
Pre-print version, July 2021

HTCondor data movement at 100 Gbps

Igor Sfiligoi
University of California

San Diego
La Jolla, CA, USA
isfiligoi@sdsc.edu

Frank Würthwein
University of California

San Diego
La Jolla, CA, USA

fkw@ucsd.edu

Thomas DeFanti
University of California

San Diego
La Jolla, CA, USA
tdefanti@ucsd.edu

John Graham
University of California

San Diego
La Jolla, CA, USA
jjgraham@ucsd.edu

Abstract—HTCondor is a major workload management
system used in distributed high throughput computing (dHTC)
environments, e.g., the Open Science Grid. One of the
distinguishing features of HTCondor is the native support for data
movement, allowing it to operate without a shared filesystem.
Coupling data handling and compute scheduling is both
convenient for users and allows for significant infrastructure
flexibility but does introduce some limitations. The default
HTCondor data transfer mechanism routes both the input and
output data through the submission node, making it a potential
bottleneck. In this document we show that by using a node
equipped with a 100 Gbps network interface (NIC) HTCondor can
serve data at up to 90 Gbps, which is sufficient for most current
use cases, as it would saturate the border network links of most
research universities at the time of writing.

Keywords—data handling, htcondor, benchmarking

I. INTRODUCTION
Scientific computing needs are continually growing in time,

with many problems becoming intractable on single nodes and
requiring a distributed computing approach. A major problem of
distributed computing is data movement, as data and compute
resources are not co-located anymore. While shared filesystems
can hide the problem from users, they are not a panacea; data is
still being moved around and scaling them across wide area
networks is notoriously hard.

HTCondor [1], a popular distributed high throughput
(dHTC) workload management system used by the Open
Science Grid (OSG) [2], foregoes the need for a shared
filesystem, providing native data movement for the managed
compute jobs. This capability allows HTCondor to aggregate
compute resources with minimal constraints, requiring neither
storage mounting privileges nor advanced network privileges.
Indeed, most OSG compute resources come from nodes that
allow only UNIX-like processes and are behind restrictive
firewalls, e.g., no incoming networking allowed.

In a default HTCondor setup, data flows in and out of the
submit node, which also holds the compute job queue and where
users have login privileges. For maximum performance, the
storage should be local to such a node, although other solutions
can be used for either cost or resiliency reasons. Since all data
transfers associated with the managed compute jobs flow
through such a node, it can become a bottleneck, especially with
very spiky workload patterns. We thus measured the capabilities
of HTCondor as data movement tool on state-of-the-art network
hardware, which at the time of writing was represented by a
100 Gbps network interface (NIC).

Benchmarking was performed on the Pacific Research
Platform’s (PRP) Nautilus [3] environment, which is briefly
described in section 2. We measured sustained 90 Gbps network
traffic on local area networks and 60 Gbps across the US, with
detailed benchmarking results presented in section 2 and 3.

II. THE TEST ENVIRONMENT
HTCondor is very scalable, typically serving tens of

thousands of worker nodes managing compute resources.
Nevertheless, the data transfers only happen at job boundaries,
so for data transfer benchmarking purposes, only the job startup
rate is important, not the total pool size. For the purpose of this
paper, we assumed that there were approximately 200 slots that
need file transfer at any point in time, which is what one would
expect in a pool with 20k slots serving jobs lasting 6 hours, each
spending 3 minutes in file transfer. We simulated that by running
jobs with trivial runtimes but large input data.

The test hardware was accessed by means of the PRP, a
Kubernetes-based system spanning the US (and beyond), with
all nodes connected with high-speed network links. The most
demanding, i.e. HTCondor submit node with a 100 Gbps NIC
was located at the University of California San Diego campus
(UCSD), while the worker nodes executing the jobs could be
located anywhere. We ran several tests, including a test with all
nodes inside UCSD and a test with all nodes on the US east
coast, whose results are described in the next two sections.

The PRP made performing these tests trivial; no special
privileges were needed to deploy HTCondor services spanning
the US. The HTCondor workers are just regular containers
launched as unprivileged pods in Kubernetes. The other
HTCondor services could also be launched as unprivileged
pods, but we ran into a performance issue following that path.
Since PRP uses Calico to establish the virtual private network
(VPN) in Kubernetes, which is required for unprivileged use, we
noticed that the HTCondor submit node was bottlenecked by the
VPN overhead, limiting the throughput to about 25 Gbps. The
majority of the benchmarking tests were thus run using a
HTCondor submit container running without VPN, which does
require additional privileges, but allowed us to exceed 90 Gpbs.
We will investigate more user-friendly workarounds in future
work.

III. BENCHMARKING ON LOCAL AREA NETWORK
Since all tests were executed on a shared network setup, we

first measured the HTCondor data movement performance
inside a local area network, where we were expecting only minor
network interference from other activities.

This work was partially funded by the US National Research Foundation
(NSF) under grants OAC-2030508, OAC-1836650, OAC-1826967 and OAC-
1541349.

For this first test, all nodes were located inside UCSD. To
minimize the number of nodes involved, all nodes were
equipped with a 100 Gbps NIC, both the one running the
HTCondor submit pod and the six HTCondor worker nodes. The
worker nodes were configured to provide a grand total of 200
execute slots. We used the latest available stable HTCondor
version, which at the time of writing was version 9.0.1. We also
used the default security settings, which resulted in all file
transfers being fully authenticated, AES encrypted, and integrity
checked.

On the submit node, we created a single 2GB file with
random content and then created 10k unique file names hard
linking to it. From the user point of view, we thus had 10k
independent files, while from the storage point of view there was
a single 2GB data area, that easily fit into the system cache. The
purpose of the exercise was to measure the HTCondor data
movement performance and this setup guaranteed that the
storage subsystem was not the bottleneck. The compute power
was provided by an 8-core AMD EPYC 7252 CPU.

The main test consisted in submitting 10k jobs as a single
HTCondor submit transaction, each pointing to a unique input
file and a short-running validation script. We collected both the
HTCondor logs and network monitoring data, which showed
that we were using on about 11 GBps, or 90 Gbps of network
bandwidth, as seen in the screenshot available in Fig. 1.

Fig. 1. Screenshot of the PRP network monitoring web page during the local
area HTCondor test. Each bin represents the average over 5 minutes.

All jobs finished within 32 minutes. The median job runtime
was 5 seconds, and the median input data transfer time was
2.6 minutes. Output file transfer times were negligible, and no
errors were encountered.

The above experiment shows that HTCondor is capable of
almost saturating a 100 Gbps NIC if the storage subsystems can
feed it fast enough. Note that for the above test we disabled the
HTCondor file transfer queuing mechanism, which is by default
tuned for much slower spinning disk storage systems. Using the
default settings, a similar 10k job test completed in 64 minutes,
i.e. in about double the time.

IV. BENCHMARKING ON THE WIDE AREA NETWORK
Established that HTCondor can almost saturate a 100 Gbps

NIC on a local area network, we moved to measure its
performance over the wide area network (WAN). We kept the
submit node at UCSD, which is located in California state, and
deployed pods on nodes that were as far away as possible while
still having at least a 100 Gbps WAN network path to UCSD.

All used worker nodes were located in New York state. Only
one node had a 100 Gbps NIC, while another four had a 10 Gbps
NIC. The round trip time between the submit and worker nodes
was about 58 ms, and traversed network links operated by
CENIC, Internet2 and NYSERNet.

Apart from using different hardware resources, the test setup
was virtually identical to the one described in the previous
section. In this test HTCondor managed to use about 7.5 GBps,
or 60 Gbps of network bandwidth, as seen in the screenshot
available in Fig. 2. All jobs finished in 49 minutes and the
median input data transfer time was 3.3 minutes; all other
metrics were comparable.

Fig. 2. Screenshot of the PRP network monitoring web page during the wide
area HTCondor test. Each bin represents the average over 5 minutes.

Given the shared nature of the wide area networking, we are
not disappointed by the lower throughput. Unfortunately we
however cannot completely rule out HTCondor being the main
bottleneck, as we do not have monitoring information for all of
the network switches along the path.

V. SUMMARY
We show that HTCondor architecture of explicitly managing

data movement is not a bottleneck in current use cases, as it can
scale the data throughput to tens of Gbps, if paired with a
100 Gbps NIC and sufficiently performant storage subsystem.
In our tests, executed with HTCondor version 9.0.1 and on
hardware managed by the PRP, we measured sustained data
throughputs of 90 Gbps on LAN and 60 Gbps on cross-US
network links. All with end-to-end strong authentication,
encryption, and integrity checks, available to all users without
any additional setup or configuration steps.

ACKNOWLEDGMENT
This work was partially funded by the US National Research

Foundation (NSF) under grants OAC-2030508, OAC-1836650,
OAC-1826967 and OAC-1541349.

REFERENCES

[1] HTCondor Team. (2021, May 20). HTCondor (Version 9.0.1). Zenodo.
http://doi.org/10.5281/zenodo.4776257

[2] R. Pordes et al, “The open science grid.” Journal of Physics: Conference
Series 78 pp 012057 (2007), https://doi.org/10.1088/1742-
6596/78/1/012057

[3] L. Smarr et al, “The Pacific Research Platform: Making High-Speed
Networking a Reality for the Scientist.” PEARC '18: Practice and
Experience in Advanced Research Computing, article 29, pp. 1-8, July
2018. https://doi.org/10.1145/3219104

