2211.06918v1 [cs.DC] 13 Nov 2022

arxXiv

Towards a Dynamic Composability Approach for
using Heterogeneous Systems in Remote Sensing

Ilkay Altintas
University of California, San Diego
La Jolla, CA, USA
ialtintas@ucsd.edu

Adrien Trouillaud

Admiralty University of California, San Diego
Seattle, WA, USA La Jolla, CA, USA
adrien @admiralty.io cirving@sdsc.edu

Mahidhar Tatineni
University of California, San Diego
La Jolla, CA, USA
mahidhar @sdsc.edu

Larry Smarr
University of California, San Diego
La Jolla, CA, USA
Ismarr@ucsd.edu

Abstract—Influenced by the advances in data and computing,
the scientific practice increasingly involves machine learning and
artificial intelligence driven methods which requires specialized
capabilities at the system-, science- and service-level in addition to
the conventional large-capacity supercomputing approaches. The
latest distributed architectures built around the composability of
data-centric applications led to the emergence of a new ecosystem
for container coordination and integration. However, there is
still a divide between the application development pipelines of
existing supercomputing environments, and these new dynamic
environments that disaggregate fluid resource pools through
accessible, portable and re-programmable interfaces. New ap-
proaches for dynamic composability of heterogeneous systems
are needed to further advance the data-driven scientific practice
for the purpose of more efficient computing and usable tools
for specific scientific domains. In this paper, we present a novel
approach for using composable systems in the intersection be-
tween scientific computing, artificial intelligence (AI), and remote
sensing domain. We describe the architecture of a first working
example of a composable infrastructure that federates Expanse,
an NSF-funded supercomputer, with Nautilus, a Kubernetes-
based GPU geo-distributed cluster. We also summarize a case
study in wildfire modeling, that demonstrates the application
of this new infrastructure in scientific workflows: a composed
system that bridges the insights from edge sensing, AI and
computing capabilities with a physics-driven simulation.

Index Terms—Composable Systems, Kubernetes, Multi-Cluster
Federation, Artificial Intelligence, Remote Sensing

Identify applicable funding agency here. If none, delete this.

Ismael Perez
University of California, San Diego
La Jolla, CA, USA
i3perez@sdsc.edu

Christopher Irving

Thomas DeFanti
University of California, San Diego
La Jolla, CA, USA
tdefanti@ucsd.edu

Dmitry Mishin
University of California, San Diego
La Jolla, CA, USA
dmishin@sdsc.edu

John Graham
University of California, San Diego
La Jolla, CA, USA
jjigraham@ucsd.edu

Shawn Strande
University of California, San Diego
La Jolla, CA, USA
strande @sdsc.edu

Michael L. Norman
University of California, San Diego
La Jolla, CA, USA
mlnorman@ucsd.edu

I. INTRODUCTION

The last two decades have seen a tremendous increase in
the volume and complexity of data originating from a variety
of sources, including large scientific instruments, simulations,
social media, and the Internet of Things (IoT). The need
to analyze such data has driven equally impressive gains in
deep learning techniques and computer architecture. As a
consequence, researchers have developed scientific workflows
that run on a continuum of resources, providing near real-time
capabilities for processing these data streams.

In addition, availability of new processing units and com-
puting environments enables unprecedented improvements in
scientific software libraries and services optimized for spe-
cialized processors. While some processors can be more
amenable to simulations in certain fields of study (e.g., 1000s
of processing units and high-memory machines required to
scale the recursive algorithms of cosmology and physics),
other types of processing units, e.g., graphics-processing units
(GPUs), Field Programmable Gate Arrays (FPGAs) and tensor
processing units (TPUs), can accelerate the data-intensive
matrix-multiplication algorithms used in machine learning
(ML) or neural networks for computer vision. However, tra-
ditional high-performance computing infrastructure is mostly
built around enabling computational simulations with limited
capabilities for supporting the ever-growing needs of data-
driven science, which requires convergence of such hetero-

HPC/HTC

Observed Parameterization 1
Data ML/AI (Select Interesting
Collection Science using Al/ML)
Al/ML

Fig. 1. An Al-integrated heterogeneous workflow.

Al (Big Data/Edge)

geneous capabilities.

Such a convergence between big data, artificial intelligence
(AD) and computational advances has the potential for un-
precedented advances in the scientific endeavor [1]], pushing
the boundaries of existing systems and requiring seamless
and permanent integration of data source instruments and the
computing ecosystem to enable closed-loop workflows that
facilitate linkages between observation, experimentation and
simulation based approaches.

As an example of closing the loop between observation and
simulation, Figure [I] illustrates a typical dynamic data-driven
application workflow. Such applications requires analyzing
real-time data to identify parameterization of a downstream
ensemble of models or simulations, the results of which can
further be analyzed for a closed-loop re-parameterization,
e.g., akin to the data-driven wildfire modeling workflows in
WIFIRE [2]. When we look at the computing ecosystem
required by such a workflow, the first half of the workflow
requires Al capabilities involving big data and edge computing
instead of a conventional high-performance system. For exam-
ple, a number of ML methods can run using regular GPUs and
other processing units like tensor and intelligence units, and
edge devices might require down-scaling of existing methods.
Solving such problems require the ability to use and balance
extensible heterogeneous capabilities and high performance
capacity.

The workflows with high-heterogeneity needs as the one de-
scribed above can benefit from seamless and dynamic compo-
sition of diverse and distributed compute, storage and network-
ing resources as well as integration of heterogeneous software
services. We refer to this distributed system integration, which
goes beyond the bounds of a single computing system, as a
composable system. The simplest definition of a composable
system is “an infrastructure that composes into an optimal
configuration to meet application demands”, leveraging an
ecosystem of middleware components and microservices to
enable efficient management, coordination and allocation of
physical resources. The strength of a composable system is its
ability to allow application workflows to leverage specialized
hardware or other components without requiring that they be
physically deployed within a single supercomputer or cluster.

A conventional system to solve a scientific problem would
consists of some hierarchy of components melded together
in a pipeline which can be executed on discrete data and
system components. In contrast, a composable system is a
form in which a conventional system has fulfilled a series
of higher-order requirements such that the system can now
be considered “composed”, and becomes a computational

resource basin through which data, users and solutions flow.
These requirements are summarized as:

« Interoperability: The use of containers, permanently de-
ployed microservices, and continuous integration/delivery
capabilities enables a constant hosting and evolution of
data-intensive workloads that can be composed within
applications composed of many steps [3]].

o Dynamic Scalability: The integrated application can be
composed of modules and services which scale inde-
pendently from one another, executing on distributed
platforms that best fit their system requirements. Mi-
croservices can be deployed and updated ad infinitum,
allowing for constant real-time updates of the context of
each module.

o Interactive Access: Applications are accessible by
users through high-level programming environments, e.g.,
Python and Spark. Resources for interacting with soft-
ware and interfaces such as JupyterLabs are always avail-
able even if the underlying resource pools dynamically
change over time.

o Performance Measurement: Continuous measurements
related to service execution performance and system
availability is needed for dynamic scheduling and re-
scheduling throughout the workflow execution cycle.

Composable systems responding to these requirements unlock
the potential and capabilities to provide scalable solutions, and
to enable extensible solutions involving the rapid processor
advances and growing broader needs of data-driven science.

Container orchestration frameworks [4]] like Kubernetes
[5] enable on demand scale-out of disparate containerized
application stacks on optimized and distributed computing and
storage environments interconnected through high-speed low-
latency networks. In such a software defined infrastructure,
the hardware and storage is dynamically configured based on
varying demand.

Contributions. In this paper, we present a novel approach
for using composable systems in the scientific computing
domain. We describe the architecture of a first working ex-
ample of a composable infrastructure that federates Expanse,
an NSF-funded supercomputer, with Nautilus, a Kubernetes-
based GPU geo-distributed cluster which is a part of a bigger
federation of clusters TNRP (Towards National Research Plat-
form). We also summarize a case study in wildfire modeling
that demonstrates the application of this new infrastructure
in a scientific workflow: a composed system that bridges the
insights from edge sensing and computing capabilities with a
physics-driven simulation.

Outline. The rest of this paper is organized as follows. In
Section 2, we introduce a federated composable architecture
using Kubernetes. Section 3 describes the remote sensing case
study built on top of the composable hardware and storage
architecture described in Section 2. We review related work
in Section 4 and conclude in Section 5.

II. A COMPOSABLE ARCHITECTURE USING
MICROSERVICES

Multi-node distributed software architectures built out of
many containerized independent components communicating
through APIs is called a microservice architecture. For service-
oriented applications, such architectures have several benefits
including reliability and horizontal scalability compared to
monolithic architectures. With its ability to deploy and scale
containerized microservice instances as Kubernetes Pods, Ku-
bernetes provides capabilities to specify system requirements
(e.g., for memory and CPU) and enables applications inte-
gration using several microservice instances running across
a cluster of nodes, referred to as a Kubernetes Cluster.
Kubernetes provides a great flexibility in the types of hardware
that can be mixed in the same cluster. Assigning labels to the
nodes and reporting the available hardware on the node allows
users to conveniently choose the resources they would like to
use.

In this section, we first describe two independent Kubernetes
clusters, namely Nautilus and Enthalphy, which are respec-
tively constructed on top of the distributed Pacific Research
Platform (PRP) [6]] and the Expanse computer [7] at the San
Diego Supercomputer Center. We then describe how these two
Kubernetes clusters were federated into a composable infras-
tructure for integrated execution of heterogeneous workflow
applications.

A. Nautilus: A Distributed Big Data Processor

The rapid rise of containers and Kubernetes technology in
the last years and wide adoption of those by both the private
sector and scientific community allowed the PRP’s prototype
of Kubernetes cluster built on top of network-measuring nodes
to become a widely adopted computing resource provider
for a broad scientific community and the frontier for testing
new technologies like FPGAs, new GPUs, other types of
accelerators, and new software projects.

The Nautilus hyper-converged cluster is the focus of the
PRP’s facilities and support for measurement and monitoring
as well as distributed computing and shared storage. Currently,
the Nautilus cluster aggregates a wide range and several
generations of GPUs from older NVIDIA 1080’s to newest
NVIDIA A100, several FPGA boards, wide range of nodes
from tiny 4-core to 96-core 4TB RAM and more, connected
with 10-100GB Science DMZ [_8]] networks and allowing all
this hardware to work together and use several kinds of geo-
distributed persistent storage virtualized by Kubernetes storage
drivers. To provide application users adequate storage for
their datasets, the PRP includes an extensible storage cloud,
currently at 2.3 PB of 10-18-TB disk drives embedded as data
capacitors using Ceph [9].

Ceph storage platform implements object storage on a dis-
tributed computer cluster, and provides interfaces for object-,
block- and file-level storage. Ceph aims primarily for com-
pletely distributed operation without a single point of failure,
and is scalable to the exabyte level. Ceph replicates data
and makes it fault-tolerant, using commodity hardware and

requiring no specific hardware support. As a result of its
design, the system is ultimately both self-healing and self-
managing, minimizing administration time and other costs.

In addition, to support the needs of application users to carry
out ML on their large datasets, Nautilus maintains machine-
learning FIONAS8s (low-cost, flash memory-based data servers
with 8 single-precision/32-bit GPUs) [10], making the PRP
a low-cost ML network for big data analysis, as well as a
data sharing network [11]]. This enables researchers to deploy,
share and jointly control their own computational and data
resources. Figure [2| shows the number of represented GPUs
per namespace (i.e., virtual Kubernetes clusters) representing
applications ranging from neural networks, time-series analy-
sis to protein folding.

However, even with such flexibility, the system is pushing
the boundaries of cross-architecture connectivity, e.g., adding
certain kinds of hardware to the cluster is not easy and can be
close to impossible. Some nodes for IoT devices are too tiny to
even handle the standard monitoring services installed on all
nodes in the cluster. Some nodes (e.g., ARM architectures for
reduced instruction set computing) are more easily managed as
a separate cluster. Some clusters just do not fit in Nautilus and
have to be managed by other teams, like Expanse and several
others. For these reasons, federation is the primary way of
expansion and composition for Nautilus. At the same time,
the wide range of Nautilus hardware can be made available to
other clusters through federation, requiring a composition of
different clusters to enable integrated heterogeneous applica-
tions with nodes available in Nautilus.

B. Expanse: Computing Without Boundaries

In the Fall of 2020, the San Diego Supercomputer Cen-
ter launched its newest National Science Foundation (NSF)-
funded supercomputer, Expanse [7]. Expanse supports thou-
sands of users of batch-oriented and science gateway comput-
ing. As summarized in Figure [3] Expanse also provides new
advanced capabilities and innovative operations that enables
research increasingly dependent upon heterogeneous and dis-
tributed resources composed into integrated and highly usable
cyberinfrastructure.

Each of Expanse’s 728 standard compute nodes are powered
by two 64-core AMD EPYC 7742 processors and contain
256 GB of DDR4 memory, while each of the 52 GPU node
contains four NVIDIA V100s (32 GB/GPU), connected via
NVLINK, and dual 20-core Intel Xeon 6248 CPUs. Expanse
also has four 2 TB large memory nodes.

The entire system, integrated by Dell, is organized into
13 SDSC Scalable Compute Units (SSCUs), comprising 56
standard nodes and four GPU nodes, and connected with 100
GB/s HDR InfiniBand. Every Expanse node has access to a 12
PB Lustre parallel file system (provided by Aeon Computing)
and 7 PB Ceph Object Store system.

The Expanse cluster is managed using the Bright Com-
puting HPC Cluster management system [12], and uses the
SLURM workload manager for job scheduling. While the
system is suited for modest-scale jobs as few as tens of

Frank Wuerthwein, UCSD

Manmohan Chandraker, UCSD
osqgpus (IceCube]

mc-lab

Xiaolong Wang, UCSD
ri-multitask

Xiaolona Wang, UCSD

Gary Cottrell, UCSD
guru-rosearch

5 m

N o
4 /]
POt Igor Sfiligol, UCSD Vineet Bafpa, UCSD
PLATFORM Isfiligel ecdna

Fig. 2. Nautilus GPU usage by group (users from different Kubernetes namespaces) in 2020 on a stacked line graph. GPU usage is shown from January to
December (x-axis) and counting the number of GPUs used (y-axis) by groups. The yellow arrow annotations with color-coded show the different groups and

Nuno Vasconcelos, UCSD

Xiaolong Wang, UCSD
hand-object-interaction

Frank Wuerthwein, UCSD
cms-ml

their usage.

HPC RESOURCE

13 Scalable Compute Units
728 Standard Compute Nodes
52 GPU Nodes: 208 GPUs

4 Large Memory Nodes

DATA CENTRIC ARCHITECTURE

12PB Perf. Storage: 140GB/s, 200k IOPS
Fast 1/0 Node-Local NVMe Storage

7PB Ceph Object Storage
High-Performance R&E Networking

® 4

REMOTE CI INTEGRATION

v

Heterogeneous Resources

LONG-TAIL SCIENCE
Multi-Messenger Astronomy
Genomics

Earth Science

Social Science

INNOVATIVE OPERATIONS
Composable Systems
High-Throughput Computing
Science Gateways
Interactive Computing
Containerized Computing
Cloud Bursting

=

Open Science Grid

Fig. 3. Overview of the capabilities of Expanse. With the strong focus to target the long-tail of science, Expanse will provide a new feature to compose with

Kubernetes clusters via a federation layer and the main focus of this paper.

edge

Public Cloud

GPU

User
Web

User submits
request for
composable system.

Portal

provisioned
Bright Cluster Manager

Expanse

Fig. 4. The Composable Systems Framework of Expanse. The cluster is
dynamically scaled into the slurm (shown in Orange) and Kubernetes (shown
in blue) partitions via cm-scale.

cores to several hundred cores, Expanse also handles high-
throughput computing jobs via integration with the Open
Science Grid , which can have tens of thousands of single-
core jobs, and provides connectivity to commercial clouds via
the job queuing system. A low-latency interconnect based on
Mellanox High Data Rate (HDR) InfiniBand supports a fabric

topology optimized for jobs of one to a few thousand cores
that require medium-scale parallelism.

One of the key innovations of Expanse is its ability to
support composable systems, allowing researchers to create
a virtual cluster of resources, for a specific project and then
re-compose it as needed. Composable systems workloads that
integrate Expanse use Kubernetes through the Bright Cluster
Manager [12]], as depicted in Figure] Bright Cluster Manager
includes capabilities for configuring, managing and deploying
Slurm and Kubernetes-based clusters from a single interface
and includes features to dynamically re-provision nodes from
the same hardware pool to run either under Slurm or Ku-
bernetes based on resource needs. We name this Kubernetes
cluster in Expanse Enthalpy.

Bright Cluster Manager automates many of the steps that
would otherwise require manual administrative intervention
using Kubernetes commands. The cm-scale tool within Bright
Cluster Manager is a top-level meta-scheduler that can monitor
workloads and dynamically re-purpose a set of compute nodes
for Kubernetes. The task of provisioning a new cluster, or
potentially joining an existing one is simplified, creating
additional possibilities for users to automate their workflows
and leverage the existing containerized software repositories.

The left box titled “EXPANSE Cluster” in Figure [5] further
illustrates the details of the cm-scale resizing of nodes and the
Ceph based storage cloud integration. A multi-user JupyterLab
[14] hub instance running as an interactive application devel-
opment interface enables deployment of applications on top
of the Kubernetes microservice architecture.

Although the task of provisioning Kubernetes clusters is
already handled by Bright Cluster Manager, joining other
clusters either directly or using federation tools has multiple
options (e.g., [15]-[17]) and required future investigation
before Admiralty was used for this purpose.

C. Federation Architecture

Figure [5] shows the federation architecture that was used
to compose Nautilus and Enthalpy Clusters for seamless
workload offloading between these clusters. In this section,
we describe this federation architecture using Admiralty [[16]]
and the capabilities offered by Admiralty that made it possible.

Admiralty connects the control planes of Kubernetes clus-
ters. Two clusters are said to be connected as source and
target when controllers in the source cluster (e.g., run by the
Admiralty agent) communicate with the Kubernetes API of
the target cluster. Just like controllers within a single cluster,
controllers in either cluster may communicate using the tar-
get cluster’s Kubernetes API as a message channel. Target
clusters are represented by virtual nodes in corresponding
source clusters. This is done by using the virtual kubelet - a
logical component running inside the cluster which represents
a physical node and allows scheduling workloads on a non-
existing node. The proxy pods running on a virtual kubelet
look like real, but those just clone the state of remote pods
and allow watching the state of those from a local cluster.

Pods in the source cluster labeled to be federated are
replaced with special proxy pods, which look like regular
ones but don’t run a workload. Admiralty proxy scheduler
connects to remote cluster(s) using credentials obtained during
the federation set up. In target cluster a pod chaperon is
created. Pod chaperon annotations are used as two-way cross-
cluster communication channels between proxy and candidate
schedulers to orchestrate scheduling and binding cycles. When
scheduling a proxy pod (to bind it to a virtual node), the
proxy scheduler doesn’t know the hardware specs, policies
and current utilization of the target clusters. It does not filter
based on aggregate data, which wouldn’t be accurate. Instead,
it sends candidate pods to all target clusters. The candidate
schedulers have all the knowledge required to determine if
those pods can be scheduled by using the Scheduling Frame-
work [18]] - the special Kubernetes extension making it easy to
extend the standard Kubernetes scheduler with custom logic.
After scoring the virtual nodes that passed the filter (based on
aggregate but good enough data this time), the proxy scheduler
elects one candidate pod as the delegate pod. Eventually, the
delegate pod is bound, the proxy pod is bound, and all other
candidate pods are deleted.

This scheme allows scheduling the pods according to all
cluster policies set up by remote cluster admins, which would

be impossible if federation layer tried to mimic the actual
cluster scheduler. Attempts to do this would always lag behind
the actual cluster logic development and it would take too
much effort to keep up with the cluster development.

Clusters and their connections form a directed graph. In
particular:

o Saying that cluster A is a source of cluster B is equivalent
to saying that cluster B is a target of cluster A.

o Each cluster can be a source and/or a target of multiple
clusters.

o Connections can go both ways.

o Clusters can target themselves.

This allows forming multiple federation topologies. Clusters
can form a central control plane, where a single cluster is
controlling several others (Figure [7). This is common for
other types of federation currently existing in Kubernetes
ecosystem. It is also possible to form a burst type of federation,
where workloads will optionally go to another cluster, most
commonly into cloud. This is useful to offload some heavier
types of workloads when the local cluster resources are not
enough to serve the demand (Figure [8). The most commonly
used in Nautilus type of federation is decentralized, in which
every cluster is on the same level with others, and users
are creating connections that fit their needs in all possible
directions (Figure [9).

To run an offloaded workload in already federated names-
pace, a user should properly annotate the workload (Kuber-
netes pod, job or deployment), which will signal to Admiralty
that it should consider other cluster for this workload. The
Admiralty scheduler will then make a decision for placement
and will go through the workflow described above to launch
the workload.

The architecture of Admiralty makes it unique among other
federation technologies in the way it works with Kubernetes.
While others are adding additional layers on top of Kubernetes,
Admiralty integrates with existing infrastructure and API. The
result is the absence of additional client tools and abstractions,
where the same API is used to send workloads between
clusters and retrieve the results. Admiralty is a native way
for Kubernetes clusters to talk to each other.

III. CASE STUDY: WILDFIRE MODELING AT THE DIGITAL
CONTINUUM

We present a heterogeneous workflow that spans multiple
compute environments from Edge to HPC to solve a complex
wildland fire science problem.

Wildland fires have destroyed 4% of California in 2020,
the worst fire season in history. A common observation is
that major destruction by fires is a worldwide trend, and fire
behavior is changing due to a combination of natural and
anthropogenic factors, and frequency of catastophic fires is
increasing [19]. Preventing the propagation of wildfires relies
heavily on observations to be able to deploy resources and
firefighters to combat the spread of wildfires. There is no doubt
that having the right tools to combat both the initiation and
propagation of wildfire is key to preventing events present an

EXPANSE cluster

Jupyter
notebooks & O
--00-

Store the state

(uses internal -

cluster networking)

9 Oompute®l® \‘ A
0
ngh @ bloc

00, N
.

Access tfie job datg — - = ="~

Access fhejob data
Can use external
network

Nautilus cluster

nodes Kubernetes nodes e — o
. ubernetes nodes
cm-scale Q
resizing| = Federated composable systems
. M namespace
I
dtpviertad Admiralty.io
federation

Fig. 5. Federation of Enthalpy and Nautilus as a Composable Cluster. Left: The resizable node and storage architecture of the Enthalpy Kubernetes Cluster

on Expanse. Right: Nautilus Cluster with the federated composable namespace.

S

SOURCE MUTATING POD
POD ADMISSION WEBHOOK

>
«——MUTATE———|
PROXY

PROXY
SCHEDULER

DATA PLANE
CONTROL PLANE

POD
CHAPERONS

POD CHAPERON

CANDIDATE
CONTROLLERS PODS

UPDATE STATUS- =
GARBAGE COLLECTED-

\AAJ DELEGATE
POD

(ZLUSTERS

CANDIDATE

SCHEDULERS

Fig. 6. Admiralty scheduling diagram between a source and target clusters with all the events that are happening on both the control and data planes shown

in white and blue, respectively.

MANAGEMENT CLUSTER

® &% B %

WORKLOAD CLUSTERS

Fig. 7. Admiralty federation central control plane

economic burden to our economy. This case study provides
the next step to providing firefighters with the right tools
to combat wildfires. The NSF-funded WIFIRE project
(wifire.ucsd.edu) took the first steps to tackle this problem,
successfully creating an integrated system for wildfire mon-
itoring, simulation, and response. Today, WIFIRE provides

SECONDARY cLoub
CLUSTER

Fig. 8. Admiralty federation cloud bursting

an end-to-end management cyberinfrastructure (CI) with inte-
grated data collection from many real-time and archived data
sources, knowledge management through AI, and modeling
wildfire behavior using a plethora of community-developed
wildfire modeling and simulation services at the digital con-
tinuum using many modes of computing.

Cgm
o4

PEER CLUSTERS Y

Fig. 9. Admiralty decentralized federation

Al

Smoke Detection and Ignition
Location with Uncertainty

Edge

Collect
Fire Imagery

Integrated
Model
Product

Throughput
Fire Behavior
Modeling
Ensemble

Fire Perimeter
with
Uncertainty

Data Assimilation
Parameterization using
Kalman Filtering

bii 'FueI]

Fuel Databases C

Weather Prediction

C bi

d Weather
Observed Weather

Fig. 10. A conceptual set of steps for Al-driven fire modeling ensembles at
the digital continuum from edge to cloud to HPC.

Wildfire behavior modeling uses data involving field obser-
vations of fire, predicted and observed weather, and fuel data
coming from various sources. Given a fire ignition point or an
ongoing fire perimeter as a polygon, the forward spread of a
fire from that point or polygon can be modeled using weather,
vegetation and landscape data for that location. Although there
are opportunities to use composable microservices and Al at
different steps of such an integrated workflow as illustrated in
Figure[I0] in this case study, we focus on smoke detection and
localization using mountaintop camera images and modeling
the behavior of the fire based on the localized ignition point
in a virtual and proof-of-concept scenario.

Automatic detection of a fire ignition or the perimeter of an
ongoing fire is still a research topic that combines capturing
imagery through remote sensing and analyzing the captured
imagery through AI [20]. Any infrastructure built to enable
these research efforts should provide support for data hosting,
model training, model deployment and inference steps of the
associated Al process. However, once reliable Al methods for
this purpose are available, they have the potential to provide
unprecedented edge intelligence capabilities in this domain.
This potential made real-time smoke detection also one of the
scientific case studies for the Sage Al on the edge project [21].

Sage [22]] is an NSF-funded cyberinfrastructure that sup-
ports Al on the Edge with the primary aim to move Al to

the edge. To this end, Sage deploys sensors with associated
accelerators that can executed ready to schedule ML models,
with an end goal to provide more than just a sensor value
but inference-based insights based on the application’s goal.
The Sage software stack is a big component of this case
study which further advances the scientific needs for wildfire
science.

Figure [I1] shows the architecture of the Smoke detection
and wildfire modeling closed loop workflow. The rest of this
section describes how this workflow was made possible in
a composable system using a virtual deployment of Sage
on Nautilus and WIFIRE’s fire modeling services across the
federated clusters.

1) Edge: The edge compute environment consists of the
sensor data acquisition system (HPWREN cameras [23]]) and
two Sage plugins that are part of the Sage software stack on
a blade edge server. The first plugin is a camera plugin that
is acquiring images at a higher frame rate than the normally
deployed HPWREN camera and providing images to the other
plugin. The smoke inference plugin (the second plugin) is
a trained deep learning model that classifies acquired image
from the previous plugin as either smoke or no smoke with a
specific confidence level. The smoke plugin will then generate
a message with basic information related to the inference
done by the AI pre-trained model and send the message to
the Sage Data Sensor Storage. The Al pre-trained model is
obtained from the cloud through the Sage REST API which
is fetching data from the S3 object storage denoted as Sage
Object storage. Both the Sage Object Storage and Data Sensor
Storage are part of Ceph which are shared between Expanse
and Nautilus.

The composable aspect of this system is highlighted in
the Expanse and Nautilus sections of the architecture shown
in Figure [TI] This is due to the nature of the demanding
computing requirements to run an ensemble of fire simulations
per each camera on either Expanse or Nautilus (cloud side).

2) Expanse: The first component is the training process
which required a GPU node. The second component is the
WIFIRE simulation workflow which only require a large
memory CPU-based node. Expanse and Nautilus shared a
common namespace called Enthalpy which is where the train-
ing and simulation jobs are being federated through Admiralty.
Depending on the availability of either compute resource on
each cluster, the workflow will be executed via the federation
layer of the Composable System.

During the training process a convolutional neural network
model is trained with data from the Fire Ignition Library [24]]
which is an open source image library that consist of historical
fires that were labeled smoke or no smoke 40 minutes before
and after the time that a fire started and become visible
from the HPWREN cameras. The library is also stored in
the Sage Object Storage and accessible to both Expanse and
Nautilus through either the REST API or Ceph. Furthermore,
the training process is deployed on Enthalpy which can either
run on Expanse or Nautilus. Due to the mature of the problem
the time to solution needs to be minimized which is possible

ownload Al Edge Model (usually its cached on the Edge).

[Smoke Detection Workflow - Al Edge Model

Store Inference

Results with Images Saee

Detection
ML Model

Data

Get Image

HPWREN
Camera <

Upload Data

RabbitMQ

Get Model
Results and
Images

Uploader

Sage Data
IRepository|

Trigger Fire
Simulations

WIFIRE Workflow

Launch

WIFIRE AP] | Fire Model WIFIRE

Fire Model
Results

Trigger trainning

WIFIRE (optional)

Proxy Farsite

Webhook

Training Workflow

Determine
new

Launch
Trainning

Get new inference
results with images

trainning
data

with new
data

Upload new version of Al Edge Model

Expanse
(Kubernetes Cluster)

NRP Nautilus
(Kubernetes Cluster)

Edge
(NVIDIA Edge Device)

Fig. 11. Composition of wildfire smoke detection and localization at the edge with fire modeling on the cloud and HPC.

with the federation layer. In addition, the re-training step is
triggered by the smoke detection message from the Edge with
high confidence level and the training algorithm is executed
as a batch process. This way, the newly acquired images
(with high accuracy of smoke) from the Edge are used to
continuously re-train the model. This allows us to minimize
the need of human-labeled images and acquire more images.

In the course of the wildfire workflow, the smoke detection
message from the Edge launches the fire computational model
with the contents of the message as the input to the model to
simulate the propagation of the fire. For this workflow, the
compute needs are only CPU based.

3) Nautilus: Aside from the deep learning training and
wildfire simulation workflow, Nautilus also host the Sage
microservices such as the Sage REST API and the Lambda
Trigger. The Lambda Trigger is a microservice that is respon-
sible to launch a new ML model on newly acquired image
data or to run the wildfire simulation workflow from the ML
inference done on the Edge. The Sage REST API is a way to
access the smoke detection deep learning model and training
data for an outside services that is not part of Ceph. This is
primarily the smoke detection plugin on the Edge that needs
to have a trained ML model to perform the inference.

IV. RELATED WORK

Although the concept of a composable system is not neces-
sarily new, this work presents, for the first time, the compo-
sition of an XSEDE (https://www.xsede.org/) supercomputer
that has both a Kubernetes and Slurm partitions (Expanse)
and a Kubernetes cluster (Nautilus). This new type of system
will enable scientist to tackle their domain-specific problems

with scientific workflows that can seamlessly produce closed
loop workflows. Furthermore, scientists that have an XSEDE
allocation will have access to a composable system and further
push the boundaries of their scientific application.

There are a couple of APIs designed or systems that
are using federation across multiple Kubernetes clusters
and can potentially create a composable system. Con-
sul(https://www.consul.io/) from Hashicorp federates multiple
Kubernetes clusters and also between Kubernetes clusters
and virtual machines. Openstack’s API for federation across
multiple Kubernetes cluster is called Magnum Federation
API. The upbound.io federation tool crossplane.io is great for
managing several clusters running in cloud providers (AWS,
GCP, Azure, Alibaba) from another cluster to create multiple
custom resources and is not useful for single-level connections
between clusters in TNRP, and makes it hard to federate
clusters with different ownerships.

Composable system described in this paper helps to build
the distributed workflows across several clusters, requiring
single-level connections between clusters. Although the use
of above-mentioned systems and APIs should be investigated
for such use, at the time of the development of the paper, no
such workflows were available.

V. CONCLUSIONS AND FUTURE WORK

This paper describes a federation architecture to enable a
composable infrastructure to ensure seamless integration of
heterogeneous compute and storage resources using the Ku-
bernetes ecosystem, ensuring interoperability, dynamic scala-
bility, interactivity and performance monitoring of applications
workflows. An application pattern involving Al data pipelines

and processes for model training, inference and deployment,
and combining the AI processes with big data and real-
time simulation requirements were discussed. In alignment the
eScience conference focus and audience, the paper is meant as
an overview of a case study that highlights the design and use
of composable systems. The contributions are significant from
this implementation point of view as this is the first time such
a heterogeneous workflow was implemented across multiple
NSF resources.

We believe the wildfire heterogeneous workflow is repre-
sentative of many applications and paves the way for usage
of composable systems in a generalizable fashion including:
(i) Al-driven simulations, such as the Al-driven exploration
of time-dependent dynamics of molecular systems [25], to be
deployed seamlessly; (if) big data analysis at scale, e.g., Al-
integrated analysis of time-series data coming from wearables
[26]); and (iii) dynamic-data driven applications for urgent sce-
narios requiring large-memory and on-demand data parallelism
at the same time, e.g., [27].

Performance analysis related to the case study workflow is
left out of focus. Careful measurement and analysis of a step
by step Al-integrated composable workflow can enable reduc-
tion of execution time and energy use significantly through
dynamic resource configuration via Kubernetes. Grafana dash-
boards (e.g., Figure [2) are used to continuously monitor
resource usage

As part of the future directions, we will integrate the
performance measurements collected from composed clusters
through a dashboard that provides visualization and health
monitoring of the infrastructure and services. We will provide
user-facing tools for heterogeneous workflow development,
deployment and scheduling process integration in a way that
aligns with and supports a multi-cluster user allocation and
authentication process. Moreover, we will focus on storage
federation in networks of clusters, which is not possible in the
current architecture.

VI. ACKNOWLEDGMENTS

The authors would like to thank the WIFIRE and WorDS
teams for their collaboration and support of the case study.
Expanse , PRP, CHASE-CI and SAGE are supported through
the NSF grants 1928224, 1541349, 1730158 and 1935984,
respectively. The wildfire modeling case study was supported
by NSF grants 1331615 and 2040676.

REFERENCES

[1] R. Stevens, V. Taylor, J. Nichols, A. B. Maccabe, K. Yelick,
and D. Brown, “Ai for science,” 2 2020. [Online]. Available:
https://www.osti.gov/biblio/1604756

[2] I. Altintas, J. Block, R. de Callafon, D. Crawl, C. Cowart, A. Gupta,
M. Nguyen, H. Braun, J. P. Schulze, M. Gollner, A. Trouve, and
L. Smarr, “Towards an Integrated Cyberinfrastructure for Scalable Data-
driven Monitoring, Dynamic Prediction and Resilience of Wildfires,” in
Proc. of the Int. Conf. on Computational Science, ICCS 2015, 2015, pp.
1633-1642.

[3] P. Bajcsy and N. Hotaling, “Interoperability of Web Computational
Plugins for Large Microscopy Image Analyses.” [Online]. Available:
https://doi.org/10.6028/NIST.IR.8297

[4]
[5]
[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]
(17]
(18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

D. Bernstein, “Containers and cloud: From Ixc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

“Website for kubernetes production-grade container orchestration
system,” 2021. [Online]. Available: https://kubernetes.io/

L. Smarr, C. Crittenden, T. DeFanti, J. Graham, D. Mishin,
R. Moore, P. Papadopoulos, and F. Wiirthwein, “The pacific research
platform: Making high-speed networking a reality for the scientist,”
in Proceedings of the Practice and Experience on Advanced
Research Computing, ser. PEARC ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3219104.3219108

“Website for the expanse system at the san diego supercomputer center,”
2021. [Online]. Available: https://www.sdsc.edu/services/hpc/expanse/
E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The
science dmz: A network design pattern for data-intensive science,” in SC
'13: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1-10.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation, ser. OSDI *06. USA: USENIX Association, 2006,
p. 307-320.

“News article. fiona: Innovative network appliance for big data,” 2014.
[Online]. Available: https://gi.ucsd.edu/news-article.php?id=2342

I. Altintas, K. Marcus, I. Nealey, S. L. Sellars, J. Graham, D. Mishin,
J. Polizzi, D. Crawl, T. DeFanti, and L. Smarr, “Workflow-driven
distributed machine learning in chase-ci: A cognitive hardware and soft-
ware ecosystem community infrastructure,” in 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2019, pp. 865-873.

“Website for the bright cluster manager,” 2021. [Online]. Available:
https://www.brightcomputing.com/brightclustermanager

R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,
P. Avery, K. Blackburn, T. Wenaus, F. Wiirthwein, I. Foster, R. Gardner,
M. Wilde, A. Blatecky, J. McGee, and R. Quick, “The open science
grid,” in J. Phys. Conf. Ser., ser. 78, vol. 78, 2007, p. 012057.
“Website for the jupyterlab community code repository and documenta-
tion.” 2021. [Online]. Available: https://github.com/jupyterlab/jupyterlab
“Website for the consul service mesh solution,” 2021. [Online].
Available: https://www.consul.io/docs/intro.

“Website for the admiralty kubernetes cluster federation technology,”
2021. [Online]. Available: https://admiralty.io/

“KubeFed: Kubernetes Cluster Federation,” 2021. [Online]. Available:
https://github.com/kubernetes- sigs/kubefed

“Scheduling framework,” 2020. [Online]. Available: https://kubernetes.
10/docs/concepts/scheduling-eviction/scheduling-framework/

J. Salguero, J. Li, A. Farahmand, and J. T. Reager, “Wildfire trend
analysis over the contiguous united states using remote sensing
observations,” Remote Sensing, vol. 12, no. 16, 2020. [Online].
Available: https://www.mdpi.com/2072-4292/12/16/2565

K. Govil, M. L. Welch, J. T. Ball, and C. R. Pennypacker, “Preliminary
results from a wildfire detection system using deep learning on remote
camera images,” Remote Sensing, vol. 12, no. 1, p. 166, Jan 2020.
[Online]. Available: http://dx.doi.org/10.3390/rs12010166.

A. Scourtas, “Wildfire detection,” SAGE Blog, Aug 2020. [Online].
Available: https://sagecontinuum.org/science/wildfire-detection/
“Website for sage cyberinfrastructure for ai on the edge,” 2021.
[Online]. Available: https://sagecontinuum.org/

“Website for high performance wireless research and education
network.” 2021. [Online]. Available: http://hpwren.ucsd.edu/

“Labeled training data for smoke detection in the hpwren fire
ignition image library,” 2021. [Online]. Available: http://hpwren.ucsd.
edu/HPWREN-FIgLib

L. Casalino, A. Dommer, Z. Gaieb, E. P. Barros, T. Sztain, S.-H.
Ahn, A. Trifan, A. Brace, A. Bogetti, H. Ma, H. Lee, M. Turilli,
S. Khalid, L. Chong, C. Simmerling, D. J. Hardy, J. D. C.
Maia, J. C. Phillips, T. Kurth, A. Stern, L. Huang, J. McCalpin,
M. Tatineni, T. Gibbs, J. E. Stone, S. Jha, A. Ramanathan, and
R. E. Amaro, “Ai-driven multiscale simulations illuminate mechanisms
of sars-cov-2 spike dynamics,” bioRxiv, 2020. [Online]. Available:
https://www.biorxiv.org/content/early/2020/11/20/2020.11.19.390187

B. L. Smarr, K. Aschbacher, S. M. Fisher, A. Chowdhary, S. Dilchert,
K. Puldon, A. Rao, F. M. Hecht, and A. E. Mason, “Feasibility
of continuous fever monitoring using wearable devices,” Scientific

https://www.osti.gov/biblio/1604756
https://doi.org/10.6028/NIST.IR.8297
https://kubernetes.io/
https://doi.org/10.1145/3219104.3219108
https://www.sdsc.edu/services/hpc/expanse/
https://qi.ucsd.edu/news-article.php?id=2342
https://www.brightcomputing.com/brightclustermanager
https://github.com/jupyterlab/jupyterlab
https://www.consul.io/docs/intro
https://admiralty.io/
https://github.com/kubernetes-sigs/kubefed
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://www.mdpi.com/2072-4292/12/16/2565
http://dx.doi.org/10.3390/rs12010166
https://sagecontinuum.org/science/wildfire-detection/
https://sagecontinuum.org/
http://hpwren.ucsd.edu/
http://hpwren.ucsd.edu/HPWREN-FIgLib
http://hpwren.ucsd.edu/HPWREN-FIgLib
https://www.biorxiv.org/content/early/2020/11/20/2020.11.19.390187

Reports, vol. 10, no. 1, p. 21640, Dec 2020. [Online]. Available:
https://doi.org/10.1038/s41598-020-78355-6

[27] S. L. Sellars, J. Graham, D. Mishin, K. Marcus, 1. Altintas, T. DeFanti,
L. Smarr, C. Crittenden, F. Wuerthwein, J. Tatar, P. Nguyen, E. Shearer,
S. Sorooshian, and F. M. Ralph, “The evolution of bits and bottlenecks
in a scientific workflow trying to keep up with technology: Accelerating
4d image segmentation applied to nasa data,” in 2019 15th International
Conference on eScience (eScience), 2019, pp. 77-85.

https://doi.org/10.1038/s41598-020-78355-6

	I Introduction
	II A Composable Architecture using Microservices
	II-A Nautilus: A Distributed Big Data Processor
	II-B Expanse: Computing Without Boundaries
	II-C Federation Architecture

	III Case Study: Wildfire Modeling at the Digital Continuum
	III-1 Edge
	III-2 Expanse
	III-3 Nautilus

	IV Related Work
	V Conclusions and Future Work
	VI Acknowledgments
	References

