

Agile Quality Requirements Engineering Challenges:
First Results from a Case Study

Wasim Alsaqaf
School of Computer Science

University of Twente
Enschede, the Netherlands
w.h.a.alsaqaf@utwente.nl

Maya Daneva
School of Computer Science

University of Twente
Enschede, the Netherlands

m.daneva@utwente.nl

Roel Wieringa
School of Computer Science

University of Twente
Enschede, the Netherlands
r.j.wieringa@utwente.nl

Abstract— Agile software development methods have become
increasingly popular in the last years. Despite their popularity,
they have been criticized for focusing on delivering functional
requirements and neglecting the quality requirements. Several
studies have reported this shortcoming. However, there is little
known about the challenges organizations currently face when
dealing with quality requirements. Based on a qualitative
exploratory case study, this research investigated real life large-
scale distributed Agile projects to understand the challenges Agile
teams face regarding quality requirements. Eighteen semi-
structured open-ended in-depth interviews were conducted with
Agile practitioners representing six different organizations in the
Netherlands. Based on the analysis of the collected data, we have
identified nine challenges Agile practitioners face when
engineering quality requirements in large-scale distributed Agile
projects that could harm the implementation of the quality
requirements and result in neglecting them.

Keywords— Empirical research method, Quality requirements,
Agile, Requirements engineering, Interviews, Case study

I. INTRODUCTION
Engineering the requirements in Agile development

methods (ADMs) is different from the way it is done in the
traditional Waterfall approach. While the traditional approach
aims to fully identify the requirements up-front by following
sequential practices [1], requirements in ADMs are collected
just in time (JIT) based on face-to-face communication sessions
with the business representative [2] who communicates the
elicited requirements towards the Agile teams. The Agile
practices used to engineer the requirements are criticized for
focusing only on functional requirements (FRs) and neglecting
quality requirements (QRs) [3][4][5]. Neglect of QRs may result
in systems that do not meet the user expectations. In small co-
located projects, this can be repaired relatively easily by
adapting the next batch of requirements and fixing the part of
the product already delivered. This is however not possible in
Agile large-scale distributed (ALSD) projects where the teams
are spread over multiple locations and there are no possibilities
for ad-hoc coordination and communication among team
members and with clients. Our recent systematic literature
review (SLR) [6] on engineering QRs in ALSD, has indicated
twelve QR challenges in ALSD that could lead to compromising
QRs and as a consequence not meeting the user expectation. Our
SLR has also reported lack of empirical evidence on how Agile

projects handle QRs systematically, in their entirety since there
were no studies found which were dedicated to QRs as a whole
in ALSD settings. In this paper we want to shed light on the
challenges distributed Agile teams face when engineering the
QRs in real-life settings. To this end, we have conducted an
empirical study using semi-structured open-ended in-depth
interviews to understand the current challenges that Agile
practitioners cope with when it comes to QRs. We have
interviewed eighteen practitioners with different expertise (e.g.
testers, architects, scrum master, managers) and from different
domains (e.g. Banking, Public transportation, Tax agency)
working for Agile project organizations in the Netherlands. The
main objective of our empirical study is to explore the
challenges faced by distributed Agile teams regarding the
engineering of QRs. Based on our objective we set out to answer
the following research question (RQ): What are the challenges
Agile practitioners face when engineering the QRs in distributed
large-scale settings? If we gain insights into the challenges
Agile practitioners face when engineering the QRs, then we will
be able to understand better the problems that cause the neglect
of QRs. The next step will be then to investigate how Agile
practitioners currently deal with the identified problems. Based
on that we will gather insights in how we could assemble an
appropriate and cost-effective solutions to QRs problems in
ALSD. We consider an Agile project ‘distributed’ if it consists
of more than one team and its teams are distributed in terms of
the distribution models described by Larman and Vodde [7],
which are: 1) Multi-site teams - the teams work on different
locations. Each team is single site. 2) Dispersed teams - the
teams work on different locations. Each team is multi-site.

The remainder of the paper is organized as follows: Sect. 2
provides related work. Sect. 3 presents the research method, and
Sect. 4 our results. Sect. 5 discusses the results and Sect. 6 –
validity threats. Sect. 7 concludes.

II. RELATED WORK
Our recent SLR [6] on engineering QRs indicated the lack of

empirical research specifically devoted to the challenges that
Agile practitioners face when dealing with QRs as a whole in
ALSD [6]. However, there are studies reporting Agile RE
challenges [5][8][9][3], which we summarize as follows: The
SLR of Inayat et al.[5] focused on the differences between
traditional and Agile RE and the challenges of Agile RE. These
authors identified seven challenges brought by Agile, one of

2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

978-1-5090-4039-1/17 $31.00 © 2017 IEEE

DOI 10.1109/ESEM.2017.61

454

which was the neglect of QRs. The authors also called for more
empirical research to collect evidence on the topic of QRs. Next,
Ramesh et al. [3] investigated the ways in which requirements
analysis was conducted in sixteen organizations involved in
Agile software development. The study identified seven
challenges Problems with cost and schedule estimation,
Inadequate or inappropriate architecture, Neglect of QRs,
Customer access and participation, Prioritization on a single
dimension, Inadequate requirements verification, Minimal
documentation, that are posed by Agile practices. Käpyaho et al.
[9] reported a case study that investigated whether prototyping
can solve the RE challenges brought by ADMs. The study
indicated that while prototyping can help with some challenges
of Agile RE such as lack of documentation, motivation for RE
work and poor quality communication, it does not help with
other challenges such as not understanding the big picture and
the neglect of QRs. Bjarnason et al. [8] performed a case study
to investigate if and how Agile RE can mitigate the challenges
of traditional RE and what new RE challenges Agile might pose.
The study indicated that Agile addresses some RE challenges
such as communication gaps and overscoping, but also causes
new challenges, such as striking a good balance between agility
and stability, and ensuring sufficient competence in cross-
functional development teams. Furthermore, the study reported
the need of further research on the impact of Agile in large-scale
software development.

III. EMPIRICAL RESEARCH PROCESS
ADMs as well as RE depend in their application on human

interactions and interpretations. Therefore, in our view the only
way to understand how ADMs treats the QRs is to explore the
subject in real life settings. We conducted a qualitative
exploratory multi-case study as described by R. Yin [10] to
reach our research objective. The case study involves semi-
structured open-ended in-depth interviews and is designed
according to the guidelines of Boyce & Neale [11]: First, we
made a plan describing (1) the kind of information we intended
to collect, (2) the kind of practitioners who could provide us with
the sought-after information and (3) the kind of project settings
that would be an appropriate candidate to be included in the case
study. To gain a solid understanding of the challenges of
engineering QRs in Agile from different perspectives, we
decided to include practitioners with various backgrounds (e.g.
different expertise and roles, e.g. architects, testers, different
years of experience, different application domains). This is in
line with research methodologists (e.g. [10][11]).

Second, we developed an interview protocol with
instructions to be followed by each interview. The interview
questions were developed by the first author based on the
information we planned to collect and validated by the senior
researchers (the other two authors). The interview questions are
improved and finalized based on the feedback received from the
senior researchers. Thereafter, using the interview questions we
conducted a pilot interview with an Agile practitioner to check
the applicability of the questions in real-life context. No changes
made to the interview questions after this stage. Interested
readers can find our interview questions at this website:
https://wasimalsaqaf.files.wordpress.com/2017/07/interview-
questions.docx. We did not include the pilot interview in the case

study because the respective project setting did not meet the
requirement of project distributedness. The set of interview
questions is composed of two parts. The first explores the
settings to understand the project context, while the second
focuses on the practices the participants experienced in
engineering the QRs in one particular project of their choice.

Third, the data collection. The interviews were conducted by
the first researcher. He interviewed seventeen Agile
practitioners (participants) from different organizations. The
interviews were conducted in Dutch since all the organizations
and participants were located in the Netherlands. The term
‘organization’ used in this paper refers to the organization that
employs the participant and not the organization where the
participant performed the project under investigation. The
organizations included in the case study all claimed to follow
Agile development methodologies. Three of the organizations
have a long history in IT consultancy. They employ high skilled
consultants and IT coaches specialized, among other things, in
ADMs. One is a big government organization that has adopted
an Agile large-scale framework for several years. The last two
organizations provide customized IT services. One of them is
specialized in providing Transport services and the other
provides Administrative software. Both organizations use an
ADM to develop their software for several years. Scrum [12]
was the most used ADM. Some of the organizations use large-
scale frameworks such as Scaled Agile Framework (SAFe) [13]
and Scrum-of-Scrums [14]. The anonymized information about
the organizations is summarized in Table 1. Due to
confidentially agreements with the participants all data that
refers to the participants and/or to the organizations employing
them, are anonymized. The second column indicates the
approximate size of each organization based on the number of
its employees. The third column shows how many projects from
each organization we have included in our study. The rightmost
column shows how many participants from each organization
joined our study.

TABLE I. CASE STUDY ORGANIZATIONS.

Organization Size in employee’s
number

of
projects

of
participants

O1 Middle (51 – 200) 2 4

O2 Middle (51 – 200) 2 2

O3 Big (200 – 500) 1 1

O4 Big (300 – 700) 3 3

O5 Big (10000 – 30000) 3 3

O6 Big (50.000 – 100.000) 4 4

Table 2 presents the studied projects’ settings. All the
studied projects used Scrum as their ADM. One project (P13)
fell into the dispersed team category, while the other 13 projects
(P1-P12 and P14) were composed of multi-site teams. The
second column of Table 2 shows the total number of team
members and the number of Agile teams in the project. For
example project P1 had 21 team members that formed 3
distributed teams. The third column shows which scaled-
framework is used by the project. A cell with ‘none’ means that

455

no framework was used. The rightmost column indicates the
application domain.

TABLE II. CASE STUDY PROJECTS

Project # members
/ teams

Scaled-Framework Domain

P1 21 / 3 none Public sector
P2 24 / 2 none Public sector
P3 117 / 13 SAFe [13] Government
P4 30 / 3 none Commercial
P5 50 / 5 Scrum of Scrums [14] Banking
P6 175 / 25 SAFe [13] Commercial

navigation
P7 56 / 7 none Public sector
P8 12 / 2 none Public sector
P9 28 / 4 none Government
P10 40 / 6 none Health care
P11 27 / 3 SAFe [13] Government
P12 24 / 3 SAFe [13] Government
P13 13 / 2 none Insurance
P14 200 / 22 Spotify [15] Telecom

We note that some participants performed more than one
role in the respective project, so the number of roles (20) is larger
than the number of interviewees (17). As it is common in
qualitative exploratory studies [10], we included a broad variety
of backgrounds, in order to explore the phenomenon of interest
from multiple perspectives.

Next, Table 3 indicates the years of work experience each
participant has in general in the field of Software Engineering
and which role(s) (s)he performed in her/his respective projects
which were described in Table 2.

TABLE III. YEARS OF EXPERIENCE AND ROLES OF THE PARTICIPANTS

Participant Years of
experience

Project Role

PA1 4 P1 Software Developer
PA2 20 P1 Software Developer &

Software Architect
PA3 15 P2 Scrum Master
PA4 36 P2 Software Tester
PA5 21 P3 Scrum Master & Software

Tester
PA6 6 P4 Scrum Master
PA7 20 P5 Agile Coach
PA8 22 P6 Agile Coach & Product

Owner
PA9 10 P7 Software Architect
PA10 29 P8 Delivery Manager
PA11 25 P9 Software Architect
PA12 22 P10 DevOps Manager
PA13 17 P11 Scrum Master
PA14 15 P12 Software Designer
PA15 18 P7 Information Analyst
PA16 5 P13 Software Developer
PA17 7 P14 Agile Coach

The length of the interviews varied from 50 to 95 minutes.
At the beginning of each interview, the research objective and
the structure of the interview was explained to all participants.
The researcher informed the participants further about their

rights and responsibilities towards the research. All interviews
were audio-recorded to avoid loss of data.

Our last step was the data analysis. The audio files were
transcribed to a written version by a professional external
organization. We chose not to do the transcription by ourselves
to avoid any interpretation bias that could be passed into the
transcripts by the researchers involved in preparing and taking
the interviews. The analysis process in this paper was done
based on the grounded theory method described by Charmaz
[16]. This method is suitable for qualitative exploratory research
where theory should emerge from the data and where
preconceived beliefs are not allowed. Thereafter the first two
researchers (Alsaqaf, Daneva) read the transcripts separately
and inductively applied descriptive labels (called codes) to
segments of texts of each transcript. In the next step, the
researchers involved in the analysis stage came together and
discussed the descriptive codes they applied. Similar descriptive
codes were combined in higher-level categories. Different
descriptive codes were resolved by conducting an argumentative
discussion [17] between the researchers to reach a shared
rationally supported position and then combined in higher-level
categories. No unresolved different descriptive codes remained
after this step.

IV. RESULTS
Our qualitative analysis yielded nine QRs challenges on

team level as well as project level. These challenges are
described below. We illustrate our findings with quotations from
the interview transcripts.

A. QRs infeasibility
In the experience of our participants, discovering that a

needed QR is infeasible at an advanced stage of the development
cycle may result in refactoring the software architecture and
reimplementing the delivered functions. Project P1 was
supposed to deliver a system that would have high availability
(24/7). However, the system to be delivered should collect its
input from an external system which is due to security reasons,
only available for a limited number of hours a day. The
development team discovered this issue at an advanced stage of
the development cycle which resulted in refactoring the system
the team was delivering, in order to support on-line as well as
off-line input collection.

B. Teams interaction
Our data indicated that QRs are usually not implemented in

a single piece of code. Because the implementation of QRs could
span the whole system, they fall under the responsibility of
different teams. Therefore, our participants found that the
communication between the teams and their members should
happen in such a way that ensures the right implementation of
the QRs. For example, in project P1 text documents had to be
made available for end-users to search through. The documents
were developed by one team and made available for end-users
by another team. This is on the assumption that the documents
are correct and accurate. PA1 reports: “We had agreements
about, for example, the validity of the documents. We agreed to
put the word “expired” in the name of the document when a

456

document is no longer valid. If the communication between the
teams has not gone well – what actually happened- the end-
users could consult document which did not reflect the reality at
that moment”.

C. Inadequate QRs verification
This category refers to our participants’ observations that

QRs are difficult to model and therefore identifying and
designing acceptance tests for them may be difficult (as e.g. in
[18]). Besides, ADMs lack formal modelling of detailed
requirements [3] which makes the process of verifying the QRs
more difficult. PA2 describes this challenge: “The tester has
trouble with testing QRs, because there are mostly no clear-
defined acceptance criteria or QRs have not been defined so
precisely and verifiably”.

D. Integration test
In the experience of the participants, integration tests are

critical to the verification of the implemented QRs. This is due
to the fact that if QRs must be globally implemented, they
impact the entire system and not only the components
separately. Therefore, the work of the development teams
should be merged at some point to perform integration tests.
These tests could happen late in the development period. If
these tests reveal QR defects, this could result in extremely
costly re-work and refactoring of the existing software
architecture. For example, P3 was a large project that used
SAFe to coordinate the work among the distributed Agile
teams. P3 had sprints of two weeks and shippable increments
every six sprints. At the end of each six sprints, the whole set
of all shippable increments delivered by the distributed teams
was merged and go through an integration test by a devoted
integration team (DIT). The DIT needed other four weeks to
complete the needed integration tests. QRs related issues
discovered by de DIT went back to the particular teams to be
resolved. PA5 reported this challenge: “So what we have done
now is actually saving all the work of six sprints and offering it
to the integration team at once, while you could actually do the
tests in advance”. The development teams do simulate
integration test as part of their own unit tests. However,
simulating an integration test is not the same thing as doing a
real integration test.

E. Losing architectural overview
Software architecture is intimately connected to the

achievement of QRs [19]. Changes made to QRs at any time in
the development cycle could result in costly changes in the
software architecture whereby the earlier architecture become
inappropriate for the new QRs [3]. Participant PA5 reports this
issue: “We have a number of developers who are already
making changes closely to the architecture. Those developers
who often have discussions with the software architect
whenever he wants to make architectural changes which
actually will undermine the overall performance. However, one
time we choose for more performance and the other time not”.
The many changes in the software architecture could lead to
fragmentation of architectural knowledge. The architectural
knowledge of a particular system component could be limited

to the team responsible for implementing the system component
and the overall system architectural knowledge to the role of
the software architect. Besides, due to minimal documentation
and isolated knowledge the knowledge about previous
architectural decisions can be lost. This could cause the
justification of QRs trade-offs already made to be lost and the
software to be less understandable and maintainable.

F. Teams maturity
All our participants indicated that in their perceptions, the

success of Agile projects relies on the tacit knowledge
embedded in the teams. They thought, experienced developers
are more likely to make better architectural decision than junior
developers (as in [20]). However, teams that are a mix of
experienced and junior developers face the problem of
transferring the knowledge from the more experienced to the
less experienced in a way that allows both sides to share the
same knowledge of the system and enhance the overall quality
of it by implementing the right QRs in the right way.

G. QRs identification
Agile depends on the involvement of the stakeholders to

iteratively collect the requirements. Face-to-face feedback
sessions are planned to gather stakeholders feedback on the
implemented requirements and to let new stakeholder’s
requirements emerge. However, to collect those requirements,
all stakeholders representing the different viewpoints of the
system should be identified [21]. Over-looking stakeholders
representing any of the system viewpoints may lead to missing
requirements and enhance the total project cost. PA7: “If I look
back at the whole project life cycle, I think identifying all the
stakeholders and get feedback from them as soon as possible is
still the biggest threat to the success of the project”. QRs are
by nature cross-cutting requirements which means that they
may influence other requirements of different viewpoints.
Accordingly, QRs should be discovered and introduced at the
right development stage to avoid extensive rework to the
system [22]. Participant PA9 reports this issue: “Identifying the
QRs was a problem for us. The most QRs were not identified in
advance and were discovered in a later stage. By that time it
was very complex to implement them”. In addition to the
previous observations, we observed that participants do not
agree about the nature of QRs and how they should be treated.
Participant PA8 does not believe in the distinction between QRs
and FRs. Instead, he explained: “There are only requirements,
some of them are describing a change from situation A to
situation B, while the others are constraining the change to
certain options. Both changes and constrains might be of
quality or functional natures and can be placed on the Product
backlog as well as the Definition of Done”. Participant PA11
does not agree with this statement. He sees QRs as constraint
on FRs. According to his experience, for QRs to be meaningful,
they should be always put in relation to some specific FRs.
However, treating the QRs as part of FRs could result in
neglecting the QRs if their related FRs have not been
recognized as high priority [9]. For example, P2 is a project that
should develop a new system to replace an old one. The new
system should integrate within the environment where the old

457

one perfectly operated. Therefore, according to participant
PA2, the way of storing the data should be kept as it was in the
old system to guarantee data consistency. The product owner
(PO) of the project did not see changing the way of storing data
as high priority. PA2 describing this challenge: “I had to fight
hard to keep the data storage process in the old way, because
then the integration with the environment would be so much
easier. That was a non-functional requirement, which was not
known by the PO”.

H. QRs visibility
QRs can be broken down into two categories External and

Internal [23]. External QRs (EQRs) are visible to the
stakeholders and describe how the system should perform the
desired function to be of acceptable quality (e.g. security,
performance, availability). The stakeholders are very interested
in those QRs. Participants PA2 describes the importance of
EQRs: “Yes, performance was very important for the
stakeholders”. Internal QRs (IQRs) describe the ease of
understanding, maintaining and extending the system (e.g.
maintainability, modifiability, extensibility) and contrary to
EQRs are in the first instance barely visible to the stakeholders.
In the end they are visible to stakeholders, namely by means of
increased maintenance cost. Participant PA8: “IQRs get
attention only when it is really needed and when the system
begins to crack”.

I. Teams coordination
Large Agile projects with multiple teams, face the problem

of organizing and coordinating the teams around the so-called
Product Backlog Items (PBIs). The PBIs are all the desires that
might be needed in the product and are listed in an ordered way
in the “Product backlog” [12]. The “Product backlog” is the
single source of requirements for any changes to be made to the
product. Our participants used various approaches to this
situation: (1) Component teams: the teams were organized
around particular components of the system such as a database,
user interface, etc. (2) Feature teams: the teams were cross-
component ones and organized around particular customer
features such us login, log processing, etc. (3) Functional teams:
the teams were organized around a single function such as a test
team or an architecture team. Depending on the context and the
system to be implemented, one of the approaches or a
combination of two or more could be used. However, since each
of them has advantages as well as drawbacks, our participants
thought that teams should be careful with their choice because
a suboptimal choice could affect the overall quality of the
system.

V. DISCUSSION
We have observed that Agile practitioners struggle with

approaching the QRs. While user stories are the most used
technique in ADMs to document the customer desires [24], our
practitioners did not agree on whether the user stories are
equivalent to traditional requirements (TR) or not. In our study,

1 https://www.scrumalliance.org/community/articles/2013/sept
ember/agile-user-stories

participant PA8 experienced the user stories as equivalent to TR
and therefore they could be both FRs as well as QRs. In
contrast, PA11 believes that user stories always represent FRs,
while the QRs are constrains on the FRs and they cannot be
specified in isolation from their related FRs. This is in line with
Pammi’s online article1 that used the term “3C” to denote the
Agile requirement. The term “3C” refers to Card (written user
story), Conversation (user story discussion) and Confirmation
(user story acceptance criteria). In Pammi’s opinion, the 3C is
an equivalent to TR and each ‘C’ cannot be treated separately.
Pammi’s suggestion is in alignment with [25]. Bjarnason et al.
[25] reported based on empirical study the use of user stories
complementary with acceptance criteria to formally document
Agile requirements. An another interesting observation is about
the exact point in time, when to identify the QRs. Participant
PA9 experienced not identifying QRs in advance as a challenge
for his project. This observation contrasted with the spirit of
Agility where requirements emerge throughout the
development cycle. However, identifying crosscutting
requirements at the wrong stage could result in costly rework.

As part of this work, we also compared our findings with the
twelve challenges reported in our 2017 SLR [6]. Concerning
the identification and documentation of QRs, our SLR found
the following challenges: (1) ADMs do not provide a widely
accepted technique for gathering the QRs, (2) the inability of
user stories to document QRs and their dependencies, and (3)
dependence on the product owner as the single point to collect
the requirements Our present results overlapped the SLR
findings and revealed that the identification of stakeholders and
their QRs at the right development stage is a challenge. Besides,
agile practitioners lack of agreement about the nature of QRs
makes the process of specifying the QRs unclear. However,
more research needs to be done to investigate whether the lack
of documenting the QRs is due to the inability of the user stories
to document them (as in our SLR) or due to the lack of
agreement about the nature of QRs.

Our results also overlap with other previously reported
challenges [6], namely, (1) Focusing on delivering functionality
at the cost of architecture flexibility, (2) Ignoring predictable
architecture requirements, (3) Insufficient requirements
analysis, (3) Validating QRs occurs too late in the process and
(4) Product Owner’s lack of knowledge

Next, we did not find evidence that the challenges: (1)
Product Owner’s heavy workload and (2) Insufficient
availability of the Product Owner, reported in [6] in anyhow
threated the success of the projects in our case study.

Last, this paper revealed new challenges that were not
reported in our SLR, namely: (1) Teams interaction, (2) Teams
coordination, (3) QRs visibility and (4) Teams maturity.

VI. THREATS TO VALIDITY
The first author has an Agile software engineering

background, therefore, some occupational bias could be passed
to the interview questions as well as the interviews themselves.

458

This type of bias was reduced by (1) having the interview
protocol and questions reviewed by experienced and senior
researchers (the second and third authors); (2) conducting a
pilot interview to ensure the applicability of the interview
questions; (3) recording all the interviews and having the audio
files reviewed by the senior researchers; and (4) having the
audio files transcribed to a written version by a professional
external organization. King et al. [26] reported a lack of honesty
that the participants show in their answers to be possible a
weakness in interview techniques. To reduce this threat we took
the following measures (1) all the participants were volunteers
and had the right to refuse answering any question at any time
or even leave the interview at any stage; (2) All the participants
were ensured that all information will be confidentiality and
anonymously treated; (3) The interviewer started each
interview by explaining the objective of the research to the
participants and the importance of giving accurate and honest
answers to the validity and reliability of the research; and (4)
The participants had different backgrounds, disciplines and
were of different application domains. This diversity allowed
us to investigate and evaluate the same phenomena from
different points of view. An another possible weakness of
interview techniques reported in [26] is the tendency for the
interviewer to ask leading questions. However, this threat is
minimal since we conducted a pilot interview to ensure the
applicability of the interview questions after having the
interview questions reviewed by the senior researchers.

VII. CONCLUSION
Previous studies have reported the engineering of QRs in

Agile as a challenge [3][4][5][8][9]. Other studies indicated the
lack of empirical studies regarding Agile QRs [5][6]. This study
has identified nine main challenges Agile practitioners cope
with when dealing with QRs based on a qualitative exploratory
case study. which is the primary contribution of our research.
Moreover, this study shows that there is actually a conceptual
problem when it comes to the identification of QRs.
Practitioners have no clear concept of what a QR is, or have
different concepts; this lack of agreement makes it easy to miss
QRs. Moreover, it seems to us that the challenges do not look
like being caused by Agile, but in fact it seems to be challenges
that teams struggle with when trying to implement Agile. We
make the note that due to space limitation, we did not include
all the results. Our next step is therefore to continue with our
analysis further. This includes to understand the role of the
distributed context in the ways in which the challenges are
experienced. Second, we plan to categorize the possible causes
for each problematic phenomenon that we presented in Sect. 4.
This would lead us to a set of hypotheses that we could evaluate
in future research. This analysis is needed in order to better
diagnose the problems of QRs in Agile. Only then we could
propose a treatment for these problems, namely finding
mitigations for the challenges.

VIII. REFERENCES
[1] M. Kassab, “An Empirical Study on the Requirements Engineering

Practices for Agile Software Development,” in SEAA, 2014, pp. 254–
261.

[2] C. M. Robert and M. Micah, Agile Principles, Patterns and Practices in
C#. Prentice Hall, 2006.

[3] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements engineering
practices and challenges: an empirical study,” Inf. Syst. J., 20 (5), pp.
449–480, 2010.

[4] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering and
agile software development,” in WET ICE, 2003, pp. 1–6.

[5] I. Inayat, L. Moraes, M. Daneva, and S. S. Salim, “A Reflection on Agile
Requirements Engineering: Solutions Brought and Challenges Posed,” in
XP Workshops, 2015.

[6] W. Alsaqaf, M. Daneva, and R. Wieringa, “Quality Requirements in
Large-Scale Distributed Agile Projects – A Systematic Literature
Review,” in REFSQ2017, 2017, vol. 10153, pp. 219–234.

[7] C. Larman and B. Vodde, Large-scale Scrum more with less. Pearson
Education, 2016.

[8] E. Bjarnason, K. Wnuk, and B. Regnell, “A case study on benefits and
side-effects of agile practices in large-scale requirements engineering,”
AREW, pp. 1–5, 2011.

[9] M. Käpyaho and M. Kauppinen, “Agile Requirements Engineering with
Prototyping: A Case Study,” in RE2015, 2015, vol. 23, pp. 334–343.

[10] R. K. Yin, Case Study Research Design and Methods, 5th Revise. Sage
Publications Inc, 2013.

[11] C. Boyce and P. Neale, “Conducting in-depth interviews: A Guide for
designing and conducting in-depth interviews,” Evaluation, 2(5), pp. 1–
16, 2006.

[12] K. Schwaber and J. Sutherland, “The Scrum Guide,” Scrum.Org. p. 17,
2016.

[13] D. Leffingwell and R. Knaster, SAFe 4.0 Distilled: Applying the Scaled
Agile Framework for Lean Software and Systems Engineering, 1st ed.
Pearson Education, 2017.

[14] C. Larman and B. Vodde, Practices for Scaling Lean & Agile
Development. Addison-Wesley Professional, 2010.

[15] H. Kniberg and A. Ivarsson, “Scaling Agile @ Spotify - with Tribes,
Squads, Chapters & Guilds,” 2012.

[16] K. Charmaz, Constructing grounded theory: a practical guide through
qualitative analysis, vol. 10. 2006.

[17] D. Hitchcock, “The Practice of Argumentative Discussion,”
Argumentation, 16 (3), pp. 287–298, 2002.

[18] P. Bourque and R. E. D. Fairley, Guide to the Software Engineering Body
of Knowledge, Version 3.0, vol. 3.0. 2014.

[19] R. Kazman and L. Bass, “Toward Deriving Software Architectures From
Quality Attributes,” Softw. Eng. Inst., no. August, pp. 1–44, 1994.

[20] B. Boehm, “Get ready for agile methods, with care,” Computer, 35(1), pp.
64–69, 2002.

[21] I. Sommerville, Software Engineering. Pearson Education, 2011.
[22] P. Rodríguez, A. Yagüe, P. P. Alarcón, and J. Garbajosa, “Some findings

concerning requirements in agile methodologies,” in PROFES, 2009, vol.
32 LNBIP, pp. 171–184.

[23] C. Mario, Executable Specifications with Scrum. Pearson Education,
2013.

[24] J. D. R. V Medeiros, D. C. P. Alves, A. Vasconcelos, C. Silva, and E.
Wanderley, “Requirements engineering in agile projects: A systematic
mapping based in evidences of industry,” in CibSE, 2015, pp. 460–473.

[25] E. Bjarnason, K. Wnuk, and B. Regnell, “Are you biting off more than
you can chew? A case study on causes and effects of overscoping in large-
scale software engineering,” Inf. Softw. Technol., 54 (10), pp. 1107–
1124, 2012.

[26] N. King and C. Horrocks, Interviews in Qualitative Research. SAGE
Publications Ltd, 2010.

459

