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Abstract—Video streaming became an undivided part of the
Internet. To efficiently utilise the limited network bandwidth
it is essential to encode the video content. However, encoding
is a computationally intensive task, involving high-performance
resources provided by private infrastructures or public clouds.
Public clouds, such as Amazon EC2, provide a large portfolio
of services and instances optimized for specific purposes and
budgets. The majority of Amazon’s instances use x86 processors,
such as Intel Xeon or AMD EPYC. However, following the
recent trends in computer architecture, Amazon introduced Arm-
based instances that promise up to 40% better cost performance
ratio than comparable x86 instances for specific workloads. We
evaluate in this paper the video encoding performance of x86 and
Arm instances of four instance families using the latest FFmpeg
version and two video codecs. We examine the impact of the
encoding parameters, such as different presets and bitrates, on
the time and cost for encoding. Our experiments reveal that
Arm instances show high time and cost saving potential of up to
33.63% for specific bitrates and presets, especially for the x264
codec. However, the x86 instances are more general and achieve
low encoding times, regardless of the codec.

Index Terms—Amazon EC2, Arm instances, AVC, Cloud
computing, FFmpeg, Graviton2, HEVC, Performance analysis,
Video encoding.
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I. INTRODUCTION

Multimedia streaming content [4f], such as live and on-
demand video and audio streams, is responsible for most
Internet traffic today. Unfortunately, the Internet network con-
nectivity can significantly change over time depending on
many factors, such as client location, network congestion, or
end-user device [27], [38]. The widely-used HTTP Adaptive
Streaming (HAS) technology [30] encodes video content, di-
vided into small segments, in multiple bitrate-resolution pairs
to adapt to varying bandwidth fluctuations. Using HAS, a
video segment reaches clients at different bitrate-resolution
pairs for optimized quality of experience, depending on its
network characteristics and technical capabilities (e.g., view-
ing device, video player) [10]. Additionally, a number of
HAS implementations are codec-independent [30] and allow
providers to choose from a set of codecs for video encod-
ing, including Advanced Video Coding (AVC) [35], High-

Efficiency Video Coding (HEVC) [31], VP9 [28], AOMedia
Video 1 (AV1) [12], and Versatile Video Coding (VVC) [9].

Creating segments of a single video encoded with different
parameters (e.g., bitrate, resolution) for adaptive streaming
is a computationally-intensive process that requires expen-
sive high-performance computers or cheaper cloud resources
rented on-demand [20]], [34]. For example, Amazon EC2
provides different instance families optimized for specific pur-
poses [24]], such as the balanced general purpose m instances,
the compute-optimized c instances, the memory-optimized r
instances, and the burstable t instances. To further optimize
video encoding workloads at a convenient price, leading video
encoding companies such as Bitmovin (https://bitmovin.com)
combine on-demand instances with EC2 Spot instances for
video encoding [1]. Nevertheless, choosing cloud instances
for thousands of encoding tasks is critical and can strongly
influence the costs for the video service providers [1]], [19].

Recently, Amazon launched their second generation Gravi-
ton Arm-based processors. Graviton2 is a 64-core monolithic
server chip that uses Arm’s new Neoverse N1 cores, which
is a derivation of the mobile Cortex-A76 cores. With the
second generation of Graviton, Amazon EC2 promises higher
performance at a lower cost compared to conventional x86
instances. According to Amazon, Graviton2 instances, such
as m6g, c6g, r6g and t4g, provide up to 40% better price
performance over comparable instance types with Intel Xeon
processor for video encoding tasks [3].

In this paper, we analyze the video encoding performance
of EC2 instances based on the Graviton2 Arm and the x86
processors using four instance families optimized for different
purposes. As Graviton2 processors are relatively new and its
software support is continuously improving, we conduct all
experiments using FFmpeg [5] employing the following video
codec implementations:

a) x264 codec: (H.264/AVC compression format) sup-
ported by the majority of end-user devices on the market [37].
b) x265 codec: (H.265/HEVC compression format) for
further in-depth analysis with the newest FFmpeg version 4.3.

The main contributions of our work are:

« We evaluate the relative video encoding time and cost
differences between and x86 and Arm instance families;

o We identify the fastest and cheapest instance types among
all instances of the same processor architecture.

« We provide a reference table indicating our recommendation
for the fastest and cheapest encoding options for each
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instance family, preset, and bitrate.

The paper is organized into six sections. Section [[I| dis-
cusses the related work. Section presents the evaluation
methodology. Section describes the experimental design
and evaluation scenarios, followed by the two codecs’ exper-
imental results in Section [V-Al and Section Section
summarizes our recommendations and discusses the results.
Finally, Section [VII|concludes the paper and outlines the future
work.

II. RELATED WORK

We review the state-of-the-art related to performance analy-
sis and characterization of video encoding on cloud instances.
a) Cloud performance analysis: Li et al. [24] analyze
the performance of heterogeneous cloud instances for en-
coding video streams and provide a model for quantifying
the suitability of cloud instance types for various encoding
tasks. Xiangbo et al. [23] present a performance analysis for
improved scheduling of encoding tasks on cloud instances,
which reduces the cost for the streaming service providers
by 85%. Timmerer et al. [33] present a performance anal-
ysis of the Bitmovin encoding platform, developed atop the
MPEG-DASH open standard over multiple cloud instances.
Based on this analysis, the encoding platform utilizes appro-
priate cloud instances to increase the average media throughput
without stalling during operation.

b) Processor architecture: Jiang et al. [18] present a
performance characterization of cloud instances based on the
first generation of Graviton compared to a multitude of Intel
Xeon processors. The work demonstrates that although the
Graviton processor has the slowest encoding speed and scala-
bility ratio, it provides cost savings of around 15% for the same
encoding performance. Federman et al. [13]] analyze the micro-
architectural behavior of x86 processors for a set of video
streaming workloads based on the x264 codec. They identify
that video encoding suffers from a high amount of stalled
instructions and cache misses, which leads to lower scalability
and hindered execution. Magaki et al. [26] evaluate GPU and
FPGA-based clouds’ performance for video encoding with the
%265 codec and propose an application-specific integrated
circuit tailored for this task.

c) Large scale video encoding: Jiang et al. [17] evaluate
the performance of public cloud infrastructure for large-scale
video encoding applications scaling up to one thousand virtual
machines. Regarding video encoding benchmarks, Lottatini et
al. [25] present a public suite tailored for cloud video services,
which encompasses a set of representative videos and metrics
that reflect user-perceived characteristics of the video streams,
such as quality and encoding speed.

d) Gap analysis: The presented research works are seg-
regated, utilize a single codec, and exclusively consider user-
specific metrics, such a perceived video quality. In this work,
we complement the related approaches by characterizing the
performance of modern x86 and Arm architectures for a set
of commonly used video codec implementations. Furthermore,
we consider various video encoding presets (e.g., as known

in x264, x265) and provide a detailed analysis on the
performance and the cost savings of using optimized instances
in the cloud. Lastly, we examine the suitability of the Arm-
based processors for performing video encoding tasks.

III. EVALUATION METHODOLOGY

This section presents the performance evaluation method-
ology comprising two phases. 1) Encoding data generation
describes the selection of representative video sequences,
identifies video codecs, and selects encoding parameters. 2) In-
stance selection and metric definition describes the selection
of cloud instances based on the processor micro-architecture
and defines the relevant performance evaluation metrics.

A. Encoding data generation

Encoding data generation involves video sequence, video
codec, and encoding parameter selection.

1) Video sequence selection: We select video segments
with a duration below 10s according to HAS requirements
and industry best practices [22]. The segment length is a key
parameter in HAS, as each video segment starts with a random
access point to enable adaptive and dynamic switching to
other representations (bitrate — resolution pairs) at segment
boundaries [11]. In addition, the selected video segment must
contain movements that exploit different features of the video
coding algorithms. Therefore, we use spatial and temporal
information metrics to select a video segment and identify
the computation requirements for its encoding [15].

a) Spatial Information (SI): measures the spatial com-
plexity of video frames through the physical position of an
object in the frame and its spatial relationship to other objects:

SI = IQI?X{U [Sobel (F)]}, (1)
where F, is the luminance component of the video frame
at time instance n, o is the standard deviation across all the
pixels in the Sobel filter, and the max operator calculates the
maximum standard deviation of all frames in a video sequence.
A high SI value indicates complex spatial relations between
multiple objects and higher differences between subsequent
frames, which increases the complexity of the encoding tasks
and leads to longer encoding times.

b) Temporal Information (TI): shows the amount of
motion in a video content, calculated as the maximum stan-
dard deviation o of a motion difference function M, (i, 7).
This function represents the difference in luminance for two
sequential frames F,, and F,,_; across all the pixels (i, 7):

TI =max{o [M,(i,7)]}; (2)
Mn(i’j):Fn(iaj)an—l(ivj)a €)]

where F), (i, j) is the luminance of the frame pixel (7, j) at time
instance n in the video sequence. A high TI value indicates
higher motion differences between the video segment frames,
which requires more computational resources for performing
the encoding tasks.



Table I: Bitrate ladder (bitrate — resolution pairs).

# | Bitrate [kbps] | Resolution # | Bitrate [kbps] | Resolution
1 100 256x 144 11 4300 19201080
2 200 320x180 12 5800 1920%x 1080
3 240 384x216 13 6500 2560x 1440
4 375 384x216 14 7000 2560x 1440
5 550 512x288 15 7500 2560x 1440
6 750 640x 360 16 8000 38402160
7 1000 768 x432 17 12000 3840x2160
8 1500 1024 %576 || 18 17000 38402160
9 2300 1280x720 || 19 20000 3840x 2160
10 3000 1280% 720

2) Video codec selection: We identify x264 and x265 [37]
as the most widely spread codecs for executing video encoding
tasks, deployed by more than 90% of the video streaming
industry [[16]. The x265 video codec typically requires more
computing resources than x264 but achieves a higher video
quality for the same encoding parameters [14].

3) Encoding parameters selection: We select 19 bitrates
from 100 kbps to 20 Mbps (see Table [[) and nine encoding
presets that define the quality to encoding speed ratio: ultrafast,
superfast, veryfast, faster, fast, medium (default preset), slow,
slower, and veryslow [6]. A slower preset uses more features
for the same bitrate, which leads to a relatively slower encod-
ing speed and better video quality [29]]. Similarly, faster presets
produce lower video quality. According to the official FFmpeg
video encoding guide , we do not use the placebo preset that
does not provide a significant quality improvement compared
to the veryslow preset according to the official FFmpeg video
encoding guide [6].

B. Instance selection and metric definition

1) Instance type selection: We selected instance types
based on three commonly used processors for video encoding.
a) Intel Xeon Platinum: is a multi-purpose processor
based on the latest extension of the x86 architecture with the
Advanced Vector Extension (AVX-512) instruction set. It is a
28-core server chip that can execute 56 concurrent threads.
b) AMD EPYC: is a multi-purpose processor based on
the x86 Zen architecture. For the majority of instance types,
AWS provides the first generation EPYC processor with up
to 32 cores and 64 concurrent threads. However, for the c
instances, AWS provides the second-generation EPYC pro-
cessors with up to 64 cores and 128 threads per server chip.
The x86 processors of Intel and AMD represent 87% of the
cloud instances [2] and the majority of personal computers.
¢) Graviton2: is the second generation of Graviton Arm
processors recently released by Amazon. It is a 64-core
monolithic server chip that uses Arm’s new Neoverse N1
cores, derived from the mobile Cortex-A76 cores. The Arm
processors dominate the mobile segment with a 90% market
share [2]]. Nevertheless, there is a trend [32]] from leading
companies, such as Apple and Amazon, for using Arm-based
processors to power personal computers and cloud instances.
d) Instance families: Based on these processor architec-
tures, we select four instance families from the Amazon EC2

cloud (see Table [24]: 1) balanced general purpose m in-
stances, 2) compute-optimized c instances, memory-optimized
r instances, and 3) burstable t instances. We selected eight
vCPUs for all instance types, corresponding to the largest
available sizes of t3, t3a, and t4g instances. For a fair
comparison, we equalize the number of vCPUs. However, the
memory size of different instance types might still differ due
to their instance type definitions. Nonetheless, the carefully se-
lected video segment’s encoding does not exceed the smallest
memory size in our set of instances.

2) Evaluation metrics: We compare the new Arm instances
with the Intel and AMD based x86 instances using three
metrics.

a) Relative encoding time: Atepn.(V; ) of a video seg-
ment V,, with a bitrate b and a preset p is the normalized
time difference of the Arm encoding time ¢ 4., (V3,,) to the
reference x86 encoding time ¢,s6(Vs,p):

tArm(% p) - tm86(‘/b p)
Atenc = - -
(Vihp) tw86<%7p)

A positive relative encoding time indicates that the Arm
instance is slower than the reference x86 instance, while a
negative value indicates that Arm is faster.

b) Encoding cost: cenc(Vh,q) of a video segment Vj, 4 is
the product between the instance price ¢; (in $) per second
and the segment encoding time ¢(V} 4) in seconds:

Cenc(‘/b,q) =G t(%,q)» (5)

Although cloud providers typically charge for their on-demand
instances on an hourly basis, we scale the price down to
seconds for a more fine-grained encoding cost understanding.

¢) Relative encoding cost: Acenc(Vs p) for a video seg-
ment V;,, with a bitrate b and a preset p is the normalized
difference of the Arm encoding cost ¢y, (V) to the refer-
ence x86 encoding cost cs6(Vsp):

-100. (4

carm(Vo,p) — ca86(Vop)

- 100. 6
cz86(Vb,p) ©

ACenc(‘/b,p) -

Similarly to relative encoding time, a positive relative encoding
cost indicates that Arm is more costly than the reference x86
instance, while a negative value indicates that Arm is cheaper.

IV. EXPERIMENTAL DESIGN

This section describes the implementation and evaluation
scenarios of the encoding methodology.

A. Video sequence selection

We selected for encoding a two-second segment from a
computer-animated movie [36] with high TI and SI met-
rics [21]], as described in Section The selected video
segment’s TI metric has a value of 22, which is three times
higher than the average TI value (8.2) of the other movie
segments. This implies high motion between the frames. In
turn, the SI metric of this segment has a value of 18.1, which
is slightly above the average SI value (16.3) of all movie
segments, which implies higher spatial complexity.



Table II: Experimental Amazon EC2 Cloud instance types.

Instance type | Architecture | vVCPUs | Memory [GiB] | Storage [GiB] | Network Physical processor Clock [GHz] | Price[$/h]
m5.2xlarge 32 st or 2nd generation <3.1 0.383
c5.2xlarge . 32 < 10 Gbps | Intel Xeon Platinum 8000 <34 0.34
r5.2xlarge | 04Pitx86 8 64 EBS series (Skylake-SP or <31 0504
t3.2xlarge 32 < 5 Gbps Cascade Lake) <31 0.3341
m5a.2xlarge 32 AMD EPYC 7000 series <25 0.344
c5a.2xlarge . 16 < 10 Gbps | AMD EPYC 7002 (2nd gen.) <33 0.308
r5a.2xlarge | 04Dt x86 8 64 EBS AMD EPYC 7000 series <25 |0452
t3a.2xlarge 32 < 5 Gbps AMD EPYC <25 0.3008
mé6g.2xlarge 32 0.308
c6g.2xlarge . 16 < 10 Gbps . 0.272
r6g.2xlarge 64-bit Arm 8 64 EBS AWS Graviton2 <25 0.4032
tdg.2xlarge 32 <5 Gbps 0.2688

B. Encoding software

We perform the encoding for AVC and HEVC video codecs
using the 1ibx264 (short x264) and 1ibx265 (short
x265) FFmpeg [3] library, as follows:

ffmpeg -y —-i sintel_2sec0030.y4m
-r {fps} -vf scale={WxH} format=yuv420p
—c:v {libx264, 1ibx265}
-preset {preset} -b {bitrate}
output .mp4

a) fps: is the number of video frames per second, which
is the same as in the original video segment (i.e., 24);

b) WxH: specifies the width W and height H (in pixels)
of the encoded video segment (see Table [I);

c) preset: defines the encoding preset (e.g., fast, slow);

d) bitrate: in a encoded video file measured in kbps, as
defined in Table [l

We used the latest FFmpeg version 4.3 which uses the

1libx265 version 3.4 with Huawei enhancements for faster
Arm encoding [8]. We carefully select the number of encoding
threads equal to the number of available vCPUs of each
instance type. We run all instances in the US East Amazon
EC2 region with two default Ubuntu Server 18.04 LTS images
that include Python packages: ami—-0ac80df6eff0e70b5
for 64-bit x86 instances, and ami—-0d221091ef7082bct
for 64-bit Arm instances. We manually deployed the latest
FFmpeg version 4.3 to replace the default 3.4.6 version of
Ubuntu 18.04 LTS.

C. Evaluation scenarios

We created two evaluation scenarios for each of the codec.
We repeated all experiments five times for a total of 10,260
experiments for both x264 and x265 codec. This translates
into a total cloud instance time of over 260h. We report
the average values of the metrics described in the following
paragraphs.

1) Instance family: comparison uses two metrics:

a) Relative encoding time: difference Atep(Vp,,) of
each x86 and Arm instance from the same instance family,
as presented in Table[ll] (i.e., m, c, r, t);

b) Relative encoding cost: difference Acepnc(V3,p) across
both processor architectures from the same instance family.

2) Processor architecture: comparison uses two metrics:

a) Fastest encoding time: of Arm ta,m (V) and x86
instances t,56(V4,,) independent of the instance family.

b) Lowest encoding cost: Cenc(Vh,p) across all instance
families from the same processor architecture.

V. EVALUATION RESULTS

We present the encoding results that compare the x86 and
Arm instances for the x264 and x265 codecs, following the
evaluation scenarios from Section We use heatmaps to
simplify the three-dimensional visualization of the encoding
time and cost dependency on the encoding bitrates and presets.

A. x264 Codec

1) Instance family:

a) Relative encoding time: Figure[laldisplays the relative
encoding time Atc.(Vs,p) between Arm and x86 instances
(Intel and AMD) with various encoding presets and bitrates.
We observe that the x86 ¢ instances achieve for all presets
and bitrates on average 30,78% faster encoding times than
the Arm c6g instances. For the other instance families, the
x86 instances are faster than the Arm instances, primary for
lower bitrates (<8 Mbps) and presets between “ultrafast” and
“veryfast”. The Arm instances t4g, m6g and r6g reveal
faster encoding times than the Intel x86 instances, especially
for presets between “very fast” and “fast”, and for bitrates
higher than 750 kbps. In particular, m6g and r6g achieve up
to 7.51%, while t4g achieves up to 17.82% faster encoding
times than the Intel x86 instances. Considering the x86
instances of AMD, the Arm instances t4g, m6g and ro6g
achieve faster encoding times especially for presets between
“very fast” and “very slow”, and for bitrates higher than
750 kbps.

Overall, t4g.2xlarge shows the shortest relative encod-
ing time due to the burstable behavior.

b) Relative encoding cost: Beside relative encoding
times, we closely analyze the relative encoding costs
Acenc(Vhp) with various encoding presets and bitrates (see
Figure @ For m, r, and t instances, the Arm instances reveal
the highest cost saving potential for presets between “very
fast” and “fast”, and bitrates over 750kbps. For example,
t4g.2xlarge shows on average 19.67%, r6g.2xlarge
13.75%, and m6g.2xlarge 12.84% lower encoding cost
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Figure 1: Relative encoding time and cost for four instance families with different presets, bitrates, and x264 codec.

than the corresponding x86 instances. The c instances, espe-
cially the AMD based c5a, show highest cost saving potential
for all presets and bitrates. The combination of lower cost and
faster encoding performance than Intel based c¢5 make the
c5a to the first choice for the x264 codec.

¢) Recommendation: For fast encoding, we recommend
using x 86 instances for bitrates lower than 8 Mbps and presets
between “ultrafast” and “veryfast”. Arm instances are faster for
bitrates higher than 750 kbps and presets between “very fast”
and “fast”. For a low encoding cost, we recommend Arm over
x86 for m, r, and t instances. However, for c instances, we
recommend x86, and especially the AMD based c5a, over
Arm.

2) Processor architecture:

a) x86 encoding time: The c instance family achieves
the fastest encoding times in all experiments. Considering only
Intel’s x86, c5 is on average 10.44% faster than other three

Intel x8 6 instances due to its higher clock speed. However, the
direct comparison of the Intel ¢5 and the AMD c5a reveal,
that the AMD based c instance is on average 10.17% faster.
This performance difference is expected because the compute-
optimized c5a instances use the second generation AMD
EPYC processors, which are based on newer architecture and
production processes than the Intel Xeon processors used in
cb.

b) Arm encoding time: Figure [2a] shows the fastest
encoding Arm instances. Overall, the encoding times among
Arm instances are negligibly small with encoding time dif-
ferences of less than 0.85% on average. Furthermore, Fig-
ure confirms that m6g.2xlarge is fastest in 90% of
the experiments with 1.15% faster average encoding times.
The t4g.2xlarge instance is fastest for bitrates higher than
12 Mbps and presets between “slower” and “veryslow”. The
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Figure 2: Fastest and cheapest encoding architecture per in-
stance type for different presets, bitrates, and x264 codec.

r6g.2xlarge instances are fastest in few cases with no
detectable pattern, mainly for bitrates between 2.5 Mbps and
12 Mbps, and presets between “ultrafast” and “slow”.

c) Encoding cost: The c instance and especially the
AMD-based c5a instance achieves the lowest x86 encoding
costs in all experiments thanks to its fast encoding times and
low price compared to the other three x8 6 instances. Figure[2b]
shows the lowest encoding cost for Arm instances. In particu-
lar, the t4g.2x1large instance achieves the lowest encoding
costs, followed by c6g.2xlarge. The low encoding cost of
t4g.2xlarge in the majority of experiments is due to its
low price and burstable performance.

d) Recommendation: Among x86 instances, we rec-
ommend using c instances for fastest encoding and low-
est cost. Among c instances, we recommend to prioritize
c5a over c5 instances, as c5a are based on latest pro-
cessor architecture from AMD. Among Arm instances, we
recommend mé6g.2xlarge for fastest encoding times, and
td4g.2xlarge for lowest encoding cost.

B. x265 codec

To analyze the different codecs’ impact, we repeat the same
set of experiments using the x265 codec.
1) Instance family:

a) Relative encoding time: Figure [3] reveals that the
Arm instances are on average 329.42% slower than the x86
instances in all experiments. We observe higher relative en-
coding times of at least 279.92% for presets between “slow”
and “veryslow” and lower for presets between “ultrafast” and
“superfast”. In particular, t4g.2xlarge shows the smallest
difference of 16.48% for a bitrate of 100kbps, and c5a
the highest differences of up to 847.67% compared to Arm
c6g instance for presets between “slow” and “veryslow”.
The m6g.2xlarge and r6g.2xlarge instances achieve
comparable results depending on the x86 processor. We
identify a higher average relative encoding time difference of
360.79% for Intel based instances, and 229.76% for AMD
based instances.

In contrast to the x264 codec, Arm instances show in
all experiments slower relative encoding times. Moreover, we

identify different areas in the heatmaps with small relative
encoding time for both codecs. For example, the x265 codec
shows the smallest difference for areas with low bitrate
and “ultrafast” preset, where the x264 codec shows highest
Atenc(vb,q)-

b) Relative encoding cost: For completeness, Figure
depicts the relative encoding cost Acey,.(V4,,) between x86
and Arm instances with various encoding presets and bitrates.
The Arm instances introduce 382.58% higher encoding costs
on average than the corresponding x8 6 instances in all exper-
iments.

As Arm instances imply 31.66% to 635.01% higher en-
coding costs compared to Intel-based and 4.09% to 736.90%
for AMD basedx86 instances. Therefore, we do not identify
any cost-saving potential. We explain the higher costs due to
the high relative encoding time, as presented in the previous
section.

¢) Recommendation: The experimental results confirm
that the x265 support in FFmpeg 4.3 is not yet optimized for
Arm instances. We recommend using x86 instances.

2) Processor architecture:

a) x86 encoding time: Figure[da]shows that the ¢ family
delivers the fastest encoding time in all experiments on x86
instances. Especially, the c5a instance with AMD processors
is on average 15.65% faster than all other x86. In particular,
cb5a is on average 31.64% faster than t instances, 27.19%
faster than x86 m and r instances, and 4.67% faster than c5
instances with Intel processor.

b) Arm encoding time: Figure [Ab shows that
mé6g.2xlarge is fastest in 66.08% of the experiments,
followed by t4g.2xlarge in 23.39%. Overall, the relative
encoding time among the Arm instances is negligibly small
and in the range of measurement noise. More precisely,
mé6g.2xlarge is on average only 0.21%, t4g.2xlarge
0.13%, r6g.2xlarge 0.23%, and c6g.2xlarge 0.07%
faster.

c) Encoding cost: For all experiments, c5a.2xlarge
achieves lowest encoding costs among x86 instances, and
t4g.2xlarge among Arm instances. Specifically, the c5a
instance with AMD processors reveals on average 15.65%
lower cost than all other x86 instances and 13.65% lower
average cost than the corresponding c5 instance with Intel
processors. For comparison, the t4g.2x1large reports only
1.34% lower cost among all Arm instances.

d) Recommendation: The c5a.2xlarge instance
shows the fastest encoding times and the lowest encoding
cost for x86 instances in all experiments. Among the Arm
instances, t4g.2xlarge competes with m6g.2xlarge for
the fastest encoding time. However, t4g.2x1large achieves
the lowest encoding cost in all experiments.

VI. SUMMARY AND DISCUSSION

A. Summary

We summarize in this section our recommendations related
to the video encoding time and cost for both codecs and
processor architectures. In Figure [5] we provide accurate visual
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Figure 3: Relative encoding time and cost for four instance families with different presets, bitrates, and x265 codec.
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Figure 4: Fastest encoding instance for different encoding
presets, bitrates, and x265 codec.

reference tables indicating the fastest and cheapest options for
all evaluated instance families, presets, and bitrates for the
x264 codec. As the results for x265 codec report a clear
best performing instance family for the fastest time and lowest
cost, independently from the preset and bitrate, we describe
these results only textually.

1) Fast encoding:

a) x264 codec: Overall, we recommend x86 instances
especially for bitrates lower than 8 Mbps and presets between
“ultrafast” and “veryfast”. As depicted in Figure [5a we
recommend Arm instances mainly for bitrates higher than
750 kbps and presets between “very fast” and “fast”. Among
all x86 instances, we recommend to use c instances and espe-
cially to prioritize the AMD based c5a over the Intel based
c5 instance. Among all Arm instances,the mé6g.2xlarge
instance is the fastest, but with an advantage of only 1.15%
on average.
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Figure 5: Reference table for fastest encoding times and lowest cost for four instance families with different presets, bitrates,

and x264 codec.

b) x265 codec: We recommend x86 instead of Arm
instances, as the x265 implementation in the latest FFm-
peg version is not yet optimized for Arm. Among x86
instances, we recommend the AMD based c5a.2xlarge,
which is on average 4.67% faster than the Intel based
c5.2xlarge instance. Among the Arm instances, we rec-
ommend m6g.2xlarge as it achieves the fastest encoding
times in most experiments.

2) Low cost encoding:

a) x264 codec: Overall and as presented in Figure [5b]
we recommend x86 instances for bitrates lower than 8 Mbps
and presets between ‘“ultrafast” and “superfast”. Among all
x86 instances, we recommend to use c instances and to
prioritize the AMD based c5a instance. We recommend Arm
instances for m, r, and t instances especially for presets be-
tween “very fast” and “veryfast”. In particular, Arm instances
reduce the encoding cost of up to 33.63% compared to x86.
We observe that c5a achieves the lowest encoding cost among
x86, and t4g.2xlarge among Arm instances.

b) x265 codec: We recommend using x86 instances
that generate on average 382.58% lower encoding costs than
Arm instances. The c5a.2x1arge instance achieves 15.65%
lower average cost among x86 instances and on average
13.65% lower cost than c5.2xlarge instances. Among
Arm instances, the t4g.2xlarge reveals lowest cost in all
experiments, but the advantage is just 1.34%.

B. Discussion

The pricing model of AWS ranks the instances in de-
scending order with Intel x86 instances with highest cost,
followed by AMD based x86 as middle cost, and Arm
instances as low-cost alternatives. We observe that the instance
performance primarily follows this pricing model. However, as
cost and performance are two conflicting objectives, we also
analysed the cost to performance ratio. We revealed that for
specific settings and codecs the low cost Arm instances can
outperform faster and higher price x86 instances. We explain
this observation by the different instruction set architecture
(ISA) of both processors types.

In particular, the x86 CPUs use Complex Instruction Set
Computing (CISC) while Arm uses Reduced Instruction Set
Computing (RISC). With other words, the former uses more
complex instructions with several cycles while Arm uses
only one cycle to execute a single instruction. Consequently,
we identified the software support for Arm instances as an
important aspect that affects the performance. For example,
we observed a high performance discrepancy between Arm
and x86 instances for the compute intensive x265 codec.
We explain the discrepancy through the fact that the FFmpeg
4.3 is not yet optimised for Arm instances.

Besides, the performance depends on the hardware alloca-
tion of the cloud provider. For example, the default allocation
of Amazon EC2 uses hyper-threading that assigns on x86
instances one logical hyper-threaded core to a vCPU (except
t2). In contrast, the Arm instances assign one physical core



Table III: Encoding recommendation summary.

Goal .
Codec Fast encoding Low cost
x86 (cba)
x264 Arm (m6g) Arm (t4qg)
X265 x86 (cba) x86 (cba)

to a vCPU [7] in the absence of hyper-threading. This fact en-
ables companiesﬂ such as Snap Inc reducing CPU utilization
by roughly 10%, Honeycomb.io running 30% fewer instances,
and NextRoll saving up to 50% cost compared to previous
generation EC2 instances for their workloads.

Overall, with continuously improving software support and
optimisation for Arm, we forecast a decreasing performance
difference between Arm and x 86 instances which also applies
for video encoding tasks.

VII. CONCLUSION

In this paper, we provide a performance analysis for video
encoding tasks of Arm and x 86 instances of four Amazon EC2
instance families with three different processors. We conducted
a total of 20.520 experiments in two evaluation scenarios for
the two most widely used video codecs.

Table [l summarises our recommendations based on the
evaluation results related to the encoding time and cost.

The evaluation results clearly reveal that the Arm instances
can achieve faster encoding times at a lower cost than the
corresponding x86 instances. However, the encoding perfor-
mance of Arm and x86 instances depends on many factors
such as bitrate, preset, and codec. Independently from the
codec, we show that the x86 c instance and specifically the
AMD based c5a instance achieves fast encoding times at a
lower cost in most experiments, which makes it suitable for
general encoding use.

In summary, regarding the measured encoding performance
potential for specific encoding settings and the continuously
improving support of Arm instances, we forecast a decreasing
performance difference between Arm and x86 instances.

In the future, we plan to extend our analysis with different
emerging codec implementations and longer video segments
to generalize our recommendations. Furthermore, we will
perform an in-depth analysis of overprovisioning by evaluating
x86 instances with various CPU options [7] for the fastest
instance setup.
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