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Abstract—Advanced electron microscopy workflows require an
ecosystem of microscope instruments and computing systems
possibly located at different sites to conduct remotely steered
and automated experiments. Current workflow executions involve
manual operations for steering and measurement tasks, which
are typically performed from control workstations co-located
with microscopes; consequently, their operational tempo and
effectiveness are limited. We propose an approach based on
separate data and control channels for such an ecosystem
of Scanning Transmission Electron Microscopes (STEM) and
computing systems, for which no general solutions presently exist,
unlike the neutron and light source instruments. We demonstrate
automated measurement transfers and remote steering of Nion
STEM physical instruments over site networks. We propose a
Virtual Infrastructure Twin (VIT) of this ecosystem, which is
used to develop and test our steering software modules without
requiring access to the physical instrument infrastructure. Ad-
ditionally, we develop a VIT for a multiple laboratory scenario,
which illustrates the applicability of this approach to ecosystems
connected over wide-area networks, for the development and
testing of software modules and their later field deployment.

Index Terms—science workflows, scanning transmission elec-
tron microscope, virtual infrastructure twin, science instrument
ecosystem.

I. INTRODUCTION

There is an increasing interest in scientific workflows that
incorporate remotely controlled, automated experiments over
collections of physical instruments and computing systems.
Often, these resources are located at geographically dispersed
sites, and they need to be federated over wide-area networks to
form ecosystems that seamlessly support these workflows [1],
[2]. Recent workflow developments enable the use of Artificial
Intelligence (AI) codes both as a part of scientific compu-
tations and data analyses, and for orchestrating automated
experiments at potentially remote physical instruments. In
particular, the latter tasks may involve configuring instruments,
collecting and transferring measurements and analyzing them
to extract parameters for the next set of remote experiments.
Effective execution of such workflows requires the application
codes to be customized for remote computing and storage
resources connected over networks. Currently, science users
manually orchestrate several of these tasks, which may have
to be repeated with different parameters based on analyses

results. These human-driven, time-consuming processes limit
the scalability and execution tempo of scientific workflows,
and often lead to inefficient idling of expensive resources.

The electron microscopy workflows are expected to signif-
icantly benefit from the computing and storage capabilities
provided by these ecosystems [3], [4]; general versions of
such science ecosystems may utilize diverse instruments, for
example, light sources [5]. We consider an ecosystem of
Scanning Transmission Electron Microscopes (STEM) that
are extensively used in science workflows [6], for example,
ptychography using atomic imaging for novel materials syn-
thesis. More generally, the transmission electron microscope
with electron imaging, electron diffraction, and spectroscopy
capabilities is aptly called “A Synchrotron in a Microscope”
[7] and has extensive uses in physical and life sciences [8].
Currently, no general software frameworks exist to build these
microscopy ecosystems, unlike others such as the Experi-
mental Physics and Industrial Control System (EPICS) [9]
widely deployed at neutron and light source facilities. The
microscopes are typically controlled by local control com-
puters using custom Windows software, and the computing
systems are typically Linux platforms located in different
networks separated by firewalls. To fully realize the potential
of STEM ecosystems, eSolutions for software design, testing
and implementation, are needed for seamlessly collecting and
transferring measurements and steering the microscopes from
remote computing systems, as illustrated in Figure 1.

We consider Nion STEM systems at Oak Ridge National
Laboratory (ORNL) and remote Linux computing systems
with GPUs to support measurements and steering, in addition
to computations that use the measurements. Our contributions
are two-fold: (a) demonstration of remote steering and auto-
mated measurement transfers over the ORNL STEM ecosys-
tem (more than two decades after some of these microscopes
were installed), and (b) Virtual Infrastructure Twins (VIT) that
support the development and testing of ecosystem software
prior to and in preparation for deployment. In prior work,
the measurement transfers required manual steps, and the
steering was only available from the control computer co-
located with the instrument. For part (a), the measurements
are made available at remote Linux workstations using a
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Figure 1: An ecosystem of microscope, computing and storage sites
connected over a wide-area network is needed to seamlessly support
science workflows that require automated and remotely controlled
experiments.

Network Attached Storage (NAS) at the instrument site, and
remote mounting its file system on the servers. We develop
Pyro server and client codes to enable remote microscope
commands to be sent and executed on the microscope using the
Nion Swift microscope software. For part (b), we developed
VITs of ORNL and multi-site ecosystems with network control
channels between remote computing systems and microscope
systems, and tested initial Pyro codes prior to deployment(in
part (a)).

The development and testing of the ecosystem software
modules (such as Pyro server client codes) typically takes
several days or longer. It is not cost-effective to require
physical access to the microscope for the entire duration, and
indeed may not be necessary. Instead, we develop a VIT of the
ORNL ecosystem that emulates the network and computing
systems, and incorporates the Nion Swift simulator. It provides
the software environment nearly identical to the deployed
system, and is used to develop and test Pyro server and
client codes, without tying up an expensive microscope and its
human operator for several days. We also develop another VIT
of four laboratory sites connected over a wide-area network,
and demonstrate the remote steering capability across the sites.
It illustrates the broader applicability of the VIT approach
for (initial) development of ecosystem software components
without requiring access to the physical infrastructure.

The organization of this paper is as follows. A brief ac-
count of STEM and the associated scientific workflows and
ORNL infrastructure are presented in Section II. Design and
implementation of data and control channels are presented in
Section III. Experimental results over ORNL STEM ecosystem
are presented in IV. VITs of ORNL site and four-sites scenario
are described in Section V. Conclusions and directions for
future research are presented in Section VI.

II. STEM WORKFLOWS AND INFRASTRUCTURE

Scientific STEM workflows are supported by an infras-
tructure of instruments and their control computers typically

connected over local networks.

A. STEM Systems, Workflows and Software

Scientific workflows that utilize STEM are quite varied and
extensive.

1) Principles and applications: The STEM images are
generated by scanning a focused electron beam across a
thin sample. The distribution of transmitted (and/or scattered)
electrons in the detector plane depends on the sample com-
position and structure. Hence, the variation in detected inten-
sity across the formed image can provide valuable insights
into a material’s local properties. The most common STEM
measurement is annular dark-field imaging where the image
intensity varies as approximately Z1.7, with Z being the
atomic number. The generated images contain a wealth of
information about the material structure and, if atomically-
resolved, allow among other things, for mapping local po-
larization fields, identifying topological defects, and studying
charge-density wave formation. By using configurations with
parallel detectors, the Z-contrast structure imaging can be
combined with spectroscopic measurement – such as electron
energy loss spectroscopy (EELS) or energy-dispersive X-ray
spectroscopy - to probe materials’ electronic functionality.
Particularly, EELS can be used for probing the physics of
collective excitations in nanoscale systems, as well as precise
chemistry characterization. For example, STEM-EELS enables
studies of local effects in plasmonic systems which are critical
to the design of nanostructures with desired optical properties.
Finally, the recent advances in pixelated and multi-segmented
detectors enable the acquisition of a diffraction pattern at each
probe position, which constitutes the collection of techniques
known as 4D-STEM. As a result, insights can be gained into
the structure of electric and magnetic fields at the atomic scale,
which in turn enable the study of chemistry of individual
atomic defects, and mapping of interlayer spacing in quasi-
2D materials (to name a few examples).

2) Microscopy Workflows: A typical experimental study
in STEM-EELS and 4D-STEM proceeds as follows. First,
an annular dark-field scan over a relatively large field of
view is acquired. Then, the regions for spectral or diffrac-
tion imaging, either single-point spectroscopy or a grid of
points, are manually selected based on operator’s intuition.
The acquired data is usually stored at local resources or
commercial cloud (e.g., Dropbox, Google Drive, etc.) and
analyzed after the experiment is completed. The standard
post-acquisition analysis of the hyper-spectral EELS data is
performed via linear unmixing/decomposition techniques such
as non-negative matrix factorization. For 4D-STEM data, the
processing is based on advanced analyses involving physics-
based inversion. Recently, authors in [10], [11] demonstrated
an approach for an ’intelligent’ probing of dissimilar structural
elements to discover in the automated fashion a desired physi-
cal functionality in STEM-EELS and 4D-STEM experiments.
This approach utilizes deep kernel learning (DKL) to inform
the next measurement by continuously learning a relationship
between the local structure visualized via the dark-field STEM
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Figure 2: The STEMs and computing workstations are in two ORNL
facilities at separate physical sites and are connected to different
site networks separated by firewalls. They include U100 and U200
Nion Microscopes and NAS systems at AML of CNMS, and eapm
computing system with 80 CPU cores and two GPUs at K200 facility.

image and EEL spectra or 4D-STEM diffraction patterns.
However, it is currently limited to relatively small data vol-
umes as the DKL model training and inference are performed
using local or on-board computational resources. The remote
computations and steering of the microscope based on analyses
of measurements, by automated codes or manual operations,
will contribute to the effectiveness of these workflows, and
eSolutions that enable them are our main goal of this paper.

3) Nion Swift Software: Here we focus on the Nion Swift
software, which is open source, can be run on multiple
OS platforms, and provides access to almost every aspect
of the microscope. Note that other software platforms exist
for different electron microscopes. The STEM microscopes
considered here are controlled via Nion Swift software that
provides a Graphical User Interface (GUI) and a python-
based API. It is installed and executed inside a Python virtual
environment on the control computer, which is typically a
Windows workstation co-located with the instrument. Its API
provides instrument commands executed in a python console
for measurement collection, microscope positioning and other
tasks [12]. A STEM instrument simulator, called nionswift-
tool [13], is also provided as an open source software package
that provides an off-line Swift environment identical to the
physical installation.

B. ORNL STEM and Servers

The Nion STEM microscopes U100 and U200 of ORNL’s
Center for Nanophase Materials Science (CNMS) are located
at the Advanced Microscopy Laboratory (AML) site. The
computing systems, including a server with 80 CPU cores
and 2 GPUs, called eapm, are located in a data center facility
at a different site, as shown in Figure 2. These facilities are
serviced by different site networks which are separated by
firewalls. A Nion microscope with an attached AS2 controller
is controlled by the instrument control computer running the
Swift software; they are connected over a local hub network
which is not routed to other site networks. The scientists
conduct the microscopy experiments typically using the Swift

GUI accessible via the control computer which is dual-homed
to connect to a hub and site networks under strict firewall
configurations. Once the measurements are collected, they may
be transferred to a NAS system connected to the microscopes
and the control computer over the local hub network. In
current workflows, the measurement collection and positioning
commands are manually executed using Swift software, and
data may be directly transferred to a local NAS.

C. Related Microscope and Instrument Control System

SerialEM [14] is an electron microscope controller software
enriched with complement applications for image acquisition,
(pre)processing, display, buffering and file saving. It provides
tools for supporting the essential microscopy operations, like
tilt series, 3D reconstruction and single-particle reconstruc-
tions. SerialEM is equipped with GUI, Python APIs as well
as built-in script commands to support the data acquisition and
processing. The controller supports a wide range of electron
microscopes and Complementary Metal Oxide Semiconduc-
tor/Charge Coupled Device (CMOS/CCD)-based cameras. The
Nion microscopes considered in this paper are not supported
by SerialEM, but our Pyro-based solutions are in principle
implementable using Python APIs.

EPICS [9] is an open-source toolkit used for distributed
control of scientific instruments at experimental facilities, for
example, Spallation Neutron Source (SNS) at ORNL and
Advanced Photon Source (APS) at Argonne National Labora-
tory (ANL). It supports application interfaces and networking
protocols for hardware components of instruments, such as
sensors, motors, detectors, and magnets. It provides interfaces
to Input/Output Controllers (IOCs) and Process Variables
(PVs) using command lines (e. g., caget and caput to read
and write PV values) or graphical interfaces. It also provides
networking and interfaces access, known by Channel Access
(CA) and Client CA (CAC), allowing science users to access,
collect measurements and supply configuration parameters for
targets used in science workflows.

Tango Controls [15] is an open-source framework that man-
ages a variety of systems and hardware types. It is applicable
to different systems, including Distributed Control Systems
(DCS), Integrated Control Systems (ICS) and Supervisory
Control And Data Acquisition (SCADA) systems, for instance,
Machine to Machine (M2M), Internet of Things (IoT), Indus-
trial IoT (IIoT) applications, as well as national experimental
facilities like synchrotrons. Tango provides classes for differ-
ent instrument hardware, called the hardware classes, and it is
scalable to build and integrate new hardware classes. Tango
also supports a range of programming languages, such as C++,
Java and Python, for developing, controlling, and building
hardware classes and framework software modules. Further-
more, various deployment modes are implemented with Tango
for achieving autonomous and scalable control, for example,
in-situ and distributed deployments, as well as remote steering
functionalities via client-server or web client deployments. The
Nion microscopes at ORNL are not supported by EPICS or
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Figure 3: Separate end-to-end control and data channels utilize
Pyro client-servers and NAS, respectively, to support micro-
scope steering and measurements collection needed for remote,
automated experiments.

Tango controls, and consequently our solutions are primarily
designed for their Swift software.

III. STEM ECOSYSTEM DESIGN AND IMPLEMENTATION

The implementation of a STEM ecosystem over an infras-
tructure, such as ORNL, requires the development, integration,
and/or implementation of network and system configurations
as well as new and available software modules.

A. System Challenges and Solution Approach

A STEM ecosystem needed to support remote autonomous
experiments must address the following challenges:

• Local and remote access: Microscopes are manually
operated using custom software installed on control com-
puters co-located with instruments, which are typically
connected only to local hub networks. The access is
needed to both their hardware and software over networks
that are protected by access controls and firewalls.

• OS and software: Microscope software is typically pro-
prietary and runs on Windows OS, and the measurements
are stored on the local computer, and the storage systems
often use custom mechanisms and formats. Both control
and data access from remote Linux servers may be re-
quired, which entails interfacing different OSs, including
programming environments, file and data formats, and
host firewalls and access mechanisms.

• Networking: Network connections to control computers
carry both measurements and control traffic, typically,
over the same IP path and network interfaces. Over long
network connections, this non-separation can potentially
lead to the loss of instrument control when large mea-
surement transfers occupy the entire available bandwidth.
Suitable end-to-end network channels and mechanisms

are needed between the microscope control computers
and remote servers.

We propose a design based on separate end-to-end channels
for control and data that are serviced by software modules
that communicate across Windows and Linux OS. The control
channels enable the scientists and automated codes to remotely
access the microscope control computer and execute steering
commands (Section III-B). The microscope measurements are
collected on the NAS and made available on remote computing
systems. Figure 3 shows this design for ORNL ecosystem for
the infrastructure described in previous section. We configure
the NAS to export its file system (Section III-C), thereby
making it available for analyses codes that utilize powerful
remote computing systems such as servers with multiple
GPUs.

B. Control Channel

A control channel is used to remotely access the instrument
control computer for sending control commands and parame-
ters to steer the microscope experiments. Upon command exe-
cution, the control computer may send back the results or other
data. We developed Pyro client-server codes to support remote
steering of microscope experiments across the ecosystem.
Pyro provides a Python API for network access [16], and we
installed it on the control computer’s Swift virtual environment
and on the remote computing systems. Figure 4 illustrates the
developed solution of Pyro client-server communication across
the ecosystem.

Our Pyro server embeds python objects corresponding to
STEM experiment tasks and makes them accessible and
executable over control channels that span the ecosystem.
These task codes are developed by us using Swift instrument
commands [12] by utilizing APIs executable only under the
control computer’s Swift python environment. As shown in
Figure 4, the developed python object Embedded Swift Server
is a python class with multiple functions that encapsulate
the STEM tasks. The Pyro daemon turns the python object
into a Pyro object (Swift Server) and publishes it via the
control node’s IP address and a TCP port to be accessible
over the control channel. The Pyro server application is called
from the File−→Scripts option in Swift GUI, and initiates as
a background process which listens for incoming requests to
execute microscope tasks using API commands.

Pyro client applications can be executed concurrently on
multiple remote computing systems across the ecosystem.
The client applications communicate with the Pyro server
to execute the exposed functions on the control computer,
as shown in Figure 4. A client initiates a connection with
the server using a Pyro object URI, which is a resource
identifier in the format: PYRO:objectid@IP:TCP port. The
objectid refers to the Pyro object published by Pyro daemon
running on the control computer, which is swift Server in our
implementation shown in Figure 4, and IP is the network
address of the control computer. The TCP port specifies
the communication port between the Pyro client and server
applications that allows them to communicate and exchange
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import Pyro4
.
.

from nion.utils import Registry
from nion.utils import Geometry

@Pyro4.expose
class Embedded_Swift_Server(object):
    def __init__(self):

  self.stem_controller =\
Registry.get_component("stem_controller")

   def stem_control_module_i(self, arg*,kwarg**):
 .
 .
 return (attr_1,..,attr_n)

   def stem_control_module_j(self, arg*,kwarg**):
 .
 .
 return (attr_1,..,attr_n)

Pyro4.Daemon.serveSimple(
{
  Embedded_Swift_Server:'Swift_Server',
},host=ipAddressServer,
 port=int(connectionPort),
 ns=False, verbose=True)

Pyro Server running on the instrumentation controller Pyro client applications run on the remote node.

Importing Pyro4 
and Nion Swift 
Instrumentation 
Python packages

Build a class of 
stem 

experiment 
functions to be 
published by 

Pyro

The Pyro Daemon turns the 
Python object (class 

Embedded_Swift_Server) 
into a Pyro object 

(Swift_Server) to publish it 
and listen to incoming requests.

Pyro client application i

Remotely call a stem function and pass arguments

Initiate the connection with the Pyro 
server based on its IP address and TCP 

port number

import Pyro4
.
.
swift_modules_call = 
Pyro4.core.Proxy('PYRO:Swift_Server@'+

 ipAddressServer + ':' + connectionPort)

Out_1,..,out_n=\
swift_modules_call.stem_control_module_i(arg*,kwarg**)
.
.

Remotely call a stem function and pass arguments

Initiate the connection with the Pyro 
server based on its IP address and TCP 

port number

import Pyro4
.
.
swift_modules_call = 
Pyro4.core.Proxy('PYRO:Swift_Server@'+

 ipAddressServer + ':' + connectionPort)

Out_1,..,out_n=\
swift_modules_call.stem_control_module_j(arg*,kwarg**)
.
.

Pyro client application j

.

.

.

Figure 4: Pyro client-server communication applied between the instrument control node and a compute system.

control messages. In our implementation, we developed a
client application for each STEM experiment task exposed
by the Pyro server. The client applications are called from
python console or embedded in automated scripts, for example,
using Jupyter notebooks, by passing the IP address of the
control node and control commands and parameters required
to steer the microscopy experiments. Overall, the approach of
wrapping the microscope Swift APIs using Pyro client-servers
enables this solution to scale and be portable across multiple
STEMs and computing systems across the ecosystem.

We developed several microscope task modules, namely
scan status to get the current scan status, scan channel to
obtain measurements from a particular microscope channel,
and probe position to position the beam at specified co-
ordinates. These modules are implemented as functions of
the Pyro server (details in Appendix A). They are paired
with the corresponding Pyro client modules, check scan.py,
scan channel.py, and probe position.py, respectively. These
client modules pass the user or machine-driven control com-
mands to the Pyro server to execute microscope tasks.

The concept and codes for Pyro servers and clients are
developed without requiring access to the physical infras-
tructure by using the VIT of ORNL ecosystem with Nion
Swift simulator, as described in Section V. These steps took
several days, and once matured, the codes were tested and
demonstrated over ORNL STEM ecosystem which required
the physical access and an operator for the microscope to
ensure safety, as described in Section IV.

C. Data Channel

The data channel makes the measurements available at
the NAS connected to the control computer and also at the
remote servers of the ecosystem, up on the execution of
commands either locally or remotely over the control channel.
The Swift software is configured to store the measurements
on the Windows-based NAS as files. We implement the
data channel by remote mounting the NAS data files using
Samba and Common Internet File System (CIFS) file sharing,
which provides access across different operating systems,
in particular, Linux servers. The Windows-based NAS files
are natively available on the Linux-based servers to perform
scientific analysis and computations. The access privileges
to the computing nodes and Samba/CIFS file sharing are
configured to allow the users to access the NAS files across the
ecosystem. This access via one-time setup makes it persistent
across the ecosystem. Indeed, the cross-facility mounting of
microscopy data automates large-scale data transfer and makes
it available for the computations across the ecosystem. File
transfer tools such as GridFTP [17] or Globus [18] applications
require additional hardware and/or software, including licenses
and credentials, which may become difficult to manage by
the scientists. The Pyro communication is not used for large
measurement transfers since they are limited by memory size
and they can also generate cross traffic that can potentially
limit the control traffic.

The data channel transparently transfers high-volumes of
microscopy measurements over network connections that are
separate from control channel connections, thereby mitigating
the impact of large measurement transfers on the steering
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Figure 5: Control and data channels are enabled by configuring
the network and host firewalls, and are separated by two NICs
on computing server.

operations, as described in next section.

D. Networks, Access and Firewalls

The microscope computers and remote servers are located
at different networks separated by network firewalls and
Windows and Linux host firewalls, as shown in Figure 5.
Both the data and control channels are enabled by inserting
various firewall rules to support file mounting between the
NAS and computing servers over the data channel, and open
communication ports for Pyro servers and clients over the
control channel. Their rules are inserted both at the firewalls
separating these two networks, and also on the Windows and
Linux hosts. Two physical interfaces are configured on the
compute servers with different IP addresses to separate the
control channel traffic between Pyro server and clients, and
remote mounting the NAS CIFS file system. The end points
of both control and data channels are two separate NICs on
the same compute servers but their other ends points are on
separate systems, namely, the control computer and NAS.

IV. EXPERIMENTAL SETUP AND DEMONSTRATION

The ecosystem capabilities described in the previous section
are implemented on U100 and U200 microscopes at the AML
science facility, and on the eapm workstation at the K200
computing facility, which are both parts of ORNL physical
infrastructure. The experimental setup shown in Figure 6 is
used for remote steering and measurement transfer operations
carried out between the microscope and its NAS system and
on the eapm at K200.

A. Steering experiments over ORNL ecosystem

We have successfully tested the microscopy control channel
between the U200 microscope and eapm computing system
by steering the microscope experiments over the physical
infrastructure of ORNL ecosystem (Figure 2).

We integrated a number of Python functions for STEM APIs
to obtain the beam status and other microscope parameters

Figure 6: Data and control channels between STEMs at AML
and computing servers in K200 in ORNL infrastructure.

as well as to position the beam. In particular, the func-
tions scan status and probe position (explained in Appendix
A-A and A-C) are the corresponding Pyro server objects on
the U200 control computer. The microscope is steered by
check scan.py and probe position.py Pyro client applications
running on eapm.

On the U200 control computer, the response to cross-facility
communication with eapm system is shown in the screen shot
in Figure 7. The Pyro server’s response to the scan status
commands from Pyro client on eapm is shown in the console,
as two True and False responses which are also sent back to
eapm. The response to probe position command is shown in
console as the previous probe position (x = 0.5 and y = 0.5)
and the new probing position at x = 0.2 and y = 0.8 from
Pyro client. The resultant new probe position is depicted on
the right side window of Figure 7.

On the eapm computing system, the output of Pyro client
applications for executing remote microscope tasks is shown
in Figure 8. The scan status of the U200 microscope, denoted
by the IP address (160.91.156.73), is frequently checked
using check scan.py application. The scan status is True while
running a physical scan on the control node via Swift GUI,
and when the scan is completed its status becomes False.
Also, a new scan position is sent to the microscope using
probe position.py application with coordinates (x = 0.2 and
y = 0.8) to which the Pyro server responded by positioning
the microscope.

These Pyro codes are initially developed without requiring
physical access using VIT as described in Section V, and are
readily executed on ORNL infrastructure.

B. Automated Data Transfers

We deployed and tested the proposed data channel over
ORNL physical infrastructure by remote mounting the mi-
croscope measurements directory of NAS devices on eapm.
For example, the US100 NAS system, accessed by IP address
10.1.156.37, is mounted to eapm using CIFS file system.
The authorized microscopists and automated codes seamlessly
access NAS files at the mounted directory /mnt/NION100
and utilize them in computations on the computing system.
A screenshot in Figure 9 shows these U100 measurement files
on NAS being available on eapm.
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Figure 7: Screenshot of Swift GUI running at U200 microscope control compute at AML, ORNL. The Pyro server output
corresponds to the execution of Pyro client commands from eapm computing system located at K200 and the resultant
positioning of microscope probe.

Figure 8: Output of Pyro client on eapm in checking scan
status and probing position on U200 over ORNL physical
infrastructure.

Figure 9: NAS mounted on eapm for automatic data transfer.

V. STEM VIRTUAL INFRASTRUCTURE TWINS

The development and implementation of a STEM ecosystem
requires various software components and network and system
configurations to be designed and tested. These workflows
that utilize networked computations and instruments present
challenges that are not typically faced in (pure) computing
ecosystems. It is too expensive and potentially disruptive for
the whole STEM ecosystem to be available during the entire

development and testing period, particularly, in early stages.
More generally, the ecosystems, such as a multi-site STEM
complex, may not be available while they are being designed
and developed, and indeed, may not always be needed, for
example, instrument time is not usually necessary to debug
network code. In this context, we propose employing a STEM
VIT (S-VIT) as an enabling software tool to be used prior
to the field deployment. In particular, ORNL S-VIT (OS-
VIT) is used to develop the Pyro steering codes described
in previous sections, and an additional Multi-site S-VIT (MS-
VIT) is developed in this section to show their applicability to
ecosystems that span multiple sites connected over wide-area
networks.

A. VIT: Concept and Design

VIT emulates the network and computing components of the
ecosystem, and incorporates instrument software simulators,
such as Nion Swift simulator in S-VIT. It provides a software
environment nearly identical to the physical ecosystem to
support early and continual development, testing and design
space explorations. It is implemented using mininet [19] by
using virtual hosts to execute and test scientific applications
(including microscopy applications and simulations), and to
emulate the network infrastructure using virtual switches and
routers. The emulated components communicate over virtual
links that reflect the physical network infrastructure links.
VIT is packaged as a portable virtual machine to facilitate
the development process among scientific communities. Once
the VIT-based solutions are suitably tested, they are ready to
be field-deployed and integrated into the physical infrastruc-
ture. Previous VIT implementations address other scenarios
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Figure 10: OS-VIT: Emulation of ecosystem of ORNL STEM
infrastructure.

Figure 11: Swift GUI runs on microscope1 node at CNMS.

including software defined networking [20], EPICS [21] and
federation software stack [22].

B. ORNL STEM Ecosystem: OS-VIT

The OS-VIT for developing and testing STEM workflows
across the ORNL infrastructure is shown in Figure 10. It
consists of two facilities, K200 computing facility and CNMS
microscope facility. It subsumes the physical infrastructure
used in experiments in Section IV, and provides additional
systems. The K200 facility emulation provides multiple virtual
hosts (including one for eapm) that are used for computations
and remote access. The simulation of the CNMS facility in-
cludes multiple microscope control computers (related to U100
and U200 at AML) that support simulated STEM experiments.
The control computers are emulated using virtual hosts that
run nionswift-tool simulator that includes Swift GUI. The
facilities’ devices are connected via virtual switches, which in
turn, connect the two facilities via a Gateway Router (GWR).

The OS-VIT provides remote access from eapm at K200 to
microscope1 control computer at CNMS to steer STEM exper-
iments, send back the data for potential use in computations
and change the microscope focus position (using scan channel
and probe position Pyro STEM tasks). The workflow tasks
described in Section IV are first carried out on OS-VIT.

First, the Swift API is run on the microscope1 node to load
the Swift GUI, as shown in Figure 11. Next, the Pyro server
module is loaded on Swift GUI and run as a daemon that
waits for Pyro client communications across the ecosystem.

Figure 12: Running Pyro client applications on eapm node
at K200. The applications represent scanning a microscope
channel and probe certain position after the scan is complete.

Figure 13: Script window at nionswift-tools runs at micro-
scope1/CNMS shows running Pyro server exposing STEM
experiments across the emulated ORNL infrastructure and logs
the status of the execution.

Figure 12 shows the output of Pyro client applications on
eapm: scan channel.py is executed to scan channel number
zero and gather data related to one frame at the control node,
which is sent as a NumPy array to eapm for computations.

Once the channel scan finishes, the microscopist would be
able to reconstruct and analyze the scanned data, including for
particular positions. For example, The microscopists at eapm
can change the focus position and collect new measurements.
We demonstrated changing the probe position via executing
the probe position.py client application with new coordinates
x = 0.3 and y = 0.7 that are sent as parameters of
probe position to microscope1. The effect of changing the
focus position is depicted on the updated image in Figure 11.
The STEM experiments’ status is interactively shown on the
Script window at Swift API shown in Figure 13, includ-
ing the generated data from executing channel scanning and
probe position tasks.

C. Multi-site STEM Ecosystem: MS-VIT

In addition to reflecting a specific infrastructure (as by
OS-VIT), VITs can be developed for more general purposes
such as assessing new designs, building and testing more
complex ecosystems that support more sophisticated scientific
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Figure 14: MS-VIT: Emulation of STEM ecosystem of four DOE lab sites connected over a wide-area network.

workflows. In particular, we consider ecosystems of multiple
sites, each with several computing facilities and scientific
instruments. MS-VIT is an emulation of an infrastructure of
multiple Department of Energy (DOE) sites shown in Fig-
ure 14. This infrastructure consists of four DOE labs, namely
ORNL, Brookhaven National Laboratory (BNL), Argonne Na-
tional Laboratory (ANL), and The National Energy Research
Scientific Computing Center (NERSC). These sites consist of
computing systems and may include scientific facilities, such
as CNMS at ORNL. Virtual hosts (denoted by COMP) are
incorporated as part of the ecosystem to execute scientific
computations and STEM applications. For example, the Swift
simulator (nionswift-tool) is run on a virtual host at CNMS
representing the instrument control node that simulates Nion
STEM experiments responses. The ecosystem’s site networks
are connected to gateway routers, which are in turn, connected
to edge routers of the wide-area network, namely, ESnet [23];
the latter is emulated as a set of virtual routers with dedicated
site-to-site connections. Details of VITs used for multi-site
federation implementation and a science use case using EPICS
simulator, are described in [24] and [25], respectively.

We utilize MS-VIT to explore the feasibility of coordinating
concurrent operations of an electron microscope by multiple
STEM workflows across the multi-site ecosystem. In this
scenario, we demonstrate having two microscopy workflows,
namely BNL-ORNL WF and NERSC-ORNL WF, that are
running concurrently. These workflows remotely access and
execute the STEM experiments that are part of the Pyro object
running on stem control node at CNMS/ORNL. Such con-
current workflows are feasible independent of which (user’s)
sample is currently loaded because the Nion Microscope is
equipped with a magazine system capable of carrying multiple
samples that can be dynamically loaded during the experi-
ments. The BNL-ORNL WF remotely steers the microscope
experiments from the bnlcomp compute node at the BNL
while the other workflow steers the microscope from the
nersccomp compute node at NERSC. The STEM tasks in-

Figure 15: Run a Pyro client module at a COMP node at
NERSC site to scan a microscope channel.

corporated in this scenario are scan channel and scan status.
Different science users initialize these workflows at

NERSC and BNL sites and both communicate with
stem control node. The scenario works as follows. A science
user at the NERSC site initiates NERSC-ORNL WF that
includes executing scan channel.py on the nersccomp node,
as shown Figure 15. Concurrently, another science user at
BNL is checking the scanning status of the Nion microscope,
whether it is available to launch the BNL-ORNL WF. Fig-
ure 16 shows output of check scan.py on the bnlcomp node.
The results show True scanning status while NERSC-ORNL
WF is running, and upon its completion scan status is False
which is an indication of the availability of microscope at
CNMS/ORNL.

The MS-VIT reflects the current facilities, and can be
extended to include those that are currently being built or
being designed for possible future deployments. Overall, the
motivation for developing such multi-site ecosystem VITs
range from developing solutions for certain current scientific
instruments without requiring their physical access to future
ecosystem designs.

VI. CONCLUSIONS AND FUTURE WORK

We presented eSolutions, both field-deployments and en-
abling virtual twins, to support the development and testing of
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Figure 16: Run a Pyro client module at a COMP node at BNL
site to probe the scan status.

remote experiment capabilities for science workflows over mi-
croscope ecosystems. Together, they enabled the development
of control and data channel implementations for a production
STEM ecosystem, and also proof-of-principle demonstrations
of a wide applicability of this VIT approach to multi-site
microscope ecosystems. The overall approach is applicable
to other science scenarios, such as automated, remotely con-
trolled chemistry and materials experiments. In these cases,
the custom software for instruments such as chromotographs,
potentiostats, flow reactors, and others, may be leveraged to
form ecosystems by wrapping their APIs using Pyro codes.

Future extensions of this work include GUIs that provide a
comprehensive dashboard of the entire ecosystem for scientists
and facility operators; performance assessment of the ecosys-
tem including the data and control channels and workflows;
and the development of production quality software stacks
for establishing and operating ecosystems by building up on
our experimental codes. It would be of future interest to
develop similar solutions to other classes of microscopes by
exposing their API or callable functions for network commu-
nications using Pyro modules, in particular, those supported
by serialEM. Other future work areas include integration of
machine-driven instrument control based on AI/ML methods
into microscope ecosystems, and frameworks that support
integrated workflows, for example, Jupyter notebooks that
integrate instrument operations and computations based on
measurements. It would of future interest to explore the ap-
plicability of the proposed solution based on parallel data and
control channels to other instruments such as those supported
by EPICS and Tango controls.

APPENDIX A
PYRO MODULES FOR STEM TASKS USING API

This Appendix describes Nion microscope tasks developed
as functions based on Swift API commands and exposed by
Pyro server modules on the instrument control computer.

A. Scan status

This STEM task checks the scan status on the microscope.
It is built as a function that returns True to the client as a
Boolean variable if the microscope is occupied with scanning
and False otherwise. The function is listed below.

def scan status(self):
1: scan = self.stem controller.scan controller
2: return scan.is playing

B. Scan channel

This STEM task function scans a microscope channel and
transfers a number of frames of the data matrices correspond-
ing to the scan. The function receives control parameters
related to the channel number and number of frames from its
peer Pyro client application, and returns arrays of the scanned
frames in that channel. The code for scan channel function is
shown below.

def scan channel(self, ch, num frames):
1: ct=1 #constant time
2: scan = self.stem controller.scan controller
3: scan.set enabled channels([ch])
4: frame parameters =\

scan.get current frame parameters()
5: frame time =\

scan.calculate frame time(frame parameters)
6: scan.start playing(frame parameters)
7: time.sleep(frame time * num frames + ct)
8: frames list =scan.grab buffer(num frames)
9: scan.stop playing()

10: data lst= [frame[0].data for frame in frames list]
11: return pickle.dumps(data lst)

First, the scan is initialized and enabled to scan a channel ch
(lines 2 and 3). Then the scan is triggered (line 6) and waited
for a specific time to gather the frames (line 7). This time is
calculated by multiplying the number of frames num frames
with the frame time. Here we added a constant time ct to
ensure a proper scanning time is applied to the frames. After
that, the frames are stored in frames list (line 8), and the scan
is stopped (line 9). Finally, the data of the scanned frames are
extracted (line 10) and serialized to be wired back to the client
(line 11).

When the client module receives the data, it is deserialized
and stored in another data object to be ready for analysis. The
serializing and deserializing processes are performed using the
pickle python package [26].

C. Probe position

This task sets the probing position for the scanned data
using the coordinates provided by the associated Pyro client
application. The function for this task is explained below.
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def probe position(self, x coor, y coor):
1: print(f’probe state:\

self.stem controller.probe state’)
2: print(f’current position:\

self.stem controller.probe position’)
3: if x coor == y coor == 0.0:
4: value = None
5: else:
6: value = Geometry.FloatPoint(y=y coor,x=x coor)
7: self.stem controller.probe position = value

The task provides the status of the current probing state and
the position (lines 1 and 2) before changing the focus to the
new position (lines 3-7).
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