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Proteins are essential
for all living organisms




Catalysis: Increasing the rate of a
chemical reaction within cells

Structure: Providing structure and
support for cells

Proteins are responsible

for many vital cellular
functions

Transportation: Moving materials
within a cell and the organism

Signaling: Receiving, processing, and
transmitting signals within the cell
and with the environment

~

Antibodies: Helping to protect the
body from foreign particles, such as
viruses and bacteria
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Knowing the 3D structure is critical for

e Structural biology explains 3D structures of

biomolecules
e Biomolecules are proteins/RNA/DNA

drug development
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There are experimental methods (X-ray, cryo-EM,
SAXS, XFEL) to obtain partial information about the 3D
protein structure

X-ray Free Electron Laser (XFEL) beams
create 2D diffraction patterns that reveal
properties of the 3D protein structure o .




Structural properties: Orientation

Orientation 1 Orientation refers to the
®, 6, W =24°151° 346° placement of the incident

beam with respect to a
-

protein structure
Orientation 2

® (Azimuth) = [-180,180]
®, 8, W =145°,128°, 291°

O (Altitude) = [0,180]

W (Psi or rotation angle) = [0, 360]

MAMA G

*Images from “Common conventions for interchange and archiving of THE UNIVERSITY OF

three-dimensional electron microscopy information in structural biology” TENN<§§§EE

by Bernard Heymann, Monica Chagoyen, and David M. Belnap.



Structural properties: Conformation

o Conformation A
Conformation is the shape &, 8, W =24° 151°, 346°

adopted by a protein and
‘-

is caused by the rotation of
the protein atoms around
Conformation B
P, 6, W = 34°,139°, 106°

one or more single bonds
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Structural properties: Protein type

Protein type A

: : Conformation A
Prgteln type r.efers to thg type and number of amino ® 0 W =240 151° 346°
acids composing a protein

@

Protein type B

Conformation C
— number (up to thousands) P, 0, ¥ =84°, 32°, 82°

'q

- 20 different type of amino acids

- Amino acids can combined in different ways to
make a protein

— sequence
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Structural properties

Protein type A

Orientation 1 Conformation A Conformation A
D, 0, W =24° 151°, 346° D, 6, W =24° 151°, 346° ®, 0, W =24° 151°, 346°
Protein type B
Orientation 2 Conformation B Conformation C
P, 0, W =145°, 128°, 291° P, 6, W =34° 139° 106° P, 0, W = 84° 32° 82°
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Experimental 2D
diffraction
patterns

3D Structure
(Fourier Space)

3D Structure
(Real Space)

ldentifying the
structural properties
embedded in the 2D
diffraction pattern is
key for the 3D
reconstruction and
understanding the
protein’s structure
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We need to integrate the experimental methods with computational
frameworks to gain information on structure and dynamics and
accelerate scientific discovery
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Our goal is to design and implement a
ViL-based framework that predicts
simultaneously the three
structural properties from
protein diffraction patterns




Framework design consideration 1

1. Simultaneous multi-output and multi-type predictions

. _ Continuous values
Orientation Angle 1 = [-180,180]
Angle 2 =[0,180]
Angle 3 =[0,360]

Categorical values
Conf. A1 or Conf. A2 or ... or Conformation NN

Conformation

Categorical values
Protein A or Protein Bor ... or Protein N

Protein type
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Framework design consideration 1

1. Simultaneous multi-output and multi-type predictions

4 Continuous values
o Orientation Angle 1 = [-180,180]
Xillx ). - Angle 2 = [0,180]
, xl X Angle 3 = [0,360]

X
3 x
EEnm 3 . °
R R JRVEEEIS < conformation | Categerical values

ol Conf. Al or Conf. A2 or ... or Conformation NN

n|[x
LUK
Feature ical val
Protein type Categorical values
vectors L Protein A or Protein B or ... or Protein N
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Multiple ML models

We define three different ML models for the three predictions

ML O Continuous values
rientation | Angle 1 =[-180,180]
Regressor 8 /
1y ], 8 Angle 2 = [0,180]
2 % Angle 3 =[0,360]
2
3|x, 2
X
3 ) )
Conformation Categorical values |
X . Conf. A1 or Conf. A2 or ... or Conformation NN
. n) Xn
Feature ML Protein tvbe Categorical values
vectors Classifier yP Protein A or Protein B or ... or Protein N
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Multiple kNN models

We select kNN (k-Nearest Neighbors) because of it high accuracy in both
classification and regression problems and low execution costs

kNN Continuous values
Orientation Angle 1 = [-180,180]
Regressor 5 '
1y ], 8 Angle 2 = [0,180]
1i|x
1

Angle 3 =[0,360]

3||X
3 . i
Conformation Categorical values |
X . Conf. A1 or Conf. A2 or ... or Conformation NN
. n) Xn
Feature kNN Protein tvbe Categorical values
vectors Classifier yP Protein A or Protein B or ... or Protein N
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k-Nearest Neighbors (kNN)

This algorithm looks at the K nearest neighbors of a new data point (in feature
space) to determine the predicted value
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k-Nearest Neighbors (kNN)

This algorithm looks at the K nearest neighbors of a new data point (in feature
space) to determine the predicted value

The K number of

_______——-——____-~
- ~—
- -

Feature (,) .7 __.------- A 7. k=3 neighbors is critical for
vectors x1 X, "x’; } AN the prediction
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Selecting the K number of neighbors

The K number of

neighbors is critical for
the prediction

70 7=

Orientation Error [degrees]

=
o
1

(e))
o
1

w
o
1

W
o
1

N
o
I

—8— Root Mean Squared
—0— Median

An analysis of the root
mean square error
(RMSE) of the degree
allows our framework
to identify the most
suitable K number of
neighbors

2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20

Number of neighbors (K)
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Framework design consideration 2

2. Transformation from diffraction patterns to feature vectors

Feature vectors

el AA
//:. ________ I\\ ! x1 5:,
¢ S % x ™
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X
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Diffraction R | R Feature 1 (x,)
patterns -
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From diffraction patterns to feature vectors

We use an autoencoder to represent diffraction patterns in feature vectors of

dimension n Encoder Decoder
A N
N N\ 4
h @ )
a </ T\~ -
L AN 7y
(/\/ \/— \}:“
a ‘\‘w. g o ‘*/ _\)f - ',’// :
- % _ e
/\ K /} l {\ /\V -
Diffraction RAS @ Reconstructed
1 xl r N ° °
patterns Feature )\ diffraction
vectors ||l |, patterns
\an o 'R
\an \Xn/
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Feature vectors dimension (n)

The dimension of the feature vector has to be sufficient to faithfully
reconstruct the original diffraction patterns

Feature vectors 0.000280 -
fx; \ § 0.000275 -
X *1x) ]
2|y || 1 T 0.000270
X 2 xz %
3 3||x CDT 0.000265 -
3 3
C 0.000260 A
%l o Reconstructed
" J n x E . . .
S 0-000255 diffraction
0.000250 A patterns

5 1I0 1I5 2IO 2I5 3I0 3I5 4IO 4I5 5IO
Feature vector dimension (n)
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Feature vectors dimension (n=5)

The dimension of the feature vector has to be sufficient to faithfully
reconstruct the original diffraction patterns

0.000280 -
S
O 0.000275 -
S
O
S 0.000270 -
O
S
o
S 0.000265 -
o
(Vp)
C 0.000260 1
Diffraction O
= 0.000255 -
patterns

0.000250 A

&

|
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|
|
|
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|
|
|
|
|
5

10

1|5 2IO 2|5 3I0 3I5 4|0
Feature vector dimension (n)

45

50

Reconstructed
diffraction
patterns
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Feature vectors dimension (n=10)

The dimension of the feature vector has to be sufficient to faithfully
reconstruct the original diffraction patterns

0.000280 A

0.000275 A

0.000270 A

0.000265 A

0.000260 -~
Reconstructed

diffraction
patterns

Diffraction
patterns

Mean squared error

0.000255 A

0.000250 A

é 10 1|5 2IO 2|5 3I0 3I5 4|0 4I5 5|O
Feature vector dimension (n)
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Feature vectors dimension (n=15)

The dimension of the feature vector has to be sufficient to faithfully
reconstruct the original diffraction patterns

0.000280 A

0.000275 A

0.000270 A

0.000265 A

0.000260 A

Mean squared error

Diffraction | Reconstructed
patterns no00e ] : diffraction
0.000250 A : patterns

é 1|0 1|5 2IO 2|5 3I0 3I5 4|0 4I5 5|O
Feature vector dimension (n)
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Feature vectors dimension (n=20)

The dimension of the feature vector has to be sufficient to faithfully
reconstruct the original diffraction patterns

0.000280 A

0.000275 A

0.000270 A

0.000265 A

0.000260 A

Mean squared error

Diffraction Reconstructed
0.000255 -~

patterns ! diffraction

|
0.000250 A : patterns

5 1|0 1|5 20 2|5 3I0 3I5 4|0 4I5 5|O
Feature vector dimension (n)
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Feature vectors dimension (n=50)

The dimension of the feature vector has to be sufficient to faithfully
reconstruct the original diffraction patterns

0.000280 A

é 0.000275 -
T
© 0.000270 A
D
©
> 0.000265 A
O
(7p]
< 0.000260 -
Diffraction & Reconstructed
patterns = 0000255 diffraction
0.000250 A patterns

é 1|0 1|5 2IO 2|5 3I0 3I5 4|0 4I5 5|O
Feature vector dimension (n)
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Identify the suitable feature vector dimension

Using the elbow method, our framework identifies when variance of the error
and the associated gain in accuracy are not significant

Feature vectors 0.000280 -
rx 1 § 0.000275 -
1 x s 3 —
1((X Q
X llx |2 T 0.000270 A
2 ||x et
X3 2 m
> 0.000265 A
3 )(3 o
v
C 0.000260 A
20| Iy o Reconstructed
. J 20 ] . .
1Y = 0000255 diffraction
n=20 00002307 patterns

5 1|0 1|5 2IO 2|5 3I0 3|5 4|0 4I5 5|0
Feature vector dimension (n)
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Feature Extraction (Autoencoder)

o —©
Pre-processing |Images [\ e RV’ Q @
Data U Yo, N NG
W~/ / N Y e
Labels: ./) / (D </ \@
Diffraction [Orientation, o R ot
patterns Conformation, Encoder Decoder Reconstructed
Protein type] N0 [ diffraction patterns
Feature |4 |3 |
F k vectors 3| [ |2
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Feature Extraction (Autoencoder)

o 0
Pre-processing |Images | ¥\ o> bV, Q ®
Data U Yo, N |
S / WA €
Labels: "/’7 @ o \@
Diffraction [Orientation’ \t— AR kj/
patterns Conformation, Encoder Decoder Reconstructed
Protein type] N0 [ diffraction patterns
Feature |4 |3 |
F k vectors [ 2| |2
—» Split data |« Validation metrics
| SO T .
I itfi v y ' eOrientation error |
XPSI Identlfles Training Training Testing Testing - ; | .
t t I labels data data labels* > Validation [ eConformation accuracy
Structura | T . ®Protein type accuracy |
prOpertleS (I'e" —> ML Regressor ——| ML Predictor >r Orientation
orientation, | 3
ML . Q.
: —>> . —»| ML Predictor - Conformation '&
conformation, Classificator 5 2
. ! 3
prOtE|n type) —> m“cl\ifil;afm — ML Predictor - Protein type ,:

Modeling and Prediction
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Identifying structural properties with XPSI

We demonstrate our framework's
capability to identify structural
properties by merging diverse
datasets of diffraction patterns
with multiple orientations,
conformations, and protein types

- 39,692 diffraction patterns per
each conformation

Protein

Q

g[ EF2 Ribosome ]

_ =

0

©

-

e

S : .
4kj:9a  4kj-bc Y.

S \\u’/

= Angle 1 =[-180,180] Angle 1 =[-180,180]

‘q:'; Angle 2 =[0,180] Angle 2 =[0,180]

'C:) Angle 3 =[0,360] Angle 3 =[0,360]
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Identifying structural properties with XPSI

We demonstrate our framework's

c
- . . ‘o Y
capability to identify structural *g g[ EF2 Ribosome }
properties by merging diverse -
datasets of diffraction patterns < r -
with multiple orientations, o PN
: . £
conformations, and protein types 5 £
- |
~ 1 1InOu  1nOvc 4kji:9a  4kj-bc
But there is one extra c S’ et
o)
challenge ... Noise = [ Angle 1=[-180,180] Angle 1 = [-180,180]
= Angle 2 = [0,180] Angle 2 =[0,180]
-§ Angle 3 = [0,360] Angle 3 = [0,360]
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Noise in the XFEL diffraction patterns

The XFEL beam intensity is proxy for noise in the diffractions patterns (images)

< Beam intensity -
high medium low

Lower beam
intensity

— Higher noise
— Lower image
resolution

medium high
' Noise level >




Identifying structural properties with XPSI
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Identifying structural pro
S

c

c Q

Q L d

We quantify and validate XPSl’s ==
ability to provide accurate 3 9
structural properties predictions 2z

for diverse datasets of diffraction
patterns (multiple orientations,
conformations and protein types)
with different beam intensities

> 10% testing data (~4000
diffraction patterns from each
conformation)

Conformation

Orientation

perties with XPSI

[ High Low }
EItZ Ribo;ome
| F 5 |

4kj:\93 4|§j,‘bc /

S Y

AL
Angle 1 =[-180,180] Angle 1 =[-180,180]
Angle 2 =[0,180] Angle 2 =[0,180]
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Computer infrastructure

High Low ]
1 x 32-core Power9 node (128 GB ;

RAM) with 1 x GPU Nvidia V100s ' y
[ EF2 Ribo§ome }

e N

Beam
Inten
.\

Protein
type

_ =\
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©
£
e
e e
S . .
kiz9a  4kj-bc
S ‘\\&A’/,
= Angle 1 =[-180,180] Angle 1 =[-180,180]
‘q:'; Angle 2 =[0,180] Angle 2 =[0,180]
'C:) Angle 3 =[0,360] Angle 3 =[0,360]
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Orientation error

We measure the 1. Error degree
error to predict The distance between two points

the three angles  on a sphere given ® (Azimuth)
using two metrics  gnd © (Altitude)

2\/Sin2 ((92 ; 91) + 008(91) 008(92) sin2 (¢2 ; qbl)

2. Psi difference

The difference between real and ¢ G —
predicted Psi (W) angle red

’prredz'cted




Orientation error

The error degree for

10000

I 90% of the testing data
o : is below 6°

|

|
6000 - -~ == 50th percentile

- == 75th percentile

4000 - = 90th percentile

2000

Count of diffraction patterns

0 5 10 15 20 25 30 35 40 45 50 55

Error degree °
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Orientation error

The error degree for The psi difference for
@ 10000 7] 90% of the testing data i 90% of the testing data
5 1 i :
£ T is below 6° 0o ML 1 || is below 7°
@ 8000 - |
Q 11 11
c 111 11
-% 6000 |l | - == 50th percentile 6000 44 1| — = 50th percentile
S : : - = 75th percentile : : - = 75th percentile
S 4000 i — = 90th percentile 4000 {44 1 - = 90th percentile
5 ! :
- I i
S 2000 I 2000 I
S |
O
° 0 5 10 15 20 25 30 35 40 45 50 55 0 0 5 10_ 1‘5 20 25 30 35 40 _4? 50 55
Error degree ° Psi difference °
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Conformation accuracy

Accuracy: Represents the ratio of
correct predictions over the total
number of cases examined

TP +TN

T'P+TN+FP+FN




Conformation accuracy

Accuracy: Represents the ratio of
correct predictions over the total
number of cases examined

TP+1TN
TP+TN+FP+FN

Actual

- 100%

4031/4031

1n0Ou

99.9%

3967/3972

1n0Ovc

93.7%

3714/3962

Qa

bc

T1N0u  1nOvc Oa bc
Predicted

-4000

-3500

-3000

2500

-2000

1500

1000

500
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-4000

Conformation accuracy

S . 100% 3500
«—  4031/4031
XPSI predicts between 4 3000
. : : o
different conformations with s — 500
an accuracy of 90% on £ 3967/3972
average 2 12000
i <
XPSI alway§ predicts the - o —
conformations within the = 3714/3962
proteins (no inter-error class) 1000
a 1500
0
1nOu  1n0Ovc 9a bc
Predicted
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Protein type accuracy

XPSI predicts between 2
different protein types with an
accuracy of 100%

-8000

-7000

100.0%
7860/7860

EF2

-6000

5000

4000

Actual

3000

100.0%
8017/8017

2000

Ribosome

11000

EF2 Ribosome
Predicted
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XPSI remarks

We demonstrate the scientific robustness of XPSl in different challenges:

e |dentifying multiple proteins (100% of accuracy), conformations (90% of
accuracy), and orientations (error degree < 6° and psi difference < 7°)

e Differentiating between conformations (97% of accuracy) with similar, but not
identical, structures of the same protein

e |dentifying rotation in the diffraction patterns, even in the presence of
symmetry (error degree < 10° and psi difference < 10°)

All of these capabilities are proven with different beam intensities. The lower the
beam intensity the noisier the diffraction patterns, which affects the accuracy of
the predictions
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XPSI Jupyter notebook

We provide a Jupyter Notebook for shareability and portability of our @
fra m eWO rk - A framework for identifying structural proteins through diffraction patterns BN ERN

The identification of structural protein properties can help solve problems such as determining the cause of diseases and designing drugs. In this jupyter notebook, we will present an approach using X-ray Free Electron Laser (XFEL) based Protein Structure Identifier, also called XPSI,
which is a framework that combines deep learning and traditional machine learning to identify the three structural properties (i.e., ori formation, and protein type) through the diffraction patterns of a given protein. The are two main components in this notebook where:

* we learn:
= How diffraction data in the form of patterns is experimentally generated with the use of XFEL beams
= What structural properties of a protein (i.e., orientation, conformation, and protein type) can be embedded into a patterns

.
o « we apply a software framework (XPSI) to identify the structural properties of protein to a dataset of diffraction patterns. The is of three for:
https://qithub.com/TauferLab/XPSI

= Pre-processing data

Load and decompress the dataset
Validate the representativeness of datasets
«» Training of an autoencoder
Extract key structural properties from diffraction patterns
Transform the properties into tensors
= Using machine learning (ML) to model and predict structural properties in new datasets
Tune ML models' hyperparameters

Validate the predictions through error degree, psi difference, and conformation accuracy

Generate diffraction patterns with structural properties

Proteins have a three-dimensional (3D) structure in nature. When a protein structure is shot with an X-ray Free Electron Laser (XFEL) beam, it produces a diffraction pattern. Figure 1 shows the experimental process to generate diffraction patterns from 3-D proteins. The patter is captured
on the black screen on the right of the figure. These diffraction patterns embed properties of the proteins that can be revealed by analyzing the images.

Protein diffraction

O,
S,
lor patterns examples

»

SCAN ME

Figure 1: Experimental process to generate diffraction images from 3-D proteins.
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https://github.com/TauferLab/XPSI

XFEL slice matching for 3D reconstruction

Apply our XPSI
framework to
XFEL slice
matching for 3D
reconstruction

( experimental images
(angles unknown)

search the best
matched image
to assign angle

1

reference library
(angles known)

N

\

reconstruct 3D volume

with best matched angles .

£y

iteration

create library
by slicing

reference volume
updated by iteration

phase
retrieval

3D structure
in real space

initial reference volume ,
Fourier space

Nakano et al., J. Synchrotron Rad. (2017). 24, 727-737
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XPSI Jupyter notebook

We provide a Jupyter Notebook for shareability and portability of our @
fra m eWO rk - A framework for identifying structural proteins through diffraction patterns BN ERN

The identification of structural protein properties can help solve problems such as determining the cause of diseases and designing drugs. In this jupyter notebook, we will present an approach using X-ray Free Electron Laser (XFEL) based Protein Structure Identifier, also called XPSI,
which is a framework that combines deep learning and traditional machine learning to identify the three structural properties (i.e., ori formation, and protein type) through the diffraction patterns of a given protein. The are two main components in this notebook where:

* we learn:
= How diffraction data in the form of patterns is experimentally generated with the use of XFEL beams
= What structural properties of a protein (i.e., orientation, conformation, and protein type) can be embedded into a patterns

.
o « we apply a software framework (XPSI) to identify the structural properties of protein to a dataset of diffraction patterns. The is of three for:
https://qithub.com/TauferLab/XPSI

= Pre-processing data

Load and decompress the dataset
Validate the representativeness of datasets
«» Training of an autoencoder
Extract key structural properties from diffraction patterns
Transform the properties into tensors
= Using machine learning (ML) to model and predict structural properties in new datasets
Tune ML models' hyperparameters

Validate the predictions through error degree, psi difference, and conformation accuracy

Generate diffraction patterns with structural properties

Proteins have a three-dimensional (3D) structure in nature. When a protein structure is shot with an X-ray Free Electron Laser (XFEL) beam, it produces a diffraction pattern. Figure 1 shows the experimental process to generate diffraction patterns from 3-D proteins. The patter is captured
on the black screen on the right of the figure. These diffraction patterns embed properties of the proteins that can be revealed by analyzing the images.

Protein diffraction

O,
S,
lor patterns examples

»

SCAN ME

Figure 1: Experimental process to generate diffraction images from 3-D proteins.
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https://github.com/TauferLab/XPSI
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