
Quantifying the Transition from Python 2 to 3:
An Empirical Study of Python Applications

Brian A. Malloy
Computer Science Department

Clemson University
Clemson, SC, USA

malloy@cs.clemson.edu

James F. Power
Computer Science Department

Maynooth University
Co. Kildare, Ireland
jpower@cs.nuim.ie

Abstract—Background: Python is one of the most popular
modern programming languages. In 2008 its authors introduced
a new version of the language, Python 3.0, that was not backward
compatible with Python 2, initiating a transitional phase for
Python software developers. Aims: The study described in this
paper investigates the degree to which Python software develop-
ers are making the transition from Python 2 to Python 3. Method:
We have developed a Python compliance analyser, PyComply, and
have assembled a large corpus of Python applications. We use
PyComply to measure and quantify the degree to which Python
3 features are being used, as well as the rate and context of
their adoption. Results: In fact, Python software developers are
not exploiting the new features and advantages of Python 3, but
rather are choosing to retain backward compatibility with Python
2. Conclusions: Python developers are confining themselves to
a language subset, governed by the diminishing intersection of
Python 2, which is not under development, and Python 3, which
is under development with new features being introduced as the
language continues to evolve.

I. INTRODUCTION

Popular computer languages undergo evolution, usually
expressed in versions, where larger or later version numbers
generally represent a more mature form of the language.
This maturation might include modifications that improve
compilation or execution efficiency, the addition of language
constructs that expand the power or expressivity of the lan-
guage, or enhancements that improve the performance or
functionality of core libraries. However, most programming
languages have addressed language evolution by maintaining
backward compatibility, which means that software compiled
with an earlier version of the language will compile with a later
version and will exhibit the same behaviour as the previous
version [1].

However, the Python language represents an important
exception to the backward compatibility approach because
Python 3 versions, which currently range from 3.0 to 3.6,
are not backward compatible with Python 2 versions, which
range from 2.0 to 2.7. An important consequence of this
lack of backward compatibility is that applications that were
developed using a version of the language in the Python 2
range will not compile, without modification, using a compiler
for a language in the Python 3 range. This lack of backward
compatibility introduces a problem for software engineers

building Python applications that are also evolving: the de-
velopers must choose between rewriting their application in
the new language version, or converting their current version
into a form that is compatible with the new language version.

In this paper we describe a large empirical study that
investigates the impact that the transition from Python 2 to
Python 3 has had on applications written in Python. We
have developed a Python compliance analyser, PyComply,
based on an approach that exploits grammar convergence to
generate parsers for each of the major versions in the Python
2 and Python 3 series [2], [3], [4]. We have also conducted
empirical studies on a large selection of Python applications,
including the Qualitas corpus, the SciPy suite of programs, the
programs studied by Chen et al. in [5], [6], [7], the applications
studied by Destefanis et al. [8], the list of “Notable Ports”
on the Python 3 resources website getpython3.com, and the
top 20 “most starred” and the top 20 “most forked” Python
applications on GitHub.com.

We believe that this large corpus is representative of the
Python applications in use by the various versions of the
Python language. Our analysis of this corpus indicates that
Python developers are not exploiting the new features provided
in the Python 3 series but rather are choosing to main-
tain compatibility with both Python 2 and Python 3. The
consequence of this decision is that Python developers are
confining themselves to a language subset, governed by the
diminishing intersection of Python 2, which has halted further
development, and Python 3, which is under active development
with new features being introduced as the language continues
to evolve.

In the next section we provide background about the Python
language and its evolution, the evolution of other languages,
and our analysis tool, PyComply, that we developed for our
study. In Section III we provide details of the corpus of Python
applications we examined and their compatibility with Python
2 and 3. In Section IV we explore some possible explanations
for the lack of usage of Python 3 features and, in Section V,
we study the adoption of back-ported Python 3 features. In
Section VI we describe the threats to the validity of our study,
including the incorporation of additional Python applications
to address external threats to our study. In Section VII we
review research that relates to ours and, in Section VIII, we

getpython3.com

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

draw conclusions.

II. BACKGROUND AND LANGUAGE EVOLUTION

In the next subsection we describe the history and evolution
of the Python language and its burgeoning surge in popularity.
In subsection II-B we describe the evolution of languages
other than Python and provide background about how these
other languages managed their evolution. In subsection II-C
we provide details about our analysis tool, PyComply.

A. The History and Evolution of Python

The Python programming language was conceived during
the latter part of the 1980s and its implementation was begun
in 1989 by its author Guido van Rossum. Python 2.0 was
released in October of 2000 and included many interesting
features and paradigms that have contributed to its burgeoning
popularity.

Python is known for being easy to read and write, which
permits developers to work quickly and integrate systems more
effectively [9]. Python syntax has a light and uncluttered feel
with a large number of built-in data types including tuples,
lists, sets, and dictionaries. The language includes a large
standard library and a massive repository of user contributed
packages that promote rapid prototyping. In addition to its
general purpose features, Python has powerful scripting capa-
bilities, which increase its overall general popularity. Python
has developed an avid cultural base who pride themselves on
their Pythonic style of code and their practice of the Zen of
Python [10]. Python includes support for Unicode, garbage
collection, as well as elements of procedural, functional, and
object oriented programming.

In the presence of its rapidly growing popularity, the Python
language continued its linear development up to version 2.5.
The development then branched, with the release of Python
2.6 in October of 2008 being quickly followed by the release
of Python 3.0 in December of that year. Notably, Python
3.0 was not backward compatible with previous versions of
Python, and Python 2.6 included an optional warning mode
that highlighted the use of features that had been removed
from Python 3.0.

The almost concurrent release of Python 2.6 and Python
3.0 is illustrated in the time-line shown in Figure 1, which
highlights the break in compatibility in 3.0 over previous
releases so that applications that ran under Python 2 would no
longer run under Python 3 without modification. In addition,
the time-line shows that further development of the Python
2 series will halt with the development of Python 2.7. In
November of 2014 the Python developers announced that
Python 2.7 would be supported until 2020, but that users
should consider moving to Python 3 [11]. The advantages of
Python 3 include the addition of many new features, from
relatively minor details like a new keyword nonlocal to
permit access to variables in an enclosing scope, to major
features such as support for asynchronous programming and a
new syntax for variable and function annotations that can be
used for type hints.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

2.0 2.12.2 2.3 2.4 2.5

2.6 2.7

3.13.0

3.2 3.3 3.4 3.5

Fig. 1. The Python time-line, showing the development of Python versions
and the branch following version 2.5.

The original migration guides recommended that devel-
opers use a provided tool, 2to3, to automatically convert
to Python 3.0. However, the 2to3 utility simply performs
syntactic changes to the Python 2 source code, which does
not address the semantic discrepancies between versions 2 and
3 of Python, so this migration approach was abandoned in
favour of promoting a single code base that can run under
both Python 2 and Python 3 [12]. Additional tools to facilitate
this migration were developed, including futurize, modernize,
and caniusepython3 [13]. The migration of Python applications
from Python 2 to Python 3 represents the main thrust of our
current research.

B. Language Evolution and Backward Compatibility

Programming languages need to continually evolve in re-
sponse to user needs, hardware advances, developments in
research, and to address awkward constructs and inefficiencies
in the language [1]. In the absence of this evolution the
language suffers the prospect of diminishing popularity and
even disuse.

Even though language evolution is necessary, it also offers
many difficulties. The first difficulty is that the language
designer is not always cognisant of the needs of the application
developers so the designer must rely on mailing lists and
user community surveys. The second difficulty is that the
effect of language evolution can have a negative impact on
the developers for whom the language serves. For example,
as language versions continue to evolve, older versions are
often discontinued or are no longer supported. This difficulty is
exacerbated for backward incompatible changes in the context
of programming language evolution.

A recent study by Urma has defined six main categories
of backward compatibility: source, binary, data, performance-
model, behaviour and security compatibility [14]. We consider
two language versions to possess syntactic compatibility if
a program that compiles under an older language version
also compiles under the new language version. We consider
two language versions to be semantically compatible if the
behaviour of a program written in the older version behaves the
same as it does in the newer version. In general, the problem
of judging behavioural equivalence is undecidable [15], but
can be approximated with varying degrees of completeness.
In this paper, we consider only syntactic compatibility, which
falls under the source compatibility category studied by Urma.

As we have noted previously, there are currently two main
series of Python versions - Python 2 and Python 3 - that
reflect the evolution of the language. This kind of variety

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 2

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

PyComply

Scanner
spec
(flex)

Parser
spec

(bison)

Test harness and
GIT repo access (Python)

Python files Compliance
Rates

Fig. 2. PyComply for Python Feature Recognition. The PyComply system
is configurable with scanners and parsers for all language versions in the
Python 2 and Python 3 series.

in language versions is different from the proliferation of
language dialects, such as those that exist for languages
like COBOL, C, and C++ [16], [17], [18]. In the case of
dialects, language discrepancies arise when different compiler
vendors add features to the language, or simply have diffi-
culty implementing the full language standard. Many of these
dialectic differences can be mitigated using the conditional
compilation facility included in the C family of languages,
with a corresponding overhead for the software developers.

In contrast Python has a reference implementation, CPython,
which provides a standard against which other implementa-
tions can be compared. This provision of a reference imple-
mentation is similar to the Java programming language, which
has also been largely successful in avoiding a proliferation of
dialects. However, most programming languages attempt to
maintain compatibility with previous versions, with disconti-
nuities being notable events. The move from K&R C to ANSI
C is one of the more distinctive examples of this discontinuity.

Differences due to dialects or versions can be addressed with
tools centering on a parser for the relevant language versions.
In the next section we describe our approach for constructing
parser-based analysers for various versions of Python 2 and
Python 3.

C. Analysing Python Applications: Grammar Convergence

Construction of a tool capable of analysing the various
versions of Python requires the generation of accurate parsers
for each of the versions of Python under study. Fortunately,
grammars that capture the syntax of each version are available
on the Python website. In previous work we exploited gram-
mar convergence to automate the translation of the grammars
for Python in EBNF format to yaccable format to facilitate
generation of a parser for each of the major versions of Python
[4]. The goal of grammar convergence is to apply verified
transformations to a set of existing grammars expressed in
different formalisms until the grammars coalesce into a set of
syntactically identical grammars [2].

Figure 2 illustrates the flow of information in our tool, Py-
Comply, that we developed for syntax and feature recognition.
Input to PyComply is the Python grammar for the version
under study together with a Python program or test case;
output from the tool includes the statistical information that we
gather for this study or the number of Python 3 features that
were recognised by PyComply. The core of PyComply is the
grammar formalism used to define the Python syntax, along

with the parser actions inserted into the grammar to facilitate
recognition of the Python 3 features.

In addition to the grammars, the Python developers also
make a test suite available for each of the Python versions.
Even though the transformations that we applied to the gram-
mars were correctness preserving, it was necessary to address
internal threats to the validity of our study. Thus, we ran each
test suite through our respective parser and established a cor-
respondence between the test cases that our parser passed and
the test cases that the official Python compiler passed, thereby
validating each of our parsers. Of course we could have used
the official Python compilers to build our compliance tool
but we found that installing all of the Python parsers on a
single system is somewhat onerous and inefficient. We hope
that by providing PyComply as a stand-alone analyser we will
facilitate the reproducibility of the results in this paper, and
provide a foundation for further multi-version analyses of this
kind.

Finally, it is important to emphasise that our approach to
establishing the compliance of an application to a particular
Python version is syntactic and not semantic. For example, the
expression 9/2 yields 4 in Python 2 and yields 4.5 in Python
3. However, we do not consider this semantic difference in
our study. Similarly, the range() function returns a list in
Python 2, but returns a generator in Python 3. However, we
do not consider these semantic language differences in our
compliance considerations.

III. A CORPUS OF PYTHON PROGRAMS

Initially we intended to conduct a study of the use of
Python 3 features across a range of Python applications. Since
we wished to relate this study to existing empirical studies,
we chose to use the Qualitas corpus, a ‘curated’ set of 51
Python applications, with associated metric data [19], [20].
These applications also had the advantage of being available
as GitHub repositories, which would facilitate further analysis
of their development.

Even though a curated version of the Qualitas corpus is
not provided in one place, we were able to download the
source code for the applications from their GitHub repositories
following the instructions provided in [20]. However, since we
are conducting a longitudinal study, we do not limit ourselves
to the versions discussed in previous work. The results we
present in this section refer to the latest version of each
application, cloned on March 30, 2017.

The results of our analysis are shown in Table I. This table
has one row for each of the 51 applications in the Qualitas
corpus, and one column for each of 8 Python versions ranging
from version 2.5 to version 3.5. The final column shows the
number of Python files that were analysed in the application’s
repository. The data in all but the first and last columns
shows the percentage of files that passed PyComply for the
corresponding Python version.

For example, the first data row in Table I shows the pass
rates for astropy, whose repository contained 665 Python files.
We can see that 80% of these files passed the 2.5 version

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 3

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

Application 2.5 2.6 2.7 3.0 3.1 3.2 3.3 3.5 Files
astropy 80 98 100 98 98 98 100 100 665
biopython 91 99 100 99 99 99 100 100 587
buildbot 84 100 100 82 82 82 100 100 726
calibre 69 76 100 74 75 75 87 87 1491
cherrypy 87 100 100 100 100 100 100 100 112
cinder 88 98 100 96 96 96 100 100 170
django 82 91 96 98 99 99 100 100 2376
emesene 97 100 100 89 89 89 91 89 845
EventGhost 90 100 100 75 75 75 84 84 554
exaile 84 99 100 95 95 95 100 100 273
globaleaks 81 93 99 63 63 63 97 97 177
gramps 91 98 98 99 99 99 100 100 1119
gtg 89 99 100 100 100 100 100 100 139
heat 80 96 100 90 90 90 100 100 833
ipython 74 83 90 80 80 80 100 100 343
kivy 91 97 100 96 96 96 100 100 421
magnum 87 96 100 97 97 97 100 100 396
mailman 61 100 100 90 93 93 93 93 343
manila 60 91 100 98 98 98 100 100 760
matplotlib 92 95 100 98 98 98 100 100 864
miro 99 100 100 54 54 54 77 77 428
networkx 80 82 100 100 100 100 100 100 483
neutron 80 89 100 94 99 99 100 100 1411
nova 94 100 100 98 98 98 100 100 184
numpy 89 97 100 99 99 99 100 100 362
pathomx 93 95 99 92 92 92 93 93 153
Pillow 86 97 100 100 100 100 100 100 274
pip 89 100 100 97 97 97 100 100 355
portage 80 100 100 100 100 100 100 100 637
pygame 99 100 100 91 91 91 91 91 267
pyobjc 98 99 100 98 98 98 100 100 2244
pyramid 87 100 100 99 99 99 100 100 460
Pyro4 54 87 100 97 98 98 100 96 197
python-api 90 96 100 99 99 99 100 100 178
quodlibet 77 93 100 72 72 72 98 98 580
sabnzbd 94 100 100 64 64 64 69 69 118
sage 87 93 100 94 94 94 100 100 2110
scikit-image 98 100 100 99 99 99 100 100 450
scikit-learn 93 100 100 97 97 97 100 100 681
sympy 83 90 100 97 97 97 100 100 1109
tg2 83 100 100 100 100 100 100 100 138
tornado 66 99 99 78 78 78 96 95 120
trac 100 100 100 56 56 56 69 69 280
tryton 91 92 100 84 84 84 88 88 121
twisted 71 99 100 89 89 89 99 99 1120
veusz 80 100 100 92 92 92 100 100 161
VisTrails 98 99 99 69 70 70 70 70 999
vpython-wx 95 98 98 85 85 85 85 85 206
web2py 84 100 100 88 88 88 93 93 399
wxPython 100 100 100 63 63 63 72 72 1514
Zope 80 100 100 91 91 91 100 100 312

TABLE I
PASS RATES FOR THE 51 APPLICATIONS IN THE QUALITAS SUITE FOR

PYTHON VERSIONS 2.5 THROUGH 3.5.0.

of PyComply, 100% passed the 2.7, 3.3 and 3.5 version of
PyComply, and 98% of the files passed the others. We conclude
from this data that the code in this application is compliant
with version 2.7, contains features that are not compatible with
earlier versions, but is compatible with later versions up to 3.5.

On inspecting the PyComply output for astropy we discover
that 139 files failed when run through the 2.5 PyComply. Of
these, 74 fails were due the use of the except-as construct,
a further 40 were due to the use of class decorators, and the
remainder used other non-2.5 features such as set literals and
keyword arguments.

The lower pass rate of astropy for Python versions 3.0
through 3.2 was due to the use of Unicode literals (such
as u’Astropy’) in 11 files, This Python 2 feature was
disallowed in these versions, but re-introduced in version 3.3.
In fact this is a common source of lower compatibility in
versions 3.0 through 3.2. From Table I we can see that 37
applications have high pass rates for both 2.7 and 3.3, but that
this dips somewhat for versions 3.0 through 3.2.

Overall, the data in Table I shows that few applications are
definitively moving past version 2.7, i.e. using features that are
not backward compatible with Python series 2. We interpret
a pass rate of over 98% as indicating no significant problems
with a PyComply version (in this case the few failing programs
are often malformed or insignificant).

We can see in Table I that of the 51 applications, only 4
are not 2.7 compliant. Of the 4 non-2.7 applications, most of
the fails in both gramps and vpython-wx are due to uses of
the new-style print function without an explicit future import.
Thus only two applications, django and ipython, show any real
lack of 2.7 compliance, and both of these have a 100% pass
rate for 3.3 and higher.

It was surprising that only 2 of the 51 applications had
finally left 2.7 behind and committed fully to Python 3.
Inspecting these two applications more closely, we examined
their status at their last release date, which was django version
1.10 of August 2016 and ipython version 5.2.0 of Jan 2017.
We rolled back the corresponding repositories to these release
dates, and found the contents to be 100% compliant with the
2.7 PyComply at that point. This suggests that the Python 3
features measured in Table I, which represents a more recent
snapshot in both cases, shows work-in-progress, and cannot
be taken as evidence of a definitive move to Python 3.

By comparing the compliance rate for Python 2.7 with that
for Python 3.5 in Table I, we can see which applications in
this set have not yet become Python 3 ready. In total there are
18 applications in this category: not only have they not made
a definitive move to Python 3, but they have also not fully
adapted their Python 2 code to make it Python 3 compatible.

Based on the data in Table I we can divide the 51 applica-
tions in the Qualitas suite into three partitions:

• 18 applications are 2.7 compliant but not Python 3
compliant, recording a rate of 99% or higher for 2.7,
but a lower pass rate for 3.5.

• 31 applications are 2.7 compliant and also Python 3
compliant, recording a rate of 99% or higher for 2.7,
and the same for 3.5.

• 2 applications are Python 3 applications, recording a
99% or higher for 3.5 but a lower rate for 2.7. These
applications are django and ipython, as already mentioned.

Finding #1: The applications in the Qualitas corpus
have overwhelmingly chosen to remain Python 2 com-
pliant, and have not made a definitive move to Python
3 that would break compatibility with Python 2.

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 4

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

3.0 3.1 3.2 3.3 3.4 3.5
On or after this Python release

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

ta
ge

 o
f c

om
m

its

Fig. 3. These box plots relate the activity of the applications in the Qualitas
corpus to the time period corresponding to each Python version. Each box
plot shows the distribution of activity levels across the Qualitas corpus for
the time period starting with that Python version.

IV. CHANGE ADOPTION

In this section we examine two possible explanations for
the lack of Python 3 features in the wide range of Python
applications discussed in Section III.

While there may be many pragmatic reasons for the devel-
opers of an application to defer the transition to Python 3,
we sought to investigate whether there were some quantifiable
properties of these applications that indicated a more general
resistance to change. We hypothesised that there might be two
possible confounding factors related to an application’s failure
to make a definitive move to Python 3. First, an application
might be inactive, and thus not experiencing updates at all.
Second, an application might have been originally written
using, say, Python 2.7, and never previously have transitioned
between versions. In this section we examine both of these
hypotheses in more detail.

A. Hypothesis 1: the projects are not updating.

One possible reason for the applications not using the newer
Python 3 features is that they have not been under active
development for the later releases, and thus have not had the
opportunity to upgrade. To test this hypothesis we examined
the Git repositories for the 51 applications to determine their
level of activity. Following the approach of Hora at al. [21], we
measured activity in terms of the number of commits, and for
each application we calculated the number of commits during
the time period corresponding to the release of each Python
version in the Python 3 series. We express the level of activity
for a project as a percentage of the total number of commits in
its repository, as this allows us to compare applications with
different levels of commits.

For example, when analysing the astropy application we
recorded the following data:

Python vers: 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Total
% of commits: 100 100 100 90 57 22 2 17999

That is, astropy had a total of 17, 999 commits in its Git
repository, and 100% of these were on or after 03 Dec 2008,
the Python 3.0 release date. In fact, we can see that 100%
of the releases were on or after the Python 3.2 release date,
and just over half (57%) were on or after the Python 3.4
release date. From these counts we conclude that the astropy
developers have had ample opportunity to upgrade to later
versions of Python 3, but have chosen not to.

This data for all 51 programs in the Qualitas suite is
summarised in Figure 3. This Figure contains a series of box
plots, one for each version of Python, showing the distribution
of the activity level (percentage commits) for the whole corpus.
In each case the box represents the inter-quartile range and
the line shows the median of the distribution. For example,
the data corresponding to the first box plot tells us that three-
quarters of the programs in the Qualitas corpus have 66% of
their activity on or after the release date of Python 3.0, and
half have 92% of their activity on or after this date. In fact,
from examining the data, we find that 19 of the applications
have all of their activity on or after this date.

Since these are cumulative percentages, the distributions
in Figure 3 tend to move lower as we proceed through the
versions of Python. For example, the lower quartile for the
Python 3.5 release date is just 6%, but this nevertheless
indicates that three-quarters of the applications had at least
some level of activity as recently as this. The overall picture
is of continuing activity across nearly all of the applications
throughout the Python 3 releases.

The level of activity for the applications for Python 3.2
in Figure 3 is particularly significant, since this is the first
Python 3 without a corresponding Python 2 release, and marks
a departure point for the new series. All but four of the
applications had releases on or after this date, and we conclude
that their developers’ decision not to definitively move to
Python 3 cannot be attributed to a lack of relevant recent
activity in these projects.

B. Hypothesis 2: the projects do not use new features.

Another possible reason for the failure to definitively move
to Python 3 is a possible resistance to change: perhaps the
applications were written using Python 2.7, and have never
updated. To test this hypothesis we examined the Git reposi-
tories for the applications at various stages in their evolution.
Since Python 2.7 was released on 4th July, 2010, we examined
the Git repositories as they were on the 4th of July (or the
nearest commit to this date) for all years between 2005 and
2016.

Figure 4 summarises the results of running PyComply over
the 51 applications for each of the 12 years between 2005
and 2016. Each bar represents the data for a single year, and
each application contributes to the bar based on the earliest
version of Python for which PyComply records a 98% pass
rate. The bars for each year are of different height since not

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 5

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0

5

10

15

20

25

30

35

40

45

50
No

. o
f a

pp
lic

at
io

ns
 p

as
sin

g
2.0
2.2
2.3
2.4
2.5
2.6
2.7

Fig. 4. Changes in the levels of Python 2 compliance for the Qualitas
applications. In each case the lowest version of Python 2 with compliance
above 98% is recorded.

all applications had recorded commits in their Git repositories
in each period, particularly for the earlier years.

The data in Figure 4 shows a clear trend of applications up-
dating their code to take advantage of newer Python 2 features.
For example, the leftmost bar shows that of the 14 applications
with recorded commits in this year, all applications comply
with Python 2.4 (released November 2004) or earlier; in fact
7 comply with Python 2.0 and 6 comply with Python 2.2.
However, by the middle of the time period studied (around
2008) we can see that 2.4 is increasingly replacing the earlier
versions, and Python 2.5 (released in September 2006) is just
starting to make an impact. There is no data for Python 2.3
recorded in Figure 4 because we found no applications with
a different pass rate for versions 2.3 and 2.4, as these Python
versions are quite similar.

Looking at the rightmost bars in Figure 4, we can see that by
2013 versions 2.5 and 2.6 now dominate, accounting for 37 of
the 46 applications with commits in this period. Also in 2013,
Python 2.7 (released July 2010) first makes an appearance in
2 applications. This trend continues through to 2015, where
7 applications are now not compliant with any Python earlier
than 2.7.

Since backward compatibility was maintained within the
Python 2 series, the compliance levels detected by PyComply
and summarised in Figure 4 demonstrate a clear willingness on
the part of the developers of the applications in the Qualitas
corpus to adopt new language features. Thus the failure to
definitively move to Python 3 is particular to that series, and
is further evidence of the unusual discontinuity introduced by
this change.

There is a relatively short lag between the release of a new
version of Python and its appearance in terms of compliance
requirements in Figure 4. We can see that within 2-3 years of
the release of versions 2.4, 2.5, 2.6 and 2.7 there were already
applications that were dependent on them, and this dependency
increased fairly rapidly over the following years. As it is now

6 years since the release of Python 3.2, the absence of any
dependence on even this early version from the data in Figure
4 is quite notable.

Finding #2: Figure 4 shows us that applications were
willing to update within the Python 2 series. However,
the move to Python 3 represents a discontinuity between
the development of these applications and the develop-
ment of the Python language.

V. USAGE OF PYTHON 3.0 AND 3.1 FEATURES

Since 49 of the applications studied in the previous sections
are 2.7-compatible, we cannot study the degree to which
they have used features from the Python 3 series in general.
However, as part of preparing the path to Python 3 migration,
the Python developers began “back-porting” selected features
from Python 3.0 and 3.1 into Python 2.6 and 2.7. By studying
the use of these features, we can distinguish between (a)
projects that remain essentially within the Python 2 series and
(b) projects that are willing to use Python 3 features, but just
not willing to commit fully to Python 3 itself.

In this section we examine the latest versions of the ap-
plications in the Qualitas suite, and determine the degree to
which they are willing to use back-ported Python 3 features. To
study the use of these features we augmented the Python 2.7
parser used in PyComply with parse actions to log the usage
of grammar constructs that corresponded to the back-ported
features.

A. Degree of usage of back-ported features

One of the most notable differences in Python 3 was
changing print from a keyword to a function name (and thus
print statements became expressions). To ease the transition,
Python 2.6 introduced a __future__ import that allowed
Python 2 developers to use this new formulation.

Among the other back-ported Python 3 features, we identi-
fied four that could be detected at the grammar level: (1) set lit-
erals, (2) set comprehensions, (3) dictionary comprehensions,
and (4) multiple context managers (via multiple as targets) in
a with statement. We then examined the applications in the
Qualitas suite to determine the degree to which these features
were being used by the developers. Since these features are
relatively specialised, failure to use them may not indicate a
disinterest in Python 3 features, but simply a lack of need
for these particular features. Thus we interpret the use of any
of these four features as being sufficient but not necessary
evidence of a willingness to use Python 3 features.

Table II shows the results of this study. In this table we list
the 51 Qualitas applications, along with the number of uses of
the __future__ import (to support print as a function) and
the number of uses of each of the four back-ported features.
The rightmost column shows the total number of uses of these
four back-ported features, and the table is sorted in reverse
order based on this column.

Of the 51 applications in the Qualitas suite a total of 39
of them used the __future__ import to support print as a

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 6

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

Print Set Set Dict With Total
Application Fcn Lit Comp Comp As Uses
calibre 643 686 230 534 33 1483
neutron 4 103 91 70 471 735
sage 475 35 6 439 2 482
networkx 8 338 50 89 0 477
sympy 460 377 39 49 1 466
django 0 218 44 74 53 389
pyobjc 23 157 0 6 0 163
manila 7 96 7 57 0 160
trac 10 32 48 47 0 127
quodlibet 0 97 23 6 0 126
Pyro4 137 95 7 10 2 114
matplotlib 314 19 4 36 3 62
ipython 1 34 4 8 15 61
heat 0 29 4 21 0 54
numpy 360 38 4 5 0 47
globaleaks 3 7 2 13 1 23
magnum 1 5 0 10 2 17
tryton 0 7 3 7 0 17
astropy 401 5 1 7 1 14
kivy 6 1 0 13 0 14
python-api 1 3 2 8 0 13
twisted 182 2 2 6 3 13
Pillow 36 3 2 5 0 10
pathomx 0 1 0 6 0 7
biopython 211 5 0 0 1 6
exaile 13 2 3 0 0 5
scikit-learn 70 0 0 5 0 5
cinder 10 1 1 1 0 3
gramps 3 0 0 1 2 3
scikit-image 28 0 0 3 0 3
EventGhost 77 0 0 2 0 2
gtg 0 1 1 0 0 2
buildbot 670 0 1 0 0 1
pyramid 0 0 0 1 0 1
Zope 0 0 0 0 1 1
cherrypy 2 0 0 0 0 0
emesene 0 0 0 0 0 0
mailman 158 0 0 0 0 0
miro 0 0 0 0 0 0
nova 3 0 0 0 0 0
pip 12 0 0 0 0 0
portage 47 0 0 0 0 0
pygame 1 0 0 0 0 0
sabnzbd 1 0 0 0 0 0
tg2 0 0 0 0 0 0
tornado 82 0 0 0 0 0
veusz 37 0 0 0 0 0
VisTrails 0 0 0 0 0 0
vpython-wx 14 0 0 0 0 0
web2py 38 0 0 0 0 0
wxPython 0 0 0 0 0 0

TABLE II
THE USE OF BACK-PORTED PYTHON 3 FEATURES IN THE LATEST VERSION

OF EACH APPLICATION IN THE QUALITAS CORPUS.

function. We have separated this feature from the other four
in Table II since it is most likely being used to achieve minimal
Python 3 compatibility, rather than to take advantage of any
new features offered by the new function. Thus we regard this
as an indicator of compatibility, rather than a desire to use
new features per se. As noted in Section III two applications,
django and ipython, have already moved to Python 3, and thus
have no need of this feature.

At the bottom of Table II we have 16 applications that use
none of the four features listed above. Of these applications,

calibre neutron sage networkx sympy pyobjc manila trac quodlibet Pyro4
Qualitas application

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

N
um

be
r o

f 3
.x

 fe
at

ur
es

 u
se

d

Set Lit
Set Comp
Dict Comp
With As

Fig. 5. Usage of the four back-ported Python 3 features by the latest version
of 10 (non Python 3) Qualitas applications.

four did not have commits in the last year (emesene, mailman,
miro, wxPython) and may be relatively inactive at the moment.
It is interesting to note that 11 of these 16 applications used
the __future__ import, indicating an element of Python 3
readiness. Also, 6 of these 16 applications were reported at
100% compliance for Python 3.5 in Table I, with the other 10
recording compliance levels between 70% and 95%.

We divided the remaining 33 applications, all of which made
some use of the back-ported Python 3 features, into two groups
based on the degree of usage. For all 51 applications, the total
number of feature uses in the applications ranged from 0 to
1483, and the quartiles are at Q1 = 0.0, Q2 = 5.0, Q3 = 57.5.
Using Tukey’s test for outliers (1.5 times the inter-quartile
range), we identify applications with over 92 uses as making
(relatively) significant use of the back-ported features. This
allows us to split the remaining 33 applications into two
groups, a “top” group of 11 applications making (relatively)
significant use of Python 3 features, and a group of 22
applications making less use of these features.

B. Kinds of back-ported features used by applications

Figure 5 presents a more detailed study of the back-ported
feature usage of these applications - we excluded django here
since, as a Python 3 application, it cannot be said to be making
use of back-ported features. This figure contains a stack bar-
chart, with one bar for each of the 10 applications, arranged
in descending order of the total number of feature uses. Even
though the calibre usage far exceeds the others at 1483 uses,
we can see that even for the smallest five shown here the level
of usage is still quite significant, with Pyro4 at 114 uses.

Each bar in Figure 5 is subdivided into four parts, corre-
sponding to a usage of each of the four back-ported features we
have identified. We can see that set literals have proved to be
a popular feature in almost all of these applications except for
sage, and that dictionary literals are extensively used in both

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 7

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

Print Set Set Dict With Total Total
Application Fcn Lit Comp Comp As Uses Files
calibre 643 228 104 199 31 361 1491
neutron 4 26 52 47 64 150 1411
sage 475 16 4 134 1 149 2110
sympy 460 85 24 27 1 116 1109
networkx 8 51 23 41 0 85 483
manila 7 25 3 42 0 66 760
trac 10 12 25 30 0 52 317
quodlibet 0 23 16 6 0 38 580
Pyro4 137 19 4 7 1 25 197
pyobjc 23 11 0 3 0 13 1903

TABLE III
THE NUMBER OF FILES USING BACK-PORTED PYTHON 3 FEATURES IN THE

LATEST VERSION OF 10 (NON PYTHON 3) QUALITAS APPLICATIONS.

calibre and sage. In contrast, the new syntax for the with-as
statement is little used, with neutron being a notable exception
to this.

To gauge the extent to which these uses are widespread in
the code base, we also measured the number of Python files
that used at least one back-ported feature in each of these 10
applications. Table III lists the 10 applications in a manner
similar to Table II, but this time we record the number of files
containing at least one usage of each feature. Note that the
total number of files using a back-ported feature (second-last
column) is now slightly less than the sum of the previous four
columns, since more than one feature can be used in a single
file.

As can be seen in Table III, the proportion of the total
number of files using Python 3 features is variable between
the 10 applications, ranging from 361 of 1491 files (24%)
for callibre, down to just 13 of 1903 files (< 1%) for pyobjc.
Nonetheless, this data shows that the usage of these features
is not unreasonably localised in the code base. For example,
having these features used in even 38 or 52 files would still
pose a significant maintenance issue if they had to be changed.

Finding #3: The data shown in Table II demonstrates
that many applications are willing to use Python 3
features when they are back-ported to releases in the
Python 2 series. We conclude that the problem is with
the nature of the transition to Python 3, rather than a
disinterest in the features available in this series.

VI. THREATS TO VALIDITY

Since our conclusions can be influenced by threats to
construct, internal, and external validity, we now address each
of these concerns.

a) Construct validity.: Our conclusions might be threat-
ened by the nature of the metrics that we gathered for each of
the versions of Python.

Our metrics are based on (static) syntactic observations, and
a more general study of language features at the semantic
level might yield different levels of compliance among the
applications. More importantly, our metrics are coarse-grained,
since they simply rank each Python file as compliant or not,

and make no attempt to estimate the degree of compliance at,
say, function or line-of-code level. While we feel that the level
studied here is adequate for our purposes, we caution against
using this data, particularly the data in Table I, to assert that
any application was “100% compliant” with a Python language
version.

An additional metric that might provide further insight
would entail identifying the important additional features in-
corporated into Python 3 that are not included in Python 2, and
measuring their potential usage for a corpus of applications.
This investigation represents our future work.

Another threat to construct validity would be the versions
of the applications that we examined, since the properties
of applications will change as they evolve. However, our
measurements are temporally extensive, spanning the major
versions of the Python language together with the major
releases of the software applications under investigation. We
examined the activity for each of the applications and our
results indicate that the majority of the applications were
active throughout the Python version history. We also were
able to track the changes in the levels of compliance of each
application and observe the degree of use of Python 3 back-
ported features included in the Python 2.7 version.

More generally, our study is based on metrics gathered from
Python source code, and we have not investigated the reasons
for the results shown here. It is possible that a study of the
users of these applications, for example through questionnaires
or analyses of email discussions, would yield further insight
on the factors affecting the move from Python 2 to Python
3. Thus, the results of this paper must be qualified by noting
that they are limited to quantitative data gathered from source
code.

b) Internal validity.: Our conclusions might be threat-
ened by the validity of the tool that we used to gather our
statistics. However, in addition to using correctness preserv-
ing grammar transformations to build our parsers, we also
validated the parsers by comparing the number of test cases
that our PyComply parsers pass with the number of test cases
that the Python parsers pass and these numbers were the
same. Moreover, the fact that our parsers recognise the same
test cases that the Python parsers recognise substantiates the
validity of our investigation.

c) External validity.: One possible threat to the external
validity in our study is that the results might not be gener-
alisable to Python applications outside the Qualitas corpus.
For example, many of the programs in the Qualitas suite are
important long-living applications in the Python ecosystem.
We speculated that such applications might be resistant to
version discontinuities that could alienate their user-base.

To examine this possibility, we collected and studied other
applications to ensure that the reluctance to make a definitive
transition to Python 3 was not just a feature of the Qualitas
corpus. In particular, we examined:

• The SciPy suite of programs, studied in [22]. Many
elements of this are included in the Qualitas suite, but we
also analysed the full Anaconda 3 distribution (v4.3.1) to

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 8

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

ensure completeness.
• The programs studied by Chen et al. in [5], [6] and [7],

which added a total of 7 applications not in the Qualitas
suite.

• The applications studied by Destefanis et al. [8], which
added a further 5 applications.

• The list of “Notable Ports” on the Python 3 resources
website getpython3.com, which we surmised would be
representative of significant Python 3 applications. This
added a further 8 applications not already studied.

• The top 20 “most starred” and the top 20 “most forked”
Python applications on GitHub.com. While there was
some overlap with the applications already studied, this
set was more varied, and added a further 17 applications
not already collected.

We downloaded the latest version of each of these appli-
cations (to maximise the possibility of recording a transition
to Python 3) and examined them using PyComply. In almost
every case we found these applications to be still 100%
compliant with the 2.7 PyComply. The only exceptions were
for a copy of the Python 3.6 standard library contained in
SciPy, and one application, home-assistant, which was listed
at #20 in GitHub’s ‘most forked’. Both of these had low
Python 2.7 compatibility (79% and 76% respectively) and
100% Python 3.5 compatibility. In all of the applications
studied, these were the only ones to have made a definitive
move from Python 2.7 to Python 3.

While we can never make a definitive conclusion about
the full range of Python applications, we believe that the
results obtained from our study of the Qualitas corpus are
representative of Python applications.

VII. RELATED WORK

In this section we describe the research that relates to the
study that we present in this paper. In the next subsection we
describe the research that investigates language evolution, and
in subsection VII-B we describe the research that relates to
the construction of PyComply.

A. Research About Language Evolution

Orrù et al. attempt to address the lack of reproducibility
of empirical results in software engineering that results from
inaccuracies and uncertainty related to the data set that is
used in the study [20]. To address this problem they present
a data-set of metrics computed on a set of 51 popular Python
programs downloaded to form a corpus of applications similar
to the Java Qualitas Corpus (JQC) [23]. Orrù et al. later
investigate the use of inheritance in Python applications using
this corpus [19]. Using their program descriptions we were
able to download the 51 applications and we use this corpus
as part of the data-set described in previous sections of our
paper.

Destefanis et al. present a statistical analysis of 20 open
source object oriented systems to detect differences in met-
rics distribution between Java and Python projects [8]. They
selected ten Java projects from the Java Qualitas corpus

and ten Python projects. They conclude that the dispersion
parameter associated with the log-normal distribution fit for
the total number of methods can be used for distinguishing
Java projects from Python projects. In our investigation we
incorporate their ten Python projects into our study and we
investigate the transition of the ten applications from Python
2 to Python 3.

Hora et al. observe that software engineers now recognise
that software systems are part of an ecosystem involving other
systems, developers, users, hardware, and software [21]. They
make the important observation that modifications to one part
of the ecosystem may require clients of the system to adapt
and that the consequences of these changes are often unclear
in regard to the extent that clients may be required to adapt.
They describe an exploratory study aimed at observing API
evolution and its impact on a large scale software ecosystem,
Pharo, which consists of about 3,600 distinct systems. They
analyse 118 API changes and answer research questions about
the magnitude, duration, extension, and consistency of such
changes on the ecosystem. Our research is similar in nature
but not directly comparable, since we address the problem of
how software applications are adjusting to the changes in the
Python language ecosystem and how users of the language are
adapting their applications.

Urma presents research into the evolution of programming
languages, with particular emphasis on Python, observing that
the programming language ecosystem changes at a much
higher rate than the natural language ecosystem [14]. He
describes the difficulties incurred by developers in the presence
of language evolution with particular emphasis on evolution
that lacks backward compatibility. He describes six forms of
backward compatibility and describes techniques for detect-
ing and addressing the problems that occur when backward
compatibility is violated. We have listed these six forms of
backward compatibility and position our work in that context
in Section II.

Chen et al. investigate seven Python applications to deter-
mine the impact of changes to the dynamic features used in the
applications. They determine that files with dynamic features
are more change-prone and introspection is more correlated
to change proneness than other categories in the software
system. In contrast, we investigate the effects of changes to
the Python language itself, but we use their seven applications
to investigate the effects of Python language evolution in the
study that we described in Section III of our paper.

Parnin et al. investigate the effects of the addition of generic
programming to the Java ecosystem [24]. They observe that
the addition of generics to Java 1.5 in 2005 represents the
most significant change to that widely used programming
language. To determine the impact of the addition of generics
to Java they investigated 20 popular open source Java programs
and, interestingly for our study, observe that 15 of the 20
applications used generics. Their study was published six years
after the introduction of generics, which is roughly the same
number of years between the release of Python 3.2 and our
study, yet we notably do not detect a similar level of adoption

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 9

getpython3.com

B.A. Malloy & J.F. Power Quantifying the Transition from Python 2 to 3

of Python 3.2 features.

B. Research About the Construction of PyComply

While the implementation of efficient parsers for program-
ming languages has a long history, the structured engineering
of parsers is of more recent origin. One of the earliest papers
to take a structured approach proposed a set of grammar
transformation operators, and demonstrated that these were
correct with respect to a formal semantics for grammars [25].

Later, the term grammarware was coined to describe gram-
mars and related software, and a research agenda was outlined
that aimed at improving the quality of grammarware [26].
This research also deprecated ad hoc grammar hacking, and
proposed, among other things, that parser specifications should
be derived semi-automatically from grammars, an approach we
have followed in developing PyComply.

VIII. CONCLUDING REMARKS

In this paper we have presented a major longitudinal study
into the transition of Python applications concurrent with the
evolution of the language from Python 2 to Python 3. In
our previous research we developed techniques that leverage
grammar convergence to generate parsers for each of the major
versions of Python [4]; in this paper, we extend the technique
to develop a Python compliance analyser, PyComply, that uses
our previous research. We use PyComply to analyse a large
corpus of Python applications, including the applications in
common use, and described the results of our investigation
about their adoption of Python 3 features.

Based on the results from this study we conclude that
Python developers have not been willing to make a full
transition to the Python 3 series, but instead are choosing to
maintain compatibility with both Python 2 and Python 3.

This has two potentially negative consequences. First,
Python 2, while still supported, is no longer under active
development, and these developers have no access to new
features related to language evolution that are being added to
Python 3. Second, in order to maintain compatibility between
Python 2 and 3, developers must confine themselves to a
language subset, governed by the diminishing intersection of
features common to both Python 2 and 3.

The source code for PyComply and further data relating
to this paper is available from

https://github.com/MalloyPower/python-compliance

REFERENCES

[1] R.-G. Urma, D. Orchard, and A. Mycroft, “Programming language
evolution workshop report,” in Workshop on Programming Language
Evolution, 2014, pp. 1–3.

[2] R. Lämmel and V. Zaytsev, “An Introduction to Grammar Convergence,”
in Integrated Formal Methods, ser. LNCS, vol. 5423, 2009, pp. 246–260.

[3] V. Zaytsev, “Negotiated Grammar Evolution,” The Journal of Object
Technology, vol. 13, no. 3, pp. 1:1–22, July 2014.

[4] B. A. Malloy and J. F. Power, “Extending automated grammar conver-
gence to the generation and verification of multiple parser versions,”
[under review].

[5] B. Wang, L. Chen, W. Ma, Z. Chen, and B. Xu, “An empirical
study on the impact of Python dynamic features on change-proneness,”
in International Conference on Software Engineering and Knowledge
Engineering, July 2015, pp. 134–139.

[6] Z. Chen, L. Chen, W. Ma, and B. Xu, “Detecting code smells in Python
programs,” in International Conference on Software Analysis, Testing
and Evolution, Nov. 2016, pp. 18–23.

[7] W. Lin, Z. Chen, W. Ma, L. Chen, L. Xu, and B. Xu, “An empirical study
on the characteristics of Python fine-grained source code change types,”
in International Conference on Software Maintenance and Evolution,
Nov. 2016, pp. 188–199.

[8] G. Destefanis, M. Ortu, S. Porru, S. Swift, and M. Marchesi, “A
statistical comparison of Java and Python software metric properties,” in
International Workshop on Emerging Trends in Software Metrics, 2016,
pp. 22–28.

[9] R. Toal, R. Rivera, A. Schneider, and E. Choe, Programming Language
Explorations. CRC Press, 2016.

[10] G. Lindstrom, “Programming with Python,” IT Professional, vol. 7, pp.
10–16, 2005.

[11] S. Gee, “Python 2.7 to be maintained until 2020,” 2014, [accessed 03-
April-2017]. [Online]. Available: http://www.i-programmer.info/news/
216-python/7179-python-27-to-be-maintained-until-2020.html

[12] N. Coghlan, “Python 3 Q&A,” 2012, [accessed 03-April-2017].
[Online]. Available: http://python-notes.curiousefficiency.org/en/latest/
python3/questions and answers.html#other-changes

[13] B. Cannon, “Porting Python 2 code to Python 3,” [accessed 04-April-
2017]. [Online]. Available: https://docs.python.org/3/howto/pyporting.
html

[14] R.-G. Urma, “Programming language evolution,” Univ. of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-902, Feb. 2017.

[15] M. Sipser, Introduction to the Theory of Computation. Cengage
Learning, 2012.

[16] B. A. Malloy, S. A. Linde, E. B. Duffy, and J. F. Power, “Testing C++
compilers for ISO language conformance,” Dr. Dobbs Journal, pp. 71–
80, June 2002.

[17] B. A. Malloy, T. H. Gibbs, and J. F. Power, “Progression toward
conformance for C++ language compilers,” Dr. Dobbs Journal, pp. 54–
60, November 2003.

[18] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall,
R. N. M. Watson, and P. Sewell, “Into the depths of C: elaborating the de
facto standards,” in Programming Language Design and Implementation,
2016, pp. 1–15.

[19] M. Orrù, E. D. Tempero, M. Marchesi, and R. Tonelli, “How do Python
programs use inheritance? A replication study,” in Asia-Pacific Software
Engineering Conference, Dec. 2015, pp. 309–315.

[20] M. Orrù, E. Tempero, M. Marchesi, R. Tonelli, and G. Destefanis, “A
curated benchmark collection of Python systems for empirical studies on
software engineering,” in International Conference on Predictive Models
and Data Analytics in Software Engineering, 2015, pp. 2:1–2:4.

[21] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How do developers react to API evolution? the Pharo ecosys-
tem case,” in International Conference on Software Maintenance and
Evolution, 2015, pp. 251–260.

[22] W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, “How do developers fix
cross-project correlated bugs?” in International Conference on Software
Engineering, 2017.

[23] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas corpus: A curated collection of Java code for
empirical studies,” in Asia Pacific Software Engineering Conference,
Dec. 2010, pp. 336–345.

[24] C. Parnin, C. Bird, and E. Murphy-Hill, “Java generics adoption: How
new features are introduced, championed, or ignored,” in Working
Conference on Mining Software Repositories, 2011, pp. 3–12.

[25] R. Lämmel, “Grammar adaptation,” in Formal Methods Europe, ser.
LNCS, vol. 2021, 2001, pp. 550–570.

[26] P. Klint, R. Lämmel, and C. Verhoef, “Toward an engineering discipline
for grammarware,” ACM Trans. Softw. Eng. Methodol., vol. 14, no. 3,
pp. 331–380, 2005.

Preprint: accepted for publication at Empirical Software Engineering and Measurement (ESEM) 2017 10

https://github.com/MalloyPower/python-compliance
http://www.i-programmer.info/news/216-python/7179-python-27-to-be-maintained-until-2020.html
http://www.i-programmer.info/news/216-python/7179-python-27-to-be-maintained-until-2020.html
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html#other-changes
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html#other-changes
https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/howto/pyporting.html

	Introduction
	Background and Language Evolution
	The History and Evolution of Python
	Language Evolution and Backward Compatibility
	Analysing Python Applications: Grammar Convergence

	A Corpus of Python Programs
	Change adoption
	Hypothesis 1: the projects are not updating.
	Hypothesis 2: the projects do not use new features.

	Usage of Python 3.0 and 3.1 features
	Degree of usage of back-ported features
	Kinds of back-ported features used by applications

	Threats to Validity
	Related Work
	Research About Language Evolution
	Research About the Construction of PyComply

	Concluding Remarks
	References

