this paper is the first attempt to
use serverless containers for scientific workflows and also
the first performance evaluation of the Fargate and Cloud
Run platforms. Note that our main focus is not to simply
compare these platforms as they may evolve, but rather
show their general features and limitations when running
scientific workflows. Additionally, we show how serverless
containers may complement other existing serverless services
(e.g., Lambda) in a hybrid approach.

The structure of the paper is as follows: in Section 2 we
give an overview about recent developments regarding using
serverless services for scientific workflows. Next, in Section 3
we discuss in detail the challenges related to adapting scientific
workflows to serverless platforms and various potential models
of execution. Section 4 presents our approach to these
challenges, which utilizes the HyperFlow engine with Fargate
and Cloud Run services. In Section 5, we present the results of
workflow execution along with cost-performance benchmarks.
Section 6 concludes the paper, and identifies directions for
future research.

2. Related Work

In our earlier work, we conducted an evaluation of serverless
cloud functions with scientific workflows [4] on AWS Lambda
and Google Cloud Functions using HyperFlow, a lightweight
workflow engine. Another more advanced solution was
introduced in [5] where the authors combined IaaS and FaaS
models in their DEWE workflow engine to show the benefits
of such a hybrid approach. In [6] and [7], we presented
a performance evaluation of major cloud function providers:
AWS Lambda, Azure Functions, Google Cloud Functions, and
IBM Cloud Functions by running various benchmarks on these
infrastructures. All the works referenced above were focused
on cloud functions, while in this paper we address serverless
containers, which provide different capabilities and require a
different approach.

Much work had been done in the area of workflow scheduling
in the cloud. One approach is Deadline-Budget Workflow
Scheduling (DBWS) [8], a heuristic scheduling algorithm
which takes into account two constraints – time and cost. In [9],

we improved this algorithm for serverless infrastructures.
Another serverless-based approach is presented in [10] where
the authors leverage Fargate service and producer-consumer
pattern to introduce a fully serverless and infinitely scalable
architecture. An interesting discussion of resource allocation
for multi-tenant serverless computing platforms is given
in [11], where the authors focus on workload fluctuations and
performance degradation in these platforms and propose CPU
cap control heuristic as a remedy.

There are many approaches to a way of executing workflows,
especially considering various infrastructures. In [12], Mesos
and Makeflow are utilized to connect workflow system to
container-based schedulers. There are also more advanced
execution environments. Examples include Skyport [13] –
container-based workflow orchestrator; and Endofday [14] –
a workflow engine that orchestrates a directed acyclic graph
(DAG) of science applications on containers. A more general
and scalable solution to workflow execution is provided by the
Pegasus Workflow Management System [15, 16], which goal
is to map abstract workflow descriptions to various distributed
computing infrastructures. However, all these approaches
rely on on-premise or cloud-based clusters, not on serverless
container platforms as we do here.

Although serverless capabilities are still a relatively new
paradigm in cloud world, there are many potential applications
for such environments. A prime example comes from
the video industry where the need for compute power is
enormous [17]. These applications also need low-latency
and massively parallel video processing systems utilizing
cloud function services [18]. Another example comes from
the seismic imaging use case [19], where an event-based
serverless architecture is presented. Other examples include on-
premises serverless computing for event-driven data processing
applications [20] or a framework for the management of the
Internet of Things devices based on the serverless computing
paradigm [21]. All these approaches use FaaS, while we focus
on CaaS model.

None of the aforementioned related work considers utilizing
serverless containers for running scientific workflows and we
have not found any other works with substantial research on
this topic. In this paper, we address this interesting research
matter.

3. Scientific Workflows in Serverless Clouds

In this section, we present serverless clouds on the example of
Lambda, Fargate and Cloud Run, and discuss their implications
for resource management in scientific workflows.

3.1. Serverless Clouds

Serverless computing is an execution model, where the cloud
provider is responsible for allocating server-side resources
dynamically, which can be used by users. This model puts
emphasis on the business side of development, simplifying
the process of creating, deploying, and running applications

2



by freeing programmers from having to maintain servers. In
addition, the serverless architecture supports scalability and
elasticity which means that developers do not need to manage
auto-scaling policies.

In the FaaS model, developers are provided with a platform
where a piece of code known as single-purpose function can
be written, deployed, and later triggered by events. Usually
the set of supported languages is limited by the execution
environment over which users do not have control. At most
users can use package managers to install custom libraries,
but in some situations, this solution is not sufficient. When
deployed, the cloud functions can be raised by an event from
cloud infrastructure or direct HTTP request. The functions
are very elastic, they can adapt to changing workload (number
of events of requests) by provisioning and de-provisioning
resources on the fly. The number of running function instances
can vary from several to thousands. The pricing model usually
depends on number of requests and compute time and differs
between various cloud providers.

In container-based virtualization, users are provided with
a platform where the unit of execution, a container, can
be managed and deployed. Such containers can be later
triggered by a proper API, and when it happens, they are
provisioned and de-provisioned at runtime depending on the
changing workload, and underlying resources are managed
automatically. In this container-based solution developers have
full control over the execution environment in the container thus
they can choose any operating system, libraries, or preferred
programming language. They also define a starting point for
the container. The price is usually calculated based on the CPU
and memory resources used per unit of time.

Table 3.1 shows key differences between serverless services
we used for our experiments. We can see that even though
Cloud Run is based on containers, it has similar limits to
Lambda which works in FaaS model. On the other hand,
Fargate is more robust in terms of limits, but it comes at a
price of reduced parallel executions as compared to Lambda
and Cloud Run. From this table, we can conclude that the main
CaaS advantage is the additional deployment (e.g., execution
environment) capabilities.

3.2. Implications for Resource Management

As we can see from Table 3.1, using serverless containers
(such as Fargate or Cloud Run) has some advantages over
cloud functions (such as Lambda), but there are still important
questions and decisions regarding resource management of
workflows when using these infrastructures. We discuss these
issues below.

How to map tasks to containers
Serverless container platforms such as Fargate or Cloud
Run provide higher level of abstraction for their users than
traditional clusters with container support (either on-premise,
or cloud based), using Docker or Kubernetes. When running
workflows on non-serverless clusters, the user or the workflow

management system is responsible for provisioning physical or
virtual machines on which the containers are executed. Finding
the right size of such a cluster is non trivial for the workflows
where the resource demands varies during execution, e.g.
when a highly parallel stage with many tasks is followed
by a reduction phase with a small number of tasks. Auto-
scaling of such clusters is possible, either at the level of VMs
or containers, but non trivial [22]. In contrast, serverless
containers take care of automatic resource provisioning and
auto-scaling of the underlying cluster, so the workflow system
does not need to deal with these problems.

Workflow
Engine

...Worker
Process

Worker
Process

Cluster of containers

Q
ue

ue ...

Workflow
Engine

Container
Task

Container
Task

Serverless container platform

Create
and run

...

Figure 3.1: Execution models of workflow tasks on containers

There is still, however, a design decision on how to map the
workflow tasks to containers. When running workflows on
clusters or clouds, a workflow management system (WMS)
typically runs a set of processes on the worker nodes, which
communicate with the WMS via a queue and fetch the tasks
ready for execution. For instance, this is the case for Pegasus,
which uses Condor daemons to execute tasks. The same
model is used by HyperFlow in IaaS cloud setup, where
RabbitMQ is used as a queue and AMQP-Executor processes
are running on the worker nodes, one per each VM in the
cloud. In such model, one worker can execute multiple tasks
during its lifetime, and the queue provides the load-balancing.
This model is shown in Fig. 3.1 on the left. Although this
approach can be easily implemented for serverless containers,
as the worker code can be simply reused, there are no benefits
of the serverless computing model. If the container is a
long-running service, we have to decide when to spawn and
terminate it, so the auto-scaling decisions need to be made
on the client-side to avoid under- or over-provisioning. On
the contrary, the pure serverless model, as shown in Fig. 3.1
on the right, does not require a queue, and assumes a one-to-
one task to container mapping, where for each task a separate
container is spawned and then de-allocated after the task is
complete. At first it seems naive, but such a mapping greatly
simplifies the design (tasks isolation) and fully leverages the
capabilities of the serverless computing model, where the cloud
infrastructure is responsible for resource provisioning. We
can say in other words that instead of implementing our own
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Table 3.1: Comparison of chosen cloud services.

AWS Lambda AWS Fargate Google Cloud Run

Execution environment Amazon Linux User defined User defined

Supported languages Java, Python, Node.js, Go,
Ruby, C#

Depends on execution
environment

Depends on execution
environment

Memory allocation From 128 MB to 3008 MB From 0.5 GB to 30 GB From 128 MiB to 2 GiB

CPU allocation Automatic (AWS controlled) From 0.25 to 4 virtual cores From 1 to 2 virtual cores

Disk space 512 MB 10 GB Uses memory

Maximum execution time 900s No limit 900s

Maximum parallel
executions 1000 100 1000

Deployment unit Zipped code Container Container

queue and autoscaling mechanisms, we rely on the autoscaling
(provisioning) provided by the serverless infrastructure, and
also on its internal queue which is used for buffering multiple
requests transparently. Such a mapping also mitigates resource
contention within a container (too many tasks running in one
container) and yields more deterministic execution times. On
the other hand, it has additional cost of container startup
overhead for each task, which we measure in Section 5,
showing that it is non-negligible, but not prohibitive for most
of the use cases.

Which tasks to run on cloud functions and which on containers
Despite many advantages of serverless containers over cloud
functions, the latter model has clear advantages for some
classes of workflow tasks. As cloud functions such as Lambda
have a highly elastic provisioning model, i.e. they can spawn
thousands of tasks almost immediately, they are well suited
for short running tasks with high parallelism. Which size of
a task is right for Lambda and which for Fargate or Cloud
Run depends on the execution limits (as stated in Tab. 3.1)
and overheads of these specific infrastructures, and we measure
them in our experiments described in Section 5.

How to allocate CPU resources to tasks
Fargate, Lambda, and Cloud Run, as other serverless platforms,
provide control over CPU allocation to the computing tasks.
In Lambda, the CPU share is proportional to the allocated
RAM, while in Fargate and Cloud Run it can be adjusted within
limits range (see Tab. 3.1). It means the important resource
management decisions that influence time and cost of workflow
execution are left for the user. As these decisions are non-
trivial, they can be subject to scheduling research, and we have
started the work on these problems, see [9]. Extending this
scheduling work to serverless containers is beyond the scope
of this paper, but the first step is to evaluate the performance
of serverless containers in this platform, on which we report in
Section 5.

4. Experimental Framework

Most of the existing scientific workflows are not designed to
work in the elastic, container-based clouds. In order to run them
there, they must be properly adapted beforehand. In this work,
to evaluate our approach to workflows on serverless containers,
we have developed such an adaptation for Fargate and Cloud
Run services. Our solution is implemented as an extension to
the HyperFlow engine.

4.1. HyperFlow

HyperFlow is a model of computation, programming approach,
and enactment engine for scientific workflows [3]. It is
the engine implemented in a scripting language – JavaScript,
which enables users to run scientific workflows in distributed
computing infrastructures. The model of computation utilized
by HyperFlow is based on Process Network family which has
simple and concise syntax. Moreover, workflows are described
as graphs in the JSON format with nodes representing workflow
activities (jobs) and edges representing exchanged data.

Thanks to the simplicity and expressiveness of workflow
description, users can define and run complex workflow
patterns. When HyperFlow parses a workflow, it recognizes
all activities with their corespondent arguments to execute.
It also supervises the order of execution and waits until all
dependencies of a given activity are met. After that, it calls
the Function defined by the user (or predefined one), which is
an entry point for executing the actual scientific task related
to a given workflow activity. This gives the flexibility as
to how and when a given activity should be executed. The
entry point functions can orchestrate execution of tasks on
various distributed resources as shown in Figure 4.1. Each
function can handle different kinds of execution. Thanks to
that, various cloud computation models like FaaS or CaaS can
be successfully applied.

4
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Figure 4.1: Architecture diagram of HyperFlow engine, where each task in a
workflow is handled by calling a function, which can process it internally or
delegate execution to an external service.

4.2. Preparing the Workflow
Before running any workflow, we need to have its
representation in some format like JSON or XML. We chose
the JSON format because it is supported by HyperFlow and
because it has an easy to understand structure (name-value
pairs).

To generate the workflows, we developed a set of scripts that
have a recipe for the entire workflow – it consists of all the
dependencies between workflow’s tasks. Besides that, the
scripts take various arguments that determine the final structure
of the workflow (e.g., number of tasks).

For some scientific workflows there are already dedicated
generators. This was the case for some of the workflows
included in our test suite. The problem was that those
workflow descriptions used the XML-based DAG format from
Pegasus (DAX). Fortunately, HyperFlow includes converters
which allowed us, with small corrections, to transform XML
documents to JSON format.

4.3. Extending HyperFlow for Serverless Containers
The HyperFlow engine provides support for executing
workflows on real cloud services, like Lambda. It also serves
as a buffer if many tasks are requested and provides retry
mechanism (for each individual task). In order to execute tasks
on Fargate or Cloud Run, we have extended the engine with
additional capabilities to support the aforementioned systems.
In Figure 4.2, we present the proposed solution framework,
which has four key components:

1. The HyperFlow engine – it is responsible for parsing
the workflow representation and handling the execution
order with parallelization.

2. Functions – they are a kind of intermediary between
HyperFlow engine and cloud services. After being
called by the engine, their responsibility is to create job
execution requests and delegate them to the cloud via
proper API. They also await the completion of the job
execution, and collect metric logs from the cloud storage.

3. Handlers – their responsibility is to run a given job on
the cloud platform. They download all files needed for
job execution from cloud storage and execute them with

proper arguments. Upon completion, they upload all
generated data and metrics to the cloud storage.

4. Storage – we used cloud provider’s storage to share data
between tasks and collect performance metrics.

HyperFlow Cloud Provider (Google/AWS)

Cloud Run
Function

AWS 
Lambda
Function

HyperFlow
Engine

AWS 
Lambda
Handler

Cloud Run
Handler

Storage
(S3/Cloud
Storage)

data
transfer

poll

call/job
done

data
transfer

AWS
Fargate

Function

AWS 
Fargate
Handler

data
transfer

call/job
done

call/ job
done

Figure 4.2: Proposed solution framework.

For the purpose of our experiments, we created Fargate and
Cloud Run Functions along with their Handlers, implementing
the one-to-one task to container mapping as the execution
model discussed in Section 3.2. We have also extended some
capabilities of Lambda Function and its Handler, by adding
support for execution time metrics, running JavaScript files as
workflow tasks, and support for Java-based tasks. With these
extensions, HyperFlow can run workflows in which tasks can
be executed on Lambda, Fargate, or Cloud Run.

4.4. Running Jobs on Serverless Containers

Fargate and Cloud Run Handlers execute workflow jobs on
Fargate Service and Cloud Run Service, respectively. They can
execute various binaries in a container image in the cloud. In
this paper, we created three types of container images for the
handlers:

• Ubuntu Image – Ubuntu based image with Node.js
runtime environment. It can execute custom binary files
and JavaScript files.

• Fedora Image – Fedora based image with
Node.js runtime environment and specific libraries (e.g.,
Mixmod, OpenBLAS, LAPACK) configured for one of
the tested applications.

• Ubuntu Image with Java – Ubuntu based image with
additional support for Java Archive (.jar) files.

The decision of which container image to use is made based
on Function configuration, which was decorated with mapping
between tasks and container images. The Function then creates
a request for job execution on a given container image and sends
it via proper API. Next, cloud provider provisions resources
for the container and starts it. The container executes the job,
uploads results files and metrics to cloud storage, and ends its
work. Then, the cloud provider automatically de-provisions the
container and its resources.
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Figure 5.1: Structure of the Ellipsoids workflow.

5. Experiment Results

In our experiments we evaluate two major recently made
available services from Amazon and Google: Fargate and
Cloud Run, using four scientific workflows: Ellipsoids, Vina,
KINC and Soy-KB. They were selected for evaluation since
each of these workflows differs in terms of structure and
resource requirements and they represent typical classes of
workflows, including CPU- and data-intensive tasks. We also
tested various environment setups, changing the amount of
allocated memory and CPU for a given experiment. The
objectives of the experiments were to:

• Compare the performance of Fargate and Lambda.

• Compare Cloud Run and Fargate limits.

• Evaluate the hybrid approach that uses both FaaS and
CaaS models simultaneously.

The experiments were performed on cold start if not stated
otherwise. Also both Fargate and Lambda were using a cache
for container images.

5.1. Fargate vs Lambda Comparison

We used Ellipsoids and Vina workflows to test and compare
Fargate and Lambda services. The Ellipsoids application [23,
24] was created to simulate dense packing of ellipsoids in a
given space, whereas AutoDock Vina [25] is an open source
application for molecular docking. Both workflows consist of
relatively fine-grained compute-intensive tasks (see Figs. 5.1
and 5.2) which could be executed on both Fargate and Lambda.

Figures 5.3 and 5.4 present the average execution time of the
dominating task group (the group of tasks which takes most of
the CPU time – ellipsoids-openmp and vina tasks, respectively)
in each workflow for both cloud services. For Lambda, we
measure the average time for several memory configurations,
while in the case of Fargate we check various vCPU/memory
setups. Here and in all following Figures, setup means the time
duration between scheduling a task in HyperFlow, and starting
it in the container image (handlers). The time from starting

wrapper

vina

vina split

Figure 5.2: Structure of the Vina workflow.
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Figure 5.3: Ellipsoids: ellipsoids-openmp task average execution time.

the task until its completion is execution. When comparing
runs with similar memory configurations, we can clearly see
that Lambda is faster than Fargate. This is due to an overhead
imposed by starting the Fargate container, which can take up to
60 seconds. This markup could be especially unfavorable for
small tasks which execute in a matter of seconds. Apart from
that, the Fargate container runtime also consumes some of the
underlying resources like RAM or CPU time, which negatively
impacts overall performance of tasks.

Figures 5.5 and 5.6 show the entire cost of the workflow
executions for various configurations. The cost was calculated
for the EU - Ireland region, where we conducted all our
experiments. Lambda is charged for each started 100ms of
execution – the price depends on the amount of allocated
memory (CPU is allocated automatically by AWS); Fargate
charges for each started second of execution – pricing is based
on requested vCPU and memory resources for the task. A
minimum charge of 1 minute applies. The Lambda cost for
various memory configurations is similar. More expensive
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Figure 5.4: Vina: vina task average execution time.
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Figure 5.5: Ellipsoids: whole workflow run cost.

setups are compensated by faster execution time. It confirms
if the task is CPU intensive, it is better to pick the best Lambda
configuration [4, 7]. This is not the case for Fargate, where there
is minimum memory limit for each vCPU value. Considering
our tasks are CPU sensitive, this means we have to pay for
the memory even though it does not improve performance. In
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Figure 5.6: Vina: whole workflow run cost.

addition, adding more vCPUs after some threshold does not
significantly improve performance. We can draw a conclusion
that Fargate is not best suited for small-grained, low memory
tasks. In this case, Lambda will perform better. On the other
hand, we must recall that Fargate does not have constraints like
the time limit of the execution task and we can allocate many
more resources such as memory or disk space.

5.2. Fargate vs. Cloud Run Limits

In our next experiment, we used the OSG-KINC workflow
to determine two important serverless features – elasticity
and scalability of Fargate and Cloud Run Services. OSG-
KINC workflow [26], is a software to build a similarity matrix
representing correlation analysis of all pairwise comparisons
of genes/transcripts in a gene expression matrix. It is a data-
intensive workflow that is configured to run KINC – Knowledge
Independent Network Construction using Pegasus on the Open
Science Grid. Its main characteristic is that it has only one type
of task, but potentially many of them, reaching thousands (see
Fig. 5.7). Thus it is a good candidate to measure elasticity
of cloud services. Moreover, the size of input data (genetic
sequences in the size of gigabytes) prohibits running them
on AWS Lambda. We transformed the workflow format so
that it could be executed by HyperFlow and packaged it into
containers.

We run the KINC workflows of 4 sizes (100, 300, 500 and 1000
tasks), repeating each execution 10 times. Figures 5.8 and 5.9
show examples of execution charts of workflows with 200
KINC tasks for both services. We can note that execution time
on average is slightly longer on Cloud Run. This is because
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Figure 5.7: Structure of the KINC workflow.
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Figure 5.8: OSG-KINC on Cloud Run: chart.

Fargate had faster physical cores (∼2.9 GHz) than Cloud Run
(∼2.35 GHz) in our experiments.

With Cloud Run execution (Figure 5.8) there were not any
significant issues or delays. Some individual tasks took more
time for setup (blue line) due to waiting for container spawning.
Figure 5.10 presents the average execution time with distinction
between setup and execution time for various tasks amount. We
can notice that only for 1000 tasks the setup time is longer on
average than for smaller amount of tasks, it takes longer for
Cloud Run scale-up the infrastructure for so many tasks.
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Figure 5.9: OSG-KINC on Fargate: flattened Gantt chart.
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Figure 5.10: OSG-KINC: kinc task average execution time.

Figure 5.9 shows an example flattened Gantt chart for the
Fargate execution. Although all tasks were spawned by the
HyperFlow all at once, Fargate did not start them straightaway.
There are two explanations for this:

• The first issue is related with Fargate limits. We cannot
start more than 100 tasks at a given moment. After firing
the first 100 tasks, we need to wait for some tasks to
complete before going further.

• The second observation, which is more interesting, is
related to the Fargate burst rate. If we take a closer look
at the chart, we can see that the first 100 tasks did not start
at the same time. Although the task limit is set to 100, we
could not burst running tasks from 0 to 100 at once. After
some point, we started obtaining ThrottlingException:
Rate Exceeded errors when submitting tasks. After this
error, we had to wait for some time and retry it in
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Figure 5.11: OSG-KINC: AWS Fargate burst rate.
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Figure 5.12: OSG-KINC: Cloud Run burst rate.

a repeatable manner. At the moment, AWS does not
specify any details or limitations related to this problem.
We have then decided to check whether this issue is
somehow related to the chosen configuration.

Figure 5.11 presents the measured burst rate from 10 executions
on each configuration as a scatter plot. Note that we jittered
the points because some values were overlapping. On average,
the burst rate for all setups is about 38 tasks. It demonstrates
that the problem is not related with the amount of resources but
rather with some limitation of AWS API. This is unfortunate
because from a serverless service like Fargate we would expect
a high level of scalability and elasticity.

We performed similar measurement for Cloud Run shown in
Figure 5.12. However, this time we observed that with each
consecutive run we are able to handle more and more tasks all
at once (beginning with cold start, later without it). This is

surely affected by different design choices behind Cloud Run
where the containers are more lightweight in comparison with
Fargate. In addition, Cloud Run containers are expected to
expose server endpoint which handles requests (tasks) and be
reusable after execution (statelessness). It makes them more
suitable as serverless solution in some situations, but comes at
a price of smaller resource pool and maximum execution time
limit.

5.3. Hybrid Approach – Fargate and Lambda

In our last experiment, we evaluated the Soybean Knowledge
Base [27], an application used for in depth analysis of the
genotypic data of soybeans. It sequences large sets of
germplasm in crops in order to detect genome-scale genetic
variations. The results of this analysis can be used to better
understand and study various traits for the improvement of
crops by design.
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Figure 5.13: Structure of the SoyKB workflow.

The main distinction of SoyKB workflow from others is its
complexity. It has many stages and the number of tasks
spans from tens to thousands depending on the given case and
configuration (see Fig. 5.13). Also, the task execution times
are quite different, depending on the stage and given input. We
wanted to find out how well Fargate can cope with such big
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workflows and determine whether a hybrid approach of using
both CaaS and FaaS services simultaneously is feasible.

Figure 5.14 shows the results of the hybrid execution. With
HyperFlow engine, we managed to use Lambda and Fargate
concurrently. Lambda runs small-grained tasks; software-
wrapper, sort sam, dedup, and add replace. The remaining
tasks are executed on Fargate. Thanks to this approach,
we obtained results from small-grained tasks in a matter of
seconds. On the other hand, Fargate handled more demanding
tasks which exceeded Lambda limits. The same could be
achieved with our own cluster of running machines (e.g.,
Amazon EC2), but it would require additional work to setup
the infrastructure.
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Figure 5.14: SoyKB: flattened Gantt chart.

This experiment demonstrated that hybrid approach is feasible
and it can be quite effective. Both services complement each
other quite well. We have also demonstrated that Fargate can be
utilized for workflows with more variety in task requirements,
especially those workflows which include long running tasks.
Of course final decision on what to use also depends on services
limits. For example, Cloud Run at the moment does not allow
enough memory for a container to handle large tasks from this
workflow.

6. Conclusions and Future Work

In this paper, we introduced the serverless containers on the
example of AWS Fargate and Google Cloud Run, as a new
viable option for running scientific workflows. We have
discussed the execution models for workflow tasks on this type
of infrastructure, and compared it to traditional models as well

as to cloud functions on the example of AWS Lambda. Then,
we implemented the one-to-one task to container mapping,
as the execution model which takes most advantages of the
pure serverless infrastructure. Thanks to this approach, the
user (or the workflow management system) does not need to
make complex auto-scaling decisions and worry about over-
and under-provisioning. Up to our knowledge, this is the first
report on running container-based scientific workflows in a
fully serverless model.

Our experiments with the implementation based on HyperFlow
engine, and four real-world workflows using the two
leading cloud providers (Amazon and Google), confirmed the
applicability of serverless containers services for scientific
workflows and specific advantages of such platforms. They
include the possibility to deploy own container images with
scientific software, no execution time limits, and disk and
memory quotas sufficient for our applications, including a
data-intensive genomics workflow (SoyKB). We confirmed
the current scalability limits for Fargate and Cloud Run and
observed the expected speedup proportional to the allocated
vCPU share. On the other hand, we observed that currently
Fargate introduces a container setup overhead of about 60
seconds, and that the API has a throttling limit, which prevents
large bursts of concurrent tasks (currently between 30 and 50
requests). On Cloud Run these issues are less severe, but there
are other constraints in the form of execution time limit or
smaller resource pool.

Regarding the price and performance comparison of serverless
containers and Lambda, it turns out that Lambda is more cost-
efficient for compute-intensive tasks, provided they fit into
the resource limits of Lambda. In general, using serverless
containers is not recommended for tasks shorter than several
minutes, since the setup overhead becomes prohibitive for
smaller tasks. A general conclusion is thus to use a hybrid
approach, because it takes the best properties from both CaaS
and FaaS models (see Table 6.1). As it was shown in
Section 5.3: use Lambda for all the tasks that fit into resource
limits, and the others that are either too long, too heavy in terms
of disk/memory or require more complicated software setup
with a custom image, should be run on Fargate or Cloud Run.

We claim that our work is general for other serverless
computing platforms, as the services from other providers
such as Azure Serverless Containers have similar properties
to Fargate and Cloud Run. This still needs to be properly
evaluated, and is the subject of our future work. There
are also other new platforms to manage modern serverless
workloads such as Knative5, Kubeless6, or OpenWhisk7 which
could be worth researching. In our evaluation, all the tasks
within a single workflow were run on the containers of the
same size, whereas future research focuses on development
of scheduling algorithms for scientific workflows based on

5https://knative.dev/
6https://kubeless.io/
7https://openwhisk.apache.org/
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Table 6.1: Comparison of evaluated cloud service models.

CaaS FaaS Hybrid

Serverless Serverless Serverless

Runs containers Runs functions Runs containers and
functions

Scalable Well-scalable Well-scalable

Moderate quotas limits Major quotas limits Moderate quotas limits

Minor execution time limits Major execution time limits Minor execution time limits

the performance evaluation we conducted here. Moreover,
our prototype implementation based on HyperFlow needs to
be extended for production use and ported to other workflow
management systems, including Pegasus.
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