Evaluating the FITTEST Automated Testing Tools:
an Industrial Case Study

Cu D. Nguyen
Fondazione Bruno Kessler
Trento, Italy
Email: cunduy @fbk.eu

Abstract—This paper aims at evaluating a set of automated
tools of the FITTEST EU project within an industrial case
study. The case study was conducted at the IBM Research
lab in Haifa, by a team responsible for building the testing
environment for future development versions of an IBM system
management product. The main function of that product is
resource management in a networked environment. This case
study has investigated whether current IBM Research testing
practices could be improved or complemented by using some
of the automated testing tools that were developed within the
FITTEST EU project. Although the existing Test Suite from
IBM Research (TS;.,,) that was selected for comparison is
substantially smaller than the Test Suite generated by FITTEST
(TSyittest), the effectiveness of TS f;::c5¢, measured by the injected
faults coverage is significantly higher (50% vs 70%). With respect
to efficiency, by normalizing the execution times, we found the
TSytittest runs faster (9.18 vs. 6.99). This is due to the fact
that the TSy:tcs: includes shorter tests. Within IBM Research
and for the testing of the target product in the simulated
environment: the FITTEST tools can increase the effectiveness of
the current practice and the test cases automatically generated
by the FITTEST tools can help in more efficient identification of
the source of the identified faults. Moreover, the FITTEST tools
have shown the ability to automate testing within a real industry
case.

I. INTRODUCTION

Software testing is the process of executing a program or
system with the intent of finding defects [10]. It is currently the
most important and widely used quality assurance technique
applied in the industry. It may require over 50% of devel-
opment budget and time [2]. Many test automation tools are
currently available to aid test planning and control as well
as test case execution and monitoring [S]. However, most of
these tools, particularly those used in industrial practice, share
a similar passive philosophy towards test case design, selection
of concrete test data and test evaluation (i.e. oracles). They
leave these crucial, time-consuming and demanding activities
to the human testers. The lack of automation of these important
testing activities means that the industry spends much effort
and money on testing, nevertheless the quality of the resulting
tests is sometimes low since they fail to find important errors
in the system.

FITTEST, an EU funded research project, aims to over-
come, at least to some extent, this problem. The FITTEST
project involves a consortium of diverse competence, from
execution monitoring, model-based testing [4], combinatorial
testing [12], to search-based software engineering [7]. The

Bilha Mendelson, Daniel Citron, Onn Shehory
IBM Research Lab
Haifa, Israel
Email: {bilha, citron, onn} @il.ibm.com

Tanja E. J. Vos, Nelly Condori
Universidad Politécnica de Valencia
Valencia, Spain
Email: {tvos, nelly} @pros.upv.es

ultimate goal of the project is to develop an Integrated Testing
Environment (ITE for brevity) that consists of a suite of plug-
gable components that are being integrated for the FITTEST
automated and continuous testing approach and tool set[15].
Being continuous, this testing approach will be suitable for
testing fast evolving applications or those with dynamic and
adaptive behaviors. i.e. the types of systems are envisaged to
run on the Future Internet.

In this paper we present a case study for evaluating a subset
of the FITTEST components, specifically those components
that are responsible for Automated Test Case Design and Eval-
uation. The study has been executed at the IBM Research lab
in Haifa! within a simulated test environment for an industrial
system, called IT Management Product, or IMP for short. It is
a large-scaled networked system that controls and optimizes
resource management, such as creating and reconfiguring
virtual machines on demand. Experimental evaluation of some
of the techniques implemented in the FITTEST techniques
have already been conducted and presented in earlier work
[11]. In contrast, this study aims to obtain empirical evidence
of the applicability of these techniques within the context of
an industry team testing an industrial system. To this end we
present a “which is better” type of case study [9]. These case
studies are powerful since, although they cannot achieve the
scientific rigor of formal experiments, the results of a case
study can provide useful insights to help others judge whether
the specific technology being evaluated could benefit their own
organization. In order to assess tools, evaluative case study
research must involve realistic systems and realistic subjects,
as explicitly done in this study.

The contribution of this paper is twofold. On the one hand,
it describes promising results of the use of automated test tool
on an industrial case study. On the other hand, the study in
this paper can serve as an example that others can follow when
encountering the need to evaluate an automated testing tool.

The remainder of the paper is organized as follows: Section
IT describes the industrial context in which the study was
performed. Section III presents the case study design frame-
work, Finally, Section IV presents the results and Section V
concludes the paper.

I'This is a case study conducted by the Research team at IBM and does not
necessarily reflect the development and the testing process of IBM products.

II. CONTEXT- WHERE WAS THE CASE STUDY PERFORMED

The study was executed at IBM Research Lab in Haifa.
More specifically within the research team responsible for
building the testing environment for future developments of
an IT Management Product (IMP) (similar to [1]), a resource
management system in a networked environment (more details
in Section III-C1). At IBM Research Lab, the developers con-
duct limited amount of testing, the testing itself is conducted
by this designated research team. It is working to enable the
testing of new versions of the IMP by developing a simulated
environment in which the system is executed.

The testing activities, described in this paper, have been
done on IMP but in a simulated testing environment. The
objective of the team was to identify whether current testing
practices could be improved or complemented by using some
of the new testing techniques that were introduced by the
FITTEST EU project. For this purpose, the IBM Research team
has used the FITTEST techniques and compared the results
with the testing practices currently used during the initial steps
of the Systems Verification Test (SVT). Only this level of tests
was considered, since the next stage of the SVT testing is
conducted elsewhere in IBM and so is beyond this case study.

Finally, since the IMP is a mature system, and in order to
be able to measure fault-finding capability, several faults were
injected into it within the simulated environment to mimic
potential problems that had can be surfaced in such a system.

III. DESIGN OF THE CASE STUDY
A. Objective - What to achieve?

As indicated before, IBM Research wanted to evaluate the
FITTEST automated testing tools to see if they are applicable
to a selected System Under Test and how they compare to
current practice. What makes a testing tool applicable in
industry? First of all, it should be effective in finding faults!
Second, this should be done efficiently, i.e. in a reasonable
amount time. Finally, although finding faults in a reasonable
amount of time is important, the amount of effort to set up
and use the testing tools in the testing processes currently
implanted should be important too. Hence, following [14], we
focus on:

RQO1 [Effectiveness] Compared to the current test
suite used for testing at IBM Research, can the
FITTEST technologies contribute to the effective-
ness of testing when it is used in the testing
environments at IBM Research?

[Efficiency] Compared to the current test suite
used for testing at IBM Research, can the
FITTEST technologies contribute to the efficiency
of testing when it is used in the testing environ-
ments at IBM Research?

[Cost] How much effort would be required to de-
ploy the FITTEST technologies within the testing
processes implanted at IBM Research?

RO2

RO3

B. Cases or Treatments - What are being studied?

1) Current test case design techniques used at IBM Re-
search: The STV test designed for the IT Management Product

system used high level descriptions of complex customer use-
cases to support exploratory test case design. The objective is
to maximize the coverage of system use-cases.

2) The FITTEST tools for automated test case design and
evaluation: The FITTEST testing approach is shown in Figure
1 and contains four phases:

1) Logging - Run the target application (SUT) and
collect the logs it generates. This can be either
real usage by end users of the application in the
production environment, or test case execution in the
test environment.

2) Test-ware generation - Analyse the logs to infer dif-
ferent testwares (i.e. FSM models, Oracles, Domain
Input Specifications (DIS) and Test Cases).

3) Test Execution - The test cases are executed by
running the SUT.

4) Test evaluation - The outcome of the running the test
cases is evaluated using the oracles that are available.

For this case study, we instantiated two key components
and their underpinning techniques of FITTEST. The two
components are those responsible for Automated Test Case
Design and Evaluation: Logs2FSM and FSM2Tests, that are
done during the second phase (i.e. Test-ware generation):

o Logs2FSM, this component takes the logs generated
by running the IMP system within the IBM Research
simulation environment, and infers FSM models by
applying the k-tail event-based model inference ap-
proach [3]. The model-based oracles that also result
from this tool (see Figure 1) refer to the use of the
paths generated from the inferred FSM as oracles. If
these paths, when transformed to test cases, cannot
be fully executed, then the tester needs to inspect the
failing paths to see if that is due to some faults, or the
paths themselves are infeasible.

o FSM2Tests, this component takes the output models
of Logs2FSM and a Domain Input Specification (DIS)
file created by a tester for the IBM Research SUT to
generate concrete test cases. This component imple-
ments the M*C technique that combines model-based
testing and combinatorial testing presented in [11].
This basically consist in: (1) generating test paths from
the FSM (using algorithms that range from simple
graph visit algorithms, to advanced techniques based
on maximum diversity of the event frequencies, and
semantic interactions between successive events in the
sequence); (2) transform these paths into classification
trees using the Classification Tree Editor (CTE XL)?
[6] format, enriched with Domain Input Specifications
(DIS) such as data types and partitions; (3) generate
test combinations from those trees using t-way com-
binatorial criteria.

Since the system under test is an industrial one that is under
development, no access is provided for external bodies. That
is why IBM Research has to create a tool to transform the
concrete test cases generated by FSM2Tests to an executable
format (related to the “Automate Test Cases” oval in Figure 1).

Zhttp://www.berner-mattner.com

LOGGING

FEE!

Configured
Simulated
Environment

ANALYSE & INFER
MODELS
(LOG S2FSM)

SUT

RUN SUT

k'

COLLECT
LOGS

i 1 i
Model based
oracles

Fig. 1.
and Test evaluation.

Using this suite of tools, an input set of logs from IBM Reseach
is transformed to a FITTEST test suite, namely TS f;es:-

C. Objects of the study

1) The System Under Test (SUT) : The IBM IT Manage-
ment Product (similar to [1]) is a distributed application for
managing system resources in a networked environment. It
consists of a Management Server (MS) that is an application
that communicates with multiple managed clients and with
users of the management system (typically system admin-
istrators). Managed clients are physical or virtual resources
distributed over a network.

The IT Management Product system is used by IBM
customers for managing IBM hardware and virtual devices,
such as servers, Virtual Machines (VMs), switches and storage
devices. The application has been developed for several years
by IBM. IBM considers this application to be an important
product, and hence is keen on assuring its quality through test-
ing. IBM Research is developing the simulated environment to
allow better testing of the system. Consequently, this simulated
environment seems a good object for study.

The case study is to be performed on some new versions of
this simulated system which are still under development and
have not yet been released for customer use. Consequently,
the case study system shares structure and protocols with the
versions available to customers. As a result, public resources
available for production version are relevant to the case study
as well.

The term end-point is used in reference to the managed
resources on client nodes, from the point-of-view of the
management server. The MS executes operations on the end-
points either per requests from the users, or autonomously

TEST-WARE GENERATION

TEST EXECUTION [TEST EVALUATION

ﬁ Domain Input
=1 Specification |-,
Tester \

GENERATE
FSM TEST CASES
(FSM2TESTS)

AUT OMATE
TEST CASES

TEST
RESULTS

EXECUTE EVALUATE
TEST CASES TEST CASES

The control flow of the FITTEST Automated Test Case Design and Evaluation. It contains 4 phases: Logging, Test-ware generation, Test execution,

based on defined policy (e.g. a recovery attempt after an end-
point failure). The end-points have two-way communication
with the MS. The communication operations supported are
listed below (not all available for testing in this case study
though): 1. Discovery: MS finds what end points are reachable;
2. Control: MS sends commands (configuration, OS restart) to
end-points; 3. Query: MS queries status and configuration of
and-points; 4. Report: End-points report problems to MS, and
recovery from problems; and 5. Deploy: Deploy and obtain
disposed of end-points.

The MS keeps an inventory of the current managed re-
sources and their states in a standard database. The case system
supports several protocols and message structures. Yet, in the
case study, we are focusing only on HTTP messages. In the
case system, these are the easiest to capture, interpret, and
modify for case study purposes. Below we present an example
of two messages, a request GET and a response in JSON
format.

2013:02:28:17:20:08;GET
https://.../ibm.com:8422/ibm/.../rest/IMP/workloads/500165838;;200; {
"workload" : {
"hosts" : {

"uri" : "https://.../workloads/500165838/hosts"
I
"createBy" : "root",
"resilient" : "false",
"approvalRequired" : "false",
"oid" : "500165838",
"state" : {
"label" : "Started",
"igd" : 8
e
"virtualServers" : {
"uri" : "https://.../workloads/500165838/virtualServers"
I
"specificationVersion" : "0.0",
"changedDate" : 1362064498,
"metrics" : {
"uri"™ : "https://.../Server/500165838/.../monitordate"

b

In this message, at time 2013:02:28:17:20:08 there was a

TABLE 1. THE FAULTS INJECTED INTO THE SUT FOR EVALUATION

Num | Injected Fault

1F1 Fails to create unique new IDs

1F2 Fails to open a JSON file

1F3 Fails to validate workload size when resizing
1F4 Fails to delete workload fails

IF5 Fails to find a specific object ID

1F6 Fails to create workload when resources are not enough for a deployment
1F7 Fails to create a virtual server

1F8 Fails to create a virtual disk

1F9 Fails to get compatibilities

IF10 Fails to write to a JSON file

request to get the status of the workload with id 500165838.
On successful execution this service returns an HTTP status
code of 200 (OK) and the response in JSON format containing
relevant information about the workload. A full list of the
possible HTTP requests in the API of IBM IT Management
Product can be found at [1].

2) The existing Test Suite that was used for comparison
with current practice (TS;pm): The IBM Research team had
selected a set of the SVT tests as they were working on
an initial testing stage. The SVT tests focuses on high-level
and complex customer use-cases. It is done per release (2-3
times a year), and begins halfway through the release schedule.
Most tests are manual, e.g. creating a configuration (a set of
connected hardware devices), and running discovery by the
management server. Some tests are automatic - automated GUI
tests.

The tests that were chosen to form TS;,, are selected
from the manual tests and were those tests that the team had
identified as covering most of scenarios that are possible in
the SUT. For the sake of this case study, for each test case in
TS;»m, an activation script has been written in order to execute
each test case separately. Meaning, a test case is executed by
calling the corresponding script and after each run the system
is manually cleared to allow independence of the concrete tests
execution.

3) The faults that were injected: IBM Research has injected
10 representative faults into the SUT to help better evaluating
the different testing techniques. Those 10 injected faults were
based on real faults that were identified in earlier time of the
development and are listed in Table 1.

The faults were manually injected in the code of the
simulated environment. In order to distinguish them from other
failures, we added a comment in the log files generated by IBM
Research’s simulation environment that started with “Injected
bug”. In this case study we will use these injected faults as
a measurement to evaluate the fault-finding capability of the
FITTEST tools being used.

D. Subjects - Who apply the techniques?

The subjects are employees of IBM Research and FBK?,
a member of the FITTEST consortium.

The IBM Research subject was a 30-year old senior tester
from IBM Research with 10 years of software development
experience, 5 years of experience with testing of which 4 years
with a system similar to the IMP and the approach described

3 A research center located in Trento, Italy. URL: http://www.fbk.eu

in Section III-B1. The tester had no previous knowledge of the
FITTEST tools and holds a Computer Science degree.

The FBK subject was a researcher with more than 10 years
of software development experience and more than 5 years of
research experience in software testing and analysis.

E. Variables - What are being measured?

The independent variables of the study setting are: The
FITTEST testing techniques; the complexity of the industrial
system; TS;p,; the level of experience of testers of IBM
Research that will use the techniques; the injected faults.
The dependent variables are related those for measuring the
applicability of the FITTEST tools in terms of effectiveness,
efficiency and effort. Next we present their respective defined
metrics:

1) Measuring effectiveness:

a) amount of injected faults detected by both
Tsibm and Tsfittest
b) type of faults detected by both TS;;,, and
TS fittest
2) Measuring efficiency. For both TS;p,, and TSfissest:

a) size of the test suites: number of test cases
and number of events (or commands)
b) time needed to execute both the test suites

Moreover for TS fiiese We will measure:

c) size of the original logs: number of events/-
commands/requests
d) metrics about the created FSM: number of
nodes, number of transitions
3) Measuring effort in time (hours) for each of the sub-
jects that was needed to create TS;p,, and TS fizsest-

F. Protocol

We adopted the following steps in this case study in order
for the subjects to collaborate. At the same time, the protocol
respects the business policies applied in IBM that allow little
or no access to external parties.

1) Configure the simulated environment and create the
logs [IBM Research subject]

2) Select test suite TS;p,,, [IBM Research subject]

3) Write activation scripts for each test case in TS;p,,
[IBM Research subject]

4) Generate TS f;4405: [FBK subject]

a) Instantiate FITTEST components for the IMP

b) Generate the FSM with Logs2FSM

c) Define the Domain Input Specification (DIS)

d) Generate the concrete test data with
FSM2Tests

5) Select and inject the faults [IBM Research subject]

6) Develop a tool that transforms the concrete test cases
generated by the FITTEST tool FSM2Tests to an
executable format [IBM Research subject]

7) Execute TS;,, (run each activation script while man-
ually clear the system after each activation script)
[IBM Research subject]

8) Execute TSyises: [IBM Reseach subject]

GETVMContsolvirualAppl

GETIVMCon

GET/VMControlvirusl Appliances/{id}

GETIVMCghirolvitual Appliances/(ic

GET/VMControlvitual Appliances/{id) progress

ETAVMContrlistual Applian

GETIVMC:

-g..

VTGO vl Applances:{id) argets

mm\ virualAppliances

Fig. 2.

7165998 \GETVM

N S

A part of the model inferred for the case study. The model has 51 nodes and 134 transitions, inferred automatically. This figure illustrates how an

inferred model looks like. In fact, it is machine generated and there is no need for a tester to read the model.

@ p29.cte - CTE XL Professional - - o o
File Edit Diagram Search Tools Window Help

He ¢ [/ & & :[ahoms o -]B 1| A& | By | 00% PR o [Ece)

BE Outline &2 = 0| & plcte 3 =0

QlEE @l
o P29
5 p29_sequence
o START_GET/VMContr
& workloads 1D
@ workload_clzl
@ workload_clz2

D20

[—
{7029 sequence *

<2, S47_GET/V¥MControl

TART_GET/VMControfworkioads/{id} | [[S47_GET/VMContro/workioads/{id} | [[S29_GET/VMContr |

| 'S30_GET/VMControjvirtualservers/{id} | [[S28_GET/VMControljvirtualServers/{id}/ customizati

& workloads ID
@ workloed_clal

® workload_cl22 workloads_ID workloads_ID
<2, S29_GET/VMControl
& virtualServers 1D
@ virtualServers_ workload_clzt workioad_ck2 workload_clzt workioad_ck2

© virtualServers_

<2 530_GET/VMControl/:
&b virtualServers D

@ virtualServers_

© virtualServers_

<, 528_GET/VMControl/:
&b virtualServers D

@ virtualServers_

© virtualServers_

virtualservers_ID vitualservers_D vitualservers_ID

vitualServers_cizl vitualServers_ck2 virtualServers_czl virtualServers_cz2 witualServers_clzi virtualServers_ciz2

«

> S N 5

() PW-McDowell

O 1

0t

0 t2
3

0 1

O 15

[Properties 2

& Composition p29_sequence

" 3

Core Bionery) Value
Appesrance Children % Composition START_GET/VMControl/wrkloads (1), Composition S47_GET/VMControlworkloads/(e), Composition $29_GET/VMControlvirtua _| |
Autol it ke e
tolayou Name U= p29_sequence
1 Uy ' = Parent. <% Composition p29 il

Fig. 3. An example of a test sequence and the test cases generated for the sequence. Each test sequence is transformed to a classification tree with input

classifications. The combinations of input classes along the sequence are test cases that can be transformed to executable ones automatically.

IV. RESULTS AND DISCUSSION
A. Results

This section summarizes and discusses the results and
outcomes of this case study. We have followed the protocol
presented in the previous section to measure the variables
identified for the two test suites: TS;p,, and TS y;4cs¢. Table 11
contains the measures specific for the generated FSM model
that was used to generate the FITTEST test suite TS f;4¢s¢. For
illustrative reasons, part of this FSM can be found in Figure 2
and an example of a generated test sequence and corresponding
test cases from the CTE XL* can be found in Figure 3.

“http://www.berner-mattner.com/en/berner-mattner-home/products/cte

The figures give an idea how the models and test cases are
visualized. They are generated and used automatically without
human intervention. However, the tester can use graphical tools
like CTE XL to enhance the models and tests, e.g. to put
dependency on input data, if needed. In Table V the descriptive
measures for both test suites are listed related to size and effort
to create them. III contains the fault-finding capabilities of
both test suites and Table IV the execution times. Since we
only have one value for each test suite, no analysis techniques
are available and the tables in this section just present the
measured data on which the answers to the research questions
from Section III-A are based.

RQ1: Compared to the current test suite used for testing

TABLE II. DESCRIPTIVE MEASURES FOR THE FSM THAT IS USED TO

GENERATE TS f;1 ¢t

[Variable [|
Number of traces used to infer FSM 6
Average trace length 100
Number of nodes in generated FSM 51
Number of transitions in generated FSM 134

at IBM Research, can the FITTEST technologies contribute
to the effectiveness of testing when it is used in the testing
environments at IBM Research?

TABLE III. EFFECTIVENESS MEASURES FOR BOTH TEST SUITES WITH
RESPECT TO THE 10 INJECTED FAULTS. “0” MEANS THAT THE
CORRESPONDING FAULT WAS NOT DETECTED, WHILE “1” MEANS IT HAS
BEEN DETECTED.

IF1 IF2 IF3 IF4 IFS IF6 IF7 IF8 IF9 IF10
=TS_ibm 1 0 0 0 1 1 0 0 1 1
TS_fittest 1 1 1 0 0 1 0 1 1 1

As can be seen from Table V, the TS;;,, is substantial
smaller in size than the TS ;s in all parameters, this is one
of the evident results of automation. However, not only the
size of TS f4¢es¢ 1s bigger, also the effectiveness of TSfssests
measured by the injected faults coverage (see Table III), is
significantly higher (50% vs 70%). Moreover, if we would
combine the TS, and TSj;4es suites, the effectiveness
increases to 80%. Therefore, within the context of the studied
environment, for IBM Research the FITTEST technologies can
contribute to the effectiveness of testing and IBM Research has
decided that, for optimizing faults-finding capability, the two
techniques can best be combined.

RQ2: Compared to the current test suite used for testing at
IBM Research, can the FITTEST technologies contribute to the
efficiency of testing when it is used in the testing environments
at IBM Research?

TABLE IV. EFFICIENCY MEASURES FOR EXECUTION OF BOTH TEST
SUITES.
Variable TSibm normalized TSfittest normalized
by size by size
Execution Time 36.75 9.18 127.87 1.52
with fault injection
Execution Time 27.97 6.99 50.72 0.60
without fault injection

It can be seen from Table IV that the time to execute TS;p,,
is smaller than the time to execute TS f;4cs¢. This is due to the
number of concrete tests in TS f;1cs:. When we normalize the
execution time to the number of tests in the test suit, we see
that per test, the TS f;44¢+ €xecution time is much smaller (1.52
vs. 9.18 minutes without the injected faults and 0.60 vs. 6.99
minutes with the injected faults). This is due to the fact that
the TSy;ises¢ suite includes much shorter tests. The execution
time is acceptable for IBM Research, considering the fact that
the effectiveness of the tests can be improved and more faults
can be detected in an efficient way (as was discussed in RQ1).
Moreover, the shorter tests of which TS f;ttes: 1S composed,
can help identify the faults faster.

RQ3: How much effort would be required to deploy the
FITTEST technologies within the testing processes implanted
at IBM Research?

As can be seen from Table V, the effort to set up the
FITTEST components for the SUT and to specify the Domain
Input Specification was 10 hours of effort for the FBK subject.
Generating the FSM and the concrete test cases was automated
by the tools. The whole CPU time needed was about 1 minute
on a moderate personal computer. The effort to convert the
concrete tests by the FITTEST tools into executable tests for
IBM Research and writing the automated activation scripts was
about 2.5 days for the experienced IBM Research subject.

The effort for the design and building the TSibm is less
than half a day and is significantly lower than the time
needed for the TSfittest (as described in Table IV). Part of
the differences in the effort is due to the fact that TSibm was
built using existing internal IBM testing tools.

In spite of the above the amount of effort needed to deploy
and execute the FITTEST tools is found reasonable by IBM
Research, considering the fact that these tasks need to be done
only once during deployment. Moreover, the tools and format
of the tests are new to the team, some learning is required.
After all has been set-up, effort to generate a new FITTEST
test suites when new logs would be available is fully automatic.

B. Threats to validity

Internal validity. It is of concern when causal relations
are examined. In our case study, an internal validity threat
is related to the logs generated by the IBM simulation en-
vironment to be used for automatically constructing the test
models. Because of the quality of models can be affected by
the content of the input logs. We are aware of this threat and
have asked IBM for a diverse set of logs. Another similar threat
is that the quality of concrete test cases can be affected by
the completeness of the Domain Input Specification (DIS) file
because incomplete specification will weaken the efficiency
of the TSysttest- In fact, this threat might affect the overall
number of detected faults by TS f;41¢4¢, but if the specification
can be improved, such number can be greater. Therefore, the
conclusion about the effectiveness of the TSjfscs¢ remains
unchanged. Regarding to the involved subjects from IBM,
although they had a high level of expertise and experience
working in the industry as testers, they had no previous
knowledge of the FITTEST tools. This threat was reduced by
means of a closer collaboration between FBK and IBM, by
complementing their competences in order to avoid possible
mistakes or misunderstandings.

External validity. It is concerned with to what extent it
is possible to generalize the findings, and to what extent the
findings are of interest to other people outside the investigated
case. Our results rely on one industrial case study using a
given set of artificial faults. Although running such studies is
expensive in terms of time consuming, we plan to replicate
it with in order to have a more generalizable conclusions.
However, as discussed earlier, the system under testing used
is a typical of a broad category of industrial systems that
communicates with multiple managed clients and with users
of the management system.

Construct validity. This aspect of validity reflect to what
extent the operational measures that are studied really represent
what the researcher have in mind and what is investigated
according to the research questions. This type of threat is

[TSibm [TSyittest

size

number of abstract test cases NA 84

number of concrete test cases 4 3054

number of commands (or events) 1814 18520

construction

design of the test cases [manual cf. Section TII-Bl [[automated cf. Section III-B2

effort

design 5 hours set up FITTEST tools 8 hours

effort to create the test suite activation scripts | 4 hours generate the FSM automated, less than 1 second CPU time
specify the DIS 2 hours
generate concrete tests automated, less than 1 minute CPU time
transform into executable format 20 hours

TABLE V.

mainly related to the use of injected faults to measure the fault-
finding capability of our testing strategies. This is because the
types of faults seeded may not be enough representative of real
faults. In order to mitigate this threat, the IBM team identified
representative faults that were based on real faults, identified
in earlier time of the development. This identification although
was realized by a senior tester, the list was revised by all IBM
team that participated in this case study.

V. CONCLUSIONS

We have presented a “which is better” [9] case study for
evaluating FITTEST testing tools with a real user and real tasks
within a realistic industrial environment of IBM Research.
The design of the case study has been done according to the
methodological framework for defining case studies presented
in [13]. Although a one-subject case study will never provide
general conclusions with statistical significance, the obtained
results can be generalized to other similar software in similar
testing environments of IBM Research [16], [8]. Moreover, the
study was very useful for technology transfer purposes: some
remarks during the study indicate that the FITTEST techniques
would not have been evaluated in so much depth if it would
not have been backed up by our case study design. Finally,
having only limited number of subjects available, this study
took several weeks to complete and hence we overcame the
problem of getting too much information too late.

The objective of this research was to examine the ad-
vancements of the FITTEST tools and validate their potential
to improve current testing practices at IBM Research. The
following were the results of the case study:

e The FITTEST tools can increase the effectiveness of
the current practice of the IBM Research team for
testing the IMP within the simulated environment.

e The efficiency of the FITTEST tools is found accept-
able by IBM Research for testing the IMP within the
simulated environment.

o The test cases automatically generated by the
FITTEST tools support better the identification of the
source of the faults when testing the IMP within the
simulated environment.

o The effort for deploying the FITTEST within a real
industry case has been found reasonable by IBM
Research.

DESCRIPTIVE MEASURES FOR THE TEST SUITES TS; 4, AND TS 4465t

Based on these results, IBM Research intends to discuss the
FITTEST tools used in this case study with other parts of IBM
to consider using similar approach in their testing processes.

Moreover, from the FITTEST project’s point of view we
have also learned: (i) the FITTEST tools have shown to be
useful within the context of a real industrial case, and (ii) the
FITTEST tools have the ability to automate the testing process
within a real industrial case.

ACKNOWLEDGMENT

This work was financed by the FITTEST project, ICT-
2009.1.2 no 257574. Also, we would like to thank the great
help we got from Alon Aradi for conducting the experiments.

REFERENCES

[1] http://pic.dhe.ibm.com/infocenter/director/pubs/index.jsp?topic=

[2] B. Beizer. Software Testing Techniques.
Computer Press, 1990.

International Thomson

[3] A. Biermann and J. Feldman. On the synthesis of finite-state machines
from samples of their behavior. IEEE Trans. on Computers, 21(6),
1972.

[4] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos.
A survey on model-based testing approaches: a systematic review.
In Proceedings of the 1st ACM international workshop on Empirical
assessment of software engineering languages and technologies: held
in conjunction with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007, WEASELTech *07, pages
31-36, New York, NY, USA, 2007. ACM.

[S] D. Graham and M. Fewster. Experiences of Test Automation. Pearson,
2012.

[6] M. Grochtmann and J. Wegener. Test case design using classification
trees and the classification-tree editor cte. In Proceedings of the Sth
International Software Quality Week, San Francisco, USA, Mai 1995.

[71 M. Harman and B. FE. Jones. Search-based software engineering.
Information and Software Technology, 43(14):833-839, 2001.

[8] W. Harrison. Editorial (N=1: an alternative for software engineering
research). Empirical Software Engineering, 2(1):7-10, 1997.

[9] B. Kitchenham, L. Pickard, and S. Pfleeger. Case studies for method

and tool evaluation. Software, IEEE, 12(4):52 —62, July 1995.

G. J. Myers. The Art of Software Testing. John Wiley and Sons, 1979.

C. D. Nguyen, A. Marchetto, and P. Tonella. Combining model-

based and combinatorial testing for effective test case generation. In

Proceedings of the 2012 International Symposium on Software Testing

and Analysis, pages 100-110. ACM, 2012.

C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput.

Surv., 43:11:1-11:29, February 2011.

T. Vos, B. Marin, I. Panach, A. Baars, C. Ayala, and X. Franch.

Evaluating software testing techniques and tools. In Actas de XVI

JISBD, pages 531-536, 2011.

[10]
(11]

[12]

[13]

[14] T. E. J. Vos, B. Marin, M. J. Escalona, and A. Marchetto. A
methodological framework for evaluating software testing techniques
and tools. In /2th International Conference on Quality Software, Xi’an,
China, August 27-29, pages 230-239, 2012.

[15] T. E.J. Vos, P. Tonella, J. Wegener, M. Harman, W. Prasetya, and S. Ur.
Testing of future internet applications running in the cloud. In S. Tilley
and T. Parveen, editors, Software Testing in the Cloud: Perspectives on
an Emerging Discipline, pages 305-321. 2013.

[16] A. Zendler, E. Horn, H. Schwkrtzel, and E. Pldereder. Demonstrating
the usage of single-case designs in experimental software engineering.
Information and Software Technology, 43(12):681 — 691, 2001.

