
Framework Code Samples: How Are They
Maintained and Used by Developers?

Gabriel Menezes∗, Bruno Cafeo∗, Andre Hora†
∗ Faculty of Computing, UFMS, Brazil

menezes@aluno.ufms.br, cafeo@facom.ufms.br
† Department of Computer Science, UFMG, Brazil

andrehora@dcc.ufmg.br

Abstract—Background: Modern software systems are com-
monly built on the top of frameworks. To accelerate the learning
process of features provided by frameworks, code samples are
made available to assist developers. However, we know little about
how code samples are actually developed. Aims: In this paper, we
aim to fill this gap by assessing the characteristics of framework
code samples. We provide insights on how code samples are
maintained and used by developers. Method: We analyze 233 code
samples of Android and SpringBoot, and assess aspects related to
their source code, evolution, popularity, and client usage. Results:
We find that most code samples are small and simple, provide
a working environment to the clients, and rely on automated
build tools. They change frequently over time, for example, to
adapt to new framework versions. We also detect that clients
commonly fork the code samples, however, they rarely modify
them. Conclusions: We provide a set of lessons learned and
implications to creators and clients of code samples to improve
maintenance and usage activities.

I. INTRODUCTION

Modern software systems are commonly implemented with
the support of frameworks, which provide feature reuse, im-
prove productivity, and decrease costs [1]–[3]. Frameworks
support the development of mobile apps, web platforms,
responsive interfaces, cross-platform systems, among other. In
the Java ecosystem, for example, there are more than 270,000
packages available to be used by client systems in the Maven
repository.1 In the JavaScript ecosystem the numbers are even
higher: the npm repository has over 400,000 packages and
reports 6 billions downloads in a single month.2

To facilitate and accelerate the learning process of features
provided by frameworks, code samples are commonly made
available to assist development efforts [4]. Code samples are
often provided by world-wide software projects and organi-
zations, such as Android,3 Spring,4 Google Maps,5 Twitter,6

Microsoft,7 to name a few. Framework code samples may

1https://search.maven.org/stats
2https://www.linux.com/news/event/Nodejs/2016/state-union-npm
3https://developer.android.com/samples
4https://spring.io/guides
5https://developers.google.com/maps/documentation/javascript/examples
6http://twitterdev.github.io
7https://code.msdn.microsoft.com

introduce the usage of basic features, as well as more advanced
ones. For instance, a basic sample provided by the SpringBoot
framework help newcomer developers on building RESTful
web services.8 In contrast, a more advanced code sample made
available by the same framework help developers on securing
web applications.9 Due to their practicality, client developers
may copy and paste code samples into their own code base,
and may put them into production [4]. Thus, ideally, code
samples should follow some good development practices, such
as be simple, small, self-contained, easy to understand, secure,
and efficient [4].

Although framework code samples are commonly available
to help developers, we know little about how they are actually
maintained and used by developers. In this context, some
questions are still opened, such as: what is the common size
of code samples? how do code samples evolve over time?
what makes a code sample more popular than other? how are
the code samples used by the developers? By answering these
questions, we can assess common aspects of code samples,
better supporting their maintenance and usage activities.

In this paper, we aim to fill this gap by assessing the
characteristics of framework code samples. Specifically, we
analyze 233 code samples provided by two widely popu-
lar frameworks: Android and SpringBoot. We answer four
research questions related to their maintenance and usage.
Particularly, we assess aspects related to their source code,
evolution, popularity, and client usage:

• RQ1 (Source Code): What are the source code char-
acteristics of framework code samples? We find that
framework code samples are overall simple and small.
We also detect that code samples rely on automated build
tools and provide working environments to facilitate the
task of running them.

• RQ2 (Evolution): How do framework code samples evolve
over time? We detect that code samples are not static,
but they evolve over time. Updates are often made to
keep them up to date with new framework versions, and,
consequently, relevant to the clients.

• RQ3 (Popularity): Which aspects differentiate popular
framework samples from ordinary ones? By comparing

8https://spring.io/guides/gs/rest-service
9https://spring.io/guides/gs/securing-web978-1-7281-2968-6/19/$31.00 ©2019 IEEE

ar
X

iv
:1

90
7.

05
56

4v
1

 [
cs

.S
E

]
 1

2
Ju

l 2
01

9

https://search.maven.org/stats
https://developer.android.com/samples
https://spring.io/guides
https://developers.google.com/maps/documentation/javascript/examples
http://twitterdev.github.io
https://code.msdn.microsoft.com
https://spring.io/guides/gs/rest-service
https://spring.io/guides/gs/securing-web

popular and unpopular code samples, we find that the
popular ones are more likely to have a higher amount of
source code files. They are also more likely to change
over time than the unpopular ones.

• RQ4 (Client Usage): How are the framework code sam-
ples used by developers? We rely on the fork metric as
a proxy of code sample usage. We find that the majority
of the forked code samples are inactive. However, a non-
negligible ratio of the forked code samples are updated.

Based on our findings, we provide a set of implications to
code sample creators and clients, particularly, to support their
maintenance and usage activities.

Contributions: This paper has three major contributions:

1) To the best of our knowledge, this is the first research
to assess framework code samples, which support the
learning process of features provided by frameworks.

2) We provide a large empirical study on the code samples
made available by Android and SpringBoot to better
understand their maintenance and usage practices.

3) We provide a set of lessons learned and implications to
code sample creators and clients.

Structure of the paper: Section II introduces code samples and
their importance to support development nowadays. Section III
presents the study design, while Section IV reports the results.
Section V discusses the implications and Section VI presents
the threats to validity. Finally, Section VII discusses related
work and Section VIII concludes the paper.

II. CODE SAMPLES IN A NUTSHELL

Framework code samples aim to facilitate and accelerate
the learning process of features provided by frameworks.
In this context, Oracle states that “code sample is provided
for educational purposes or to assist your development or
administration efforts”.10 Spring reports that “code samples
are designed to get you productive as quickly as possible”.11

Popular frameworks make code samples available to assist
their client developers. The Android framework, for example,
has more than one hundred samples on GitHub to help the
creation of mobile apps. The SpringBoot framework also has
dozens of samples to support the implementation of web apps.
In addition to those well-known frameworks, code samples
are often provided by organizations to facilitate the usage of
their technologies, such as Google Maps APIs, Twitter APIs,
Microsoft platforms, Apple platforms, among other.

In order to create good code samples, some guidelines are
available. For example, the Code example guidelines provided
by Mozilla [4] states general practices related to the size,
understandability, simplicity, self-containment, security, and
efficiency. Guidelines also exist to set up the formatting of
code samples, as the one provided by Google.12 In addition,

10https://www.oracle.com/technetwork/indexes/samplecode
11https://spring.io/guides
12https://developers.google.com/style/code-samples

numerous blogs on programming practices support the devel-
opers who are in charge of creating code samples.13

Figure 1 presents an official code sample provided by
the SpringBoot framework.14 It supports new developers on
building RESTful web services. This sample is composed by
only three major classes and helps the clients dealing with
important SpringBoot features provided via the annotations:
@RestController, @RequestMapping, @Request-
Param, and @SpringBootApplication. This sample is
also composed by other files (e.g., xml, json, shell) to properly
help the client running it.

public class Greeting {

 private final long id;
 private final String content;

 public Greeting(long id, String content) {
 this.id = id;
 this.content = content;
 }

 public long getId() {
 return id;
 }

 public String getContent() {
 return content;
 }
}

@RestController
public class GreetingController {

 private static final String template = "Hello, %s!";
 private final AtomicLong counter = new AtomicLong();

 @RequestMapping("/greeting")
 public Greeting greeting(@RequestParam(value="name",
defaultValue="World") String name) {
 return new Greeting(counter.incrementAndGet(),
 String.format(template, name));
 }
}

@SpringBootApplication
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Fig. 1. Example of code sample (SpringBoot framework).

Although simple and small, the GitHub project15 hosting
this sample has 772 stars and 1,413 forks16, suggesting that it
is indeed relevant and helpful for developers, as presented in
Figure 2 (top). Interestingly, this sample is an active project:
the 334 commits show that it is evolving over time. By
checking its changes, we notice many of them are made to

13e.g., https://goo.gl/SzV5PL, https://goo.gl/QaA16L, https://goo.gl/ixGaqF
14https://spring.io/guides/gs/rest-service
15https://github.com/spring-guides/gs-rest-service
16A fork is a copy of a repository. It allows developers to change the copy

without affecting the original project.

https://www.oracle.com/technetwork/indexes/samplecode
https://spring.io/guides
https://developers.google.com/style/code-samples
https://goo.gl/SzV5PL
https://goo.gl/QaA16L
https://goo.gl/ixGaqF
https://spring.io/guides/gs/rest-service

update documentation and configuration files. Changes are also
performed to migrate the sample to new framework versions,
keeping it up to date and ready to be used with fresh releases
of SpringBoot. However, not all code samples receive the same
attention from the developers: another official sample provided
by SpringBoot to access data with MySQL17 is much less
popular (49 stars), grab less attention from the community
(107 forks), and is less active (118 commits), as shown in
Figure 2 (bottom).

Fig. 2. Code sample statistics (SpringBoot framework).

Overall, we notice the relevance of code samples to support
development, as exposed by the variety of software technolo-
gies that make them available. We also verify the concerns to
create good code samples, as pointed by the many available
guidelines. Finally, we notice that code samples can have
distinct different levels of popularity, activity, and community
engagement.

Despite their importance, to the best of our knowledge,
framework code samples are understudied. We are not aware
about fundamental aspects on how they are actually main-
tained and used by developers. By reveling these aspects, we
aim to better understand the code samples and provide initial
insights on their maintenance and usage practices.

III. STUDY DESIGN

A. Selecting the Case Studies

In this study, we assess the code samples provided by two
world wide frameworks: Android and SpringBoot.

The Android framework18 allows the creation of Android
apps for several devices, such as smartphones, smartwatches,
and TVs. Android code samples are publicly available on
GitHub19 and help developers dealing with Android features,
such as permissions, picture and video manipulation, back-
ground tasks, notifications, networks, multiple touch events,
among many other. The SpringBoot framework20 mostly sup-
port the development of web applications. It also provides a

17https://github.com/spring-guides/gs-accessing-data-mysql
18https://developer.android.com
19https://github.com/googlesamples
20https://spring.io

set of code samples publicly available on GitHub21 to help
developers creating web apps, such as dealing with RESTful
web services, scheduling tasks, uploading files, validating form
inputs, caching data, securing apps, among other. Considering
both frameworks, in this study we analyze 233 code samples:
176 from Android and 57 from SpringBoot.

We select these two frameworks due to several reasons.
First, they are relevant and worldwide adopted frameworks
that have millions of users. Second, they support the creation
of two distinct and important niche of apps: mobile and web.
Third, their base of code samples are publicly available on
GitHub, thus, in addition to access their source code, we can
also perform evolutionary analysis. Fourth, they have a large
base of developers, so we can better assess their usage.

Figure 3 presents the distribution of number of files, com-
mits, and stars for the 233 code samples. On the median, the
Android code samples have 47 files, 24 commits, and 95 stars.
The most popular Android sample is easypermissions
with 7,328 stars. The SpringBoot code samples have 27 files,
137 commits, and 45 stars. In this case, the most popular
sample is gs-rest-service with 772 stars.

47
27

10

100

1000

10000

Android Spring
Code Samples

N
um

be
r

of
 F

ile
s

(lo
g

sc
al

e)
Number of Files

24

137

1

10

100

1000

Android Spring
Code Samples

N
um

be
r

of
 C

om
m

its
 (

lo
g

sc
al

e)

Number of Commits

95

45

1

10

100

1000

10000

Android Spring
Code Samples

N
um

be
r

of
 S

ta
rs

 (
lo

g
sc

al
e)

Number of Stars

Fig. 3. Basic metrics of the Android and SpringBoot code samples.

B. Source Code Analysis (RQ1)

In Research Question 1, we assess the last version of
the source code samples and extract three data: source code
metrics, file extensions, and configuration files, as summarized
in Figure 4.

Last source
code version

Source code
metrics

File

extensions

Configuration

files

Code sample

repositories 1

2

3

Fig. 4. Source code analysis (RQ1).

1. Source code metrics: We first assess the current state of the
samples by computing source code metrics with the support of
the software analysis tool Understand.22 Particularly, we focus
on four metrics: number of java files, lines of code, cyclomatic
complexity, and commented code lines. Rationale: Small code

21https://github.com/spring-guides
22https://scitools.com

https://developer.android.com
https://github.com/googlesamples
https://spring.io
https://github.com/spring-guides

with simple structures may improve code understanding and
readability [5]. Code samples are not different; ideally, they
should be concise and simple [4]. Code comment is important
to any piece of code [6], however, it may be even more relevant
to samples as they provide inline comments to help the users.

2. File extensions: We extract the file extensions found in the
code samples to better understand their content in addition to
source code files. Rationale: In addition to java files, we are
not aware of the files that are present in the code samples. The
higher presence of other files (e.g., xml, json, jars etc) may
indicate that a working environment is available to the clients
to run the code samples. In contrast, if the files are mostly
concentrated on Java, this may suggest that additional work is
still needed by the clients to properly set up the environment.

3. Configuration files: In addition to the file extensions, we
also compute the most common configuration files from the
code samples. Particularly, we verify whether the code sam-
ples adopts automation tools to build, integrate, and manage
dependency. Rationale: By relying on these automation tools,
the framework code samples are following good development
practices, which are commonly adopted on software projects
to improve quality and productivity and reduce risks [7]–[9].

C. Evolutionary Analysis (RQ2)

In Research Question 2, we assess all the versions (i.e., com-
mits) of the code samples and extract: evolutionary metrics,
file extension changes, configuration file changes, and migra-
tion delay, as presented in Figure 5.

Evolutionary
metrics

File extension
changes

Configuration

file changes

Code sample

repositories

1

2

3

 Source code

versions

Migration

delay 4

Fig. 5. Evolutionary analysis (RQ2).

1. Evolutionary metrics: We compute metrics to assess the
evolution of the code samples. Specifically, we extract two
evolutionary metrics: frequency of commits and lifetime. Life-
time is computed as the number of days between the first
and the last project commit. Rationale: To cope with API
evolution [10]–[13], ideally, the code samples should change
over time. Code samples with frequent changes may indicate
efforts to keep them up to date. In contrast, less active code
samples may suggest they are abandoned.

2. File extension changes: We analyze the file extension
changes over time to better understand how the code samples
are actually maintained. Rationale: To evolve the code sam-
ples, source code and other files should be updated. However,

we are not aware of which files are most relevant to keep the
samples properly working.

3. Configuration file changes: We analyze the modifications in
the configuration files to assess whether the automation tools
are being updated. Rationale: In addition to use automation
tools to build, integrate, and manage dependencies, it is im-
portant to keep them alive, otherwise, the advantages provided
by these tools are not achieved.

4. Migration delay: We compute the migration delay between
code samples and their frameworks. In other words, we assess
how long it takes for code samples migrate to new framework
versions. Rationale: As client projects, code samples are
dependent of their frameworks. When these frameworks evolve
and provide new versions, the code samples (as any other
framework client software) should be updated, otherwise, they
will be frozen on past versions, and become less attractive to
their users [11], [14]–[17].

D. Popularity Analysis (RQ3)

In Research Question 3, we analyze the popularity of the
studied code samples to find differences between the most
and least popular. Specifically, we sort the code samples in
descending order according to their popularity in number of
stars. We classify as popular code samples the top 50% with
the highest number of stars. Similarly, we classify as unpopular
code samples the bottom 50% with the lowest number of stars.
We then compare each group regarding the source code and
evolutionary metrics described in RQs 1 and 2 (e.g., lines of
code, complexity, lifetime, etc), as summarized in Figure 6.
We also analyze the statistical significance of the difference
between the groups by applying the Mann-Whitney test at p-
value = 0.05. To show the effect size of the difference between
them, we compute Cliff’s Delta (or d); we use the effsize
package in R23 to compute Cliff’s Delta. Following previous
guidelines [18], we interpret the effect size values as negligible
for d < 0.147, small for d < 0.33, medium for d < 0.474,
and large otherwise.

Rationale: Several previous studies have used a similar ap-
proach to find differences between popular and unpopular
software artifacts, for example, by assessing the popularity of
mobile apps [19] and software libraries [11], [20]. Here, we
adopt a similar approach to differentiate popular and unpopular
code samples, learning with the practices provided by the
popular ones.

Source code metrics
(popular samples)

Evolutionary metrics
(popular samples)

Code sample

repositories

 Source code
versions

Top 50%

Popularity

metric (stars)
Bottom 50%

Popular samples

Unpopular samples

Source code metrics
(unpopular samples)

Evolutionary metrics
(unpopular samples)

Fig. 6. Popularity analysis (RQ3).

23https://cran.r-project.org/web/packages/effsize

E. Client Usage Analysis (RQ4)

In our last Research Question, we focus on the client side,
that is, the developers who are adopting the code samples.
Particularly, we analyze all GitHub projects that forked the
official code samples and compute: fork metrics and file
extension changes, as summarized in Figure 7.

Fork

metrics

File extension
changes

Forked code

sample repositories

1

2

 Source code

versions

Fig. 7. Client usage analysis (RQ4).

1. Fork metrics: We compute three metrics to assess how the
code samples are forked: number of forks, number of forks
with commits, and number of commits in forked code samples.
Rationale: Fork can be seen as a measure of popularity [21].
After forking, the client developer can update the code or
simply do not perform any change. In the case the forked
project is updated, this may indicate that the client developer
is somehow exploring the code sample, possibly, by running
and improving it.
2. File extension changes: We also analyze the file extension
changes to better understand how the forked code samples
are actually updated. Rationale: To evolve the forked code
samples, source code and other files should be updated.
However, we are not aware which files are most relevant to
be explored by the clients.

IV. RESULTS

A. Source Code (RQ1)

Source code metrics: Figure 8 presents the distribution of
the source code metrics in number of java files, lines of
code, cyclomatic complexity, and commented code lines in
the last version of the code samples. We notice that in terms
of java files, the projects are very small: on the median 9
files in the Android samples and only 4 in the SpringBoot
samples. The number of lines of code per Java file is larger
in Android (70.23) than in SpringBoot (25). However, the
Android samples have more comments (32%) per file than the
SpringBoot samples (7%). Finally, we see that the complexity
is a bit higher in Android than in SpringBoot samples (1.48
vs. 1). These numbers confirm our initial impression that code
samples are overall small and simple, as stated by guidelines.
However, we also detect that the Android samples are larger
and slightly more complex than the SpringBoot ones.
File extensions: Table I presents the file extensions found in the
analyzed samples. The Android samples are dominated by xml
(15%), followed by java (9.05%) and jar files (3.96%). The
SpringBoot samples include mostly Java (12.49%), properties
(9.75%), and jar files (8.65%). Interestingly, in addition to the

9
4

1

10

100

Android Spring
Code Samples

N
um

be
r

of
 fi

le
s

(lo
g

sc
al

e)

Number of Java Files

70.23

25

10

30

100

300

Android Spring
Code Samples

Li
ne

s
of

 c
od

e
(lo

g
sc

al
e)

Lines of Code per Java File

32

7

1

3

10

30

Android Spring
Code Samples

P
er

ce
nt

 o
f l

in
es

 (
lo

g
sc

al
e)

Relative Comment Lines in
Java File

1.48

1
1

2

3

Android Spring
Code Samples

N
º

of
 D

ec
is

io
ns

 P
oi

nt
s

(lo
g

sc
al

e)

Cyclomatic Complexity per
Method in Java File

Fig. 8. Source code metrics (RQ1).

java files, both samples provide a relevant proportion of xml
and jar files, indicating that a working environment is also
available to the clients.

TABLE I
FILE EXTENSIONS (RQ1).

Android Spring
Extensions # % Extensions # %

xml 4,307 15.73 java 319 12.49
java 2,477 9.05 properties 249 9.75
jar 1,083 3,96 jar 221 8.65
md 572 2.09 xml 147 5.75
json 549 2,00 adoc 122 4.77
other 17,245 62.98 other 915 35.81

Configuration files: Table II complements the previous analy-
sis by showing specific configuration files. Both projects have
build.gradle files, which automate software build and
delivery via the Gradle Build Tool. In addition, the SpringBoot
samples contains pom.xml files, which relies on Maven and
provide features equivalent to Gradle to automate the build
process. The Android samples include the manifest.xml
files, which are mandatory to Android apps and provide
information that a device needs to run the app. Finally, to
provide continuous integration via the Travis CI, SpringBoot
samples include travis.yml files.

Overall, we notice that both samples include configuration
files to support their clients as well as adopt automation tools
to improve overall quality [7]–[9].

TABLE II
CONFIGURATION FILES (RQ1).

Android Spring
Files # % Files # %

build.gradle 604 2.21 pom.xml 144 5.64
manifest.xml 397 1.45 build.gradle 118 4.62
travis.yml 2 0.01 travis.yml 56 2.19

Lesson Learned 1: Framework code samples are overall
simple and small. We also find that code samples rely on
tools to automate build and integration (e.g., Gradle, Maven,
and Travis) and provide a working environment to the users
(i.e., including jar, xml, properties, and other files in addition
to source code).

B. Evolution (RQ2)

Evolutionary metrics: Figure 9 presents the evolutionary met-
rics extracted from our samples: lifetime and frequency of
commits. Differently from the previous analysis, i.e., RQ1,
these metrics are computed taking into account the code
sample changes over time. We notice that both samples are
relatively aged: on the median, the Android samples have
1,474 days (4 years), while the SpringBoot ones are even
older, having 1,924 days (5.2 years). Regarding the frequency
of commits, the Android samples change one time each 63
days, while the SpringBoot one time each 15 days, on the
median.

1474
1924

100

300

1000

Android Spring
Code Samples

N
º

of
 d

ay
 (

lo
g

sc
al

e)

Code Sample Lifetime

63

15
10

100

1000

Android Spring
Code Samples

F
re

qu
en

cy
 o

f c
om

m
its

 (
lo

g
sc

al
e)

Code Sample Lifetime per
Commit

Fig. 9. Evolutionary metrics (RQ2).

File extension changes: Table III presents the changes per
file extension. We clearly see that the code samples are not
static: they are updated over the years. In both cases, xml files
are the most changed, followed by Java, properties, and jar
files. Table IV shows another view of this data: the actions
performed on the files: addition, modification, or removal.
While in Android samples most of the actions are to add files
(53.03%), in SpringBoot the majority is to modify existing
ones (85.13%). In both cases, removal of files is uncommon.
Configuration file changes: Table V presents the most changed
configuration files. We notice that build.gradle files are
the most changed in both frameworks. In Android code
samples, the manifest.xml are usually changed, while in

TABLE III
FILE EXTENSION CHANGES (RQ2).

Android Spring
Extensions # % Extensions # %

xml 9,075 15.67 xml 7,735 28.75
java 7,034 12.14 java 1,437 5.34
properties 1,926 3.33 properties 961 3.57
jar 1,783 3.08 jar 770 2.86
json 1,111 1.92 bat 331 1.23
other 36,988 63.86 other 15,666 58.24

TABLE IV
ACTION TYPE PER FILE (RQ2).

Android Spring
File action type # % File action # %

Add 30,716 53.03 Modify 22,900 85.13
Modify 23,696 40.91 Add 3,020 11.23
Delete 3,505 6.05 Delete 980 3.64

Total 57,917 100.00 Total 26,900 100.00

SpringBoot the pom.xml are often updated. Therefore, as
most of these files are related to automation tools, we can
confirm that these tools keep being updated over time.

TABLE V
CONFIGURATION FILE CHANGES (RQ2).

Android Spring
Files # % Files # %

build.gradle 5,281 9.12 build.gradle 7,565 28.12
manifest.xml 1,076 1.86 pom.xml 7,531 28.00
travis.yml 24 0.04 travis.yml 208 0.77

Migration delay: Figure 10 presents the delay in number
of days the sample take to migrate to new versions of the
Android and SpringBoot frameworks. SpringBoot samples
migrate much quicker than Android ones. While SpringBoot
samples update in same day the new version is available
(median zero days), the Android samples take 56 days to
migrate, on the median.

56

0
0.1

1.0

10.0

100.0

Android Spring

D
el

ay
 in

 d
ay

s
(lo

g
sc

al
e)

Samples delay to update

Fig. 10. Migration delay (RQ2)

Figure 11 shows the versions that the code samples are
adopting. We see that the Android samples mostly rely on24

the API level 26 (i.e., Android 8.0, Oreo), 27 (i.e., 8.1, Oreo),
and 28 (i.e., 9.0, Pie), however, many samples also rely on
other API levels, which represents older versions of Android.
Regarding SpringBoot, the majority of the samples are based
on version 2.0.5; in this case, we found no sample relying
on versions under 2.0, which represents older SpringBoot
versions.

0

50

100

150

19 21 22 23 24 25 26 27 28
API Level

N
um

be
r

of
 P

ro
je

ct
s

/ S
ub

pr
oj

ec
ts

MinSdk

TargetSdk

Android Samples

0

30

60

90

120

2.0.1 2.0.2 2.0.5
Springboot Version

N
um

be
r

of
 P

ro
je

ct
s

/ S
ub

pr
oj

ec
ts

Spring Samples

Fig. 11. Code sample versions (RQ2).

To better understand the reason the SpringBoot code sam-
ples are migrated faster than the Android ones, we investigated
two scenarios. First, we hypothesize that the Android code
samples are more complex than SpringBoot ones. Indeed, we
have seen in RQ1 that Android code samples are slightly more
complex. In addition, Figure 12 (left) presents another view
of complexity and shows that the Android code samples rely
more on Android APIs than the SpringBoot ones (3.7 vs. 1,
on the median). Thus, it is natural that migration takes longer
in Android code samples as they are more coupled to the
framework. Our second hypothesis is that the developers who
maintain the SpringBoot code samples are the same who main-
tain the SpringBoot framework itself. Figure 12 (right) shows
the ratio of developers working on both code samples and
framework. We notice that ratio is quite large in SpringBoot:
on the median, 75% of the developers who commit code in the
samples have also committed in the framework SpringBoot;
in Android, this ratio is zero. Therefore, having developers
working on both code samples and framework may support
their maintenance by decreasing migration delay.

Lesson Learned 2: Code samples are not static, but they
evolve over time. Updates are made on both source code
and configuration files, for example, to keep them up to
date with new framework versions. Overall, code samples
are migrated quickly and often rely on recent framework
versions. Moreover, having developers working on both code
samples and framework may decrease the migration delay.

24That is, they have the TargetSdk set to a certain version.

3.7

1

0.1

1.0

10.0

Android Spring
Code Samples

Im
po

rt
s

Relative distinct framework
imports

75

0
0

25

50

75

100

Android Spring
Code Samples

C
om

m
on

 C
on

tr
ib

ut
or

s

Relative Framework Contributors
Inside Code Sample Project

Fig. 12. Dependency to the framework in number of imports (left) and ratio
of developers in both code samples and framework (right).

C. Popularity (RQ3)

Table VI presents the results for the popularity analysis. The
popular and unpopular Android code samples are statistically
significant different regarding the metrics java files, lines of
code, and cyclomatic complexity, all with medium effect.
The metric frequency of commits is also distinct, but with
small effect, that is, popular Android samples have statistically
significant more changes in shorter periods than the unpopular
ones. In SpringBoot, we do not find any difference among
the popular and unpopular code samples with respect to the
investigated metrics.

TABLE VI
POPULARITY ANALYSIS (RQ3). COMPARISON BETWEEN POPULAR AND

UNPOPULAR SAMPLES (POP X UNP). STATISTICALLY SIGNIFICANT
DIFFERENCE WITH SMALL (S) OR MEDIUM (M) EFFECT. DIRECTION OF

THE DIFFERENCE (DIR)

Android Spring
Metrics Pop x Unp Dir Pop x Unp Dir

Java files ≤0.001 (M) ↑ 0.15 -
Lines of Code ≤0.001 (M) ↑ 0.60 -
Relative comment lines 0.57 - 0.42 -
Cyclomatic Complexity ≤0.001 (M) ↑ 0.42 -

Lifetime 0.38 - 0.28 -
Frequency of commits ≤0.001 (S) ↓ 0.08 -

Lesson Learned 3: Popular Android code samples have a
higher amount of code files, are longer and more complex,
and have more changes over time.

D. Client Usage (RQ4)

Fork metrics: We adopt the fork metric as a proxy of client
usage for the code samples. We detected 25,106 forks of
Android code samples and 7,025 of SpringBoot ones. Fig-
ure 13 (left) presents the distribution of the number forks
per code sample. We see that Android code samples have
on the median 47 forks, while the third quartile is 112. In
SpringBoot code samples, the median is 71 forks and the third
quartile is 137.5. The most forked code sample in Android is
android-testing (2,409 forks), while in SpringBoot the
most forked is gs-rest-service (1,412 forks).

47
71

10

100

1000

Android Spring
Code Samples

N
um

be
r

of
 fo

rk
s

(lo
g

sc
al

e)
Number of forks

2

12

0

10

20

30

40

Android Spring
Code Samples

P
er

ce
nt

 o
f A

he
ad

 F
or

ks

Relative Ahead Forks

Fig. 13. Code sample forks (RQ4).

The fact that there is a fork do not necessarily mean that
it changes over time. Indeed, in Android, only 3% (871 out
of 25,106) forked projects are ahead of the base project,
i.e., they performed at least one commit; in SpringBoot this
ratio is 15% (1,055 out of 7,025). Figure 13 (right) presents
the distribution forked code samples with commits. On the
median, only 2% of the forked Android code samples have
commits; in SpringBoot, this ratio is higher: 12%. Overall,
we notice that most of the forked code samples are inactive.

Figure 14 presents the frequency of commits per forked
code samples; here, we only show the forks with at least one
commit. In this case, 7% and 9% of the forked Android and
SpringBoot code samples have 10 or more commits. In both
frameworks, the majority of the forked code samples have a
single commit (46% and 47%). In Android, 29% of the forked
code samples have 2–3 commits, while 16% have 4–10. In
SpringBoot, the ratios are equivalent: 26% have 2–3 commits
while 16% have 4–10.

9
7

4746

26
29

1616

0

10

20

30

40

> 10 1 2−3 4−10
Number of commits

N
um

be
r

of
 p

ro
je

ct
s

Android

Spring

Relative projects ahead by commits

Fig. 14. Commits in forked code samples (RQ4).

File extension changes in forked code samples: Table VII
shows the file extension changes in the forked code samples.
The notice that the developers change mostly xml, json, java,
and jar files. Table VIII shows the actions performed on the
files: addition, modification, or removal. While in Android
samples most of the actions are to add files (56.97%), in
SpringBoot the majority is to modify existing ones (43.59%).

TABLE VII
FILE EXTENSION CHANGES IN FORKED CODE SAMPLES (RQ4).

Android Spring
Extensions # % Extensions # %

xml 24,022 17.39 java 4,525 34.56
json 8,530 6.17 xml 1,128 8.61
java 8,298 6.01 jar 983 7.51
jar 3,784 2.74 properties 709 5.41
txt 1,264 0.91 yml 398 3.04
other 92,253 66.78 other 5,352 40.87

TABLE VIII
ACTION TYPE PER FILE IN THE FORKED CODE SAMPLES (RQ4).

Android Spring
File Action # % File Action # %

Add 78,706 56.97 Modify 5,708 43.59
Delete 42,971 31.10 Add 4,640 35.43
Modify 16,474 11.92 Delete 2,747 20.98

Total 138,151 100.00 Total 13,095 100.00

Lesson Learned 4: The majority of the forked code samples
are inactive. However, a non-negligible percentage of the
forked code samples are updated and evolve over time. The
changes are mostly concentrated in xml and java files.

V. IMPLICATIONS

Based on our findings, we provide a set of implications to
framework code sample creators and clients in order to support
their maintenance and usage practices:

Code samples should be simple and small to facilitate
their reuse, as stated by good development practices [4].
Indeed, the majority of the code samples provided by Android
and SpringBoot follow this rule. However, this is not strict: we
find that the code samples with more java files are more likely
to be popular in Android.

Code samples should provide working environments to
ease their usage. Indeed, most of the Android and SpringBoot
code samples are formed by source code and many other
configuration files necessary to properly run them. Automated
build and integration tools may also support both the creators
and clients, improving their quality and reducing risks [7]–[9].

Code samples are not frozen projects, but they should
be updated over time. Changes are commonly performed to
follow recent framework versions, otherwise the code samples
become out of date and less attractive to the clients [11], [14]–
[17]. Indeed, this practice is often performed by Android and
SpringBoot code samples, but much faster in the latter. We
also find that the code samples that are changed frequently
are more likely to be popular in Android.

Code samples may benefit from scenarios where their de-
velopers also contribute to the framework itself. For example,
we found that migration delay may decrease in cases in which
the overlap of developers is higher between code samples

and framework. We recognize, however, that this phenomenon
should be more explored in further research.

The majority of the forked code samples are inactive,
however, a non-negligible percentage are updated by their
clients as a way to explore and learn them. Thus, we recom-
mend this cycle (fork-change-learn) to the clients kick start in
a code sample.

VI. THREATS TO VALIDITY

This section discusses the study limitations based on the
four categories of validity threats described by Wohlin et
al. [22]. Each category has a set of possible threats to the
validity of an experiment. We identified these possible threats
to our study within each category, which are discussed in the
following with the measures we took to reduce each risk.
Conclusion validity: It concerns the relationship between the
treatment and the outcome. In this work, potential threats arise
from violated assumptions of statistical tests: the statistical
tests used to support our conclusions may have been inappro-
priately chosen. To mitigate this threat wherever possible, we
used statistical tests obeying the characteristics of our data.
More specifically, we used non-parametric tests, which do
not make any assumption on the underlying data distribution
regarding variances and types.
Internal validity: It is the degree to which conclusions can
be drawn about the causal effect of independent variables on
the dependent variables. One important threat to the internal
validity is related to the ambiguity about the direction of causal
influence: specifically in RQ3, aspects from code samples may
be a key to their popularity. On the other hand, the popularity
of a code sample may influence code sample aspects measured
in our study as code comments and cyclomatic complexity.
To ameliorate this threat, we analyze the history of the code
samples in order to avoid considering aspects arisen due to
the increase in popularity over time.
Construct validity: It refers to the degree to which infer-
ences can legitimately be made from the operationalizations
in your study to the theoretical constructs on which those
operationalizations were based. We detected a possible threat
related to the restricted generalizability across constructs:
Java might present specific source code characteristics when
compared to other programming languages and affects RQ1.
This risk cannot be avoided since we analyzed only source
code implemented in Java. However, we argue that Java is
an important programming language and comprises a large
number of code samples in GitHub repository.
External validity: Threats associated with external validity
concern the degree to which the findings can be generalised
to the wider classes of subjects from which the experimental
work has drawn a sample. We identified a risk related to
the interaction between selection and treatment: the use of
code samples provided by two frameworks might present
specific aspects when compared to other frameworks. This risk
cannot be avoided because our focus are the two frameworks
presented in Section III. However, we argue that they are

relevant and worldwide adopted frameworks that have millions
of end-users. Therefore, we believe the results extracted can
be a first step towards the generalization of the results.

VII. RELATED WORK

Frameworks are used to support development, providing
source code reuse, improving productivity, and decreasing
costs [1]–[3]. Often there is a steep learning curve involved
when developers adopt frameworks. Development based on
code samples provides the benefits of code reuse, efficient
development, and code quality [23]. Moreover, with the pop-
ularity and relevance of the Question and Answer (Q&A)
sites as Stack Overflow, some studies propose approaches and
tools to search and/or retrieve source code samples as well as
explore properties of those samples.

Context-based code samples. Software engineering tools are
bringing sophisticated search power into the development
environment by extending the browsing and searching ca-
pabilities [23]–[27]. For instance, Holmes and Murphy [24]
proposed a technique that recommends source code examples
from a repository by matching structures of given code.
XSnippet [27] provides a context-sensitive code assistant
framework that provides sample source code snippets for
developers. In general, these tools help locate samples of code,
demonstrate the use of frameworks and fasten development
by exploring the syntactic context provided mainly by the
IDE to recommend code samples more relevant to developers
(as in Strathcona [24]). However, the samples provided by
these systems are highly dependent of a particular development
context, whereas code samples typically are complete projects
that were made to facilitate and accelerate the learning process
of features provided by frameworks. Therefore, it is expected
that the types of code samples explored in this paper present
different characteristics when compared to samples automati-
cally generated by tools.

Mining API usage examples. Complementing the tools afore-
mentioned, many studies confirmed the the significance of API
usage examples, mainly in the context of framework APIs,
and proposed approaches to mine API usage examples from
open code repositories and search engines [28]–[33]. Most
of these work retrieve the so-called code snippets to support
API learning, whereas our work focus on complete projects of
framework code samples. In addition, our work is not focused
on proposing an approach to mine code samples, but analyze
characteristics of these code samples.

Assessing Q&A code snippets. Nasehi et al. [34] focused
on finding the characteristics of a good example on Stack
Overflow. They adopted an approach based on high/low voted
answers, number of code blocks used, the conciseness of the
code, the presence of links to other resources, the presence
of alternate solutions, and code comments. Yang et al. [35]
assessed the usability of code snippets across four languages:
C#, Java, JavaScript, and Python. The analysis was based
on the standard steps of parsing, compiling and running the
source code, which indicates the effort that would be required

for developers to use the snippet as-is. Finally, there are
studies analyzing the adoption of code snippets [36]–[38]. For
instance, Roy and Cordy [36] analyzed code snippet clones in
open source systems. They found that on average 15% of the
files in the C systems, 46% of the files in the Java systems
and 29% of files in the C# systems are associated with exact
(block-level) clones. Similar to our work, these studies focus
on analyzing properties of code snippets and their adoption on
real projects. However, our work targets entire code sample
projects instead of code snippets.

VIII. CONCLUSION

To the best of our knowledge, this is the first research to
assess framework code samples. We proposed a large scale
empirical study to better understand how these code samples
are maintained and used by developers. By assessing 233 code
samples provided by the worldwide frameworks Android and
SpringBoot, we investigated aspects related to their source
code, evolution, popularity, and client usage. We reiterate
the most interesting implications to support maintenance and
usage of code samples:

• Code samples should be simple and small to facilitate
their reuse, as stated by guidelines and followed by the
majority of the code samples of Android and SpringBoot.

• Code samples should provide working environments to
ease their usage and rely on automated build and integra-
tion tool to improve quality.

• Code samples are not static and should evolve over
time. Updates are commonly performed to follow recent
framework versions, otherwise the code samples become
out of date and less relevant to the clients.

• Code samples may benefit from scenarios where their
developers also contribute to the framework itself. In this
case, migration delay may be decreased.

• Clients of code samples may explore them via the cycle
fork-change-learn. Indeed, a strong minority of the client
developers do rely on this cycle when using code samples.

As future work, we plan to extend this research by assessing
the code samples provided by other frameworks and written in
other programming languages (e.g., Google Maps and Twitter
APIs). We also plan to analyze other metrics relevant to the
samples, such as security and readability. Finally, we plan to
perform a survey with the creators and the clients of the code
samples to better understand, from their point of view, major
code sample limitations and benefits.

ACKNOWLEDGEMENTS

This research is supported by CAPES and CNPq.

REFERENCES

[1] S. Moser and O. Nierstrasz, “The effect of object-oriented frameworks
on developer productivity,” Computer, vol. 29, no. 9, 1996.

[2] D. Konstantopoulos, J. Marien, M. Pinkerton, and E. Braude, “Best
principles in the design of shared software,” in International Computer
Software and Applications Conference, 2009, pp. 287–292.

[3] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in International
Conference on Software Maintenance, 2012, pp. 378–387.

[4] D. Vincent, “Code example guidelines,” https://developer.mozilla.org/en-
US/docs/MDN/Contribute/Guidelines/Code guidelines, 2018.

[5] R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009.

[6] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE Software, no. 6, pp.
35–39, 2003.

[7] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk, ser. Addison-Wesley
Signature Series. Addison-Wesley, 2007.

[8] M. Meyer, “Continuous integration and its tools,” IEEE Software,
vol. 31, no. 3, pp. 14–16, May 2014.

[9] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
Productivity Outcomes Relating to Continuous Integration in GitHub,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 805–816.

[10] D. Dig and R. Johnson, “How do APIs evolve? A story of refactoring,”
Journal of software maintenance and evolution: Research and Practice,
vol. 18, no. 2, pp. 83–107, 2006.

[11] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of API breaking changes: A large scale study,” in International
Conference on Software Analysis, Evolution and Reengineering, 2017,
pp. 138–147.

[12] R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “An empirical study
on the impact of refactoring activities on evolving client-used apis,”
Information and Software Technology, vol. 93, pp. 186–199, 2018.

[13] A. Hora, D. Silva, R. Robbes, and M. T. Valente, “Assessing the
threat of untracked changes in software evolution,” in 40th International
Conference on Software Engineering (ICSE), 2018, pp. 1102–1113.

[14] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability
and adoption in the Android ecosystem,” in International Conference on
Software Maintenance, 2013, pp. 70–79.

[15] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to API deprecation? the case of a Smalltalk ecosystem,” in International
Symposium on the Foundations of Software Engineering, 2012.

[16] A. Hora, R. Robbes, M. T. Valente, N. Anquetil, A. Etien, and
S. Ducasse, “How do developers react to API evolution? a large-scale
empirical study,” Software Quality Journal, vol. 26, no. 1, pp. 161–191,
2018.

[17] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[18] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohensd for evaluating group differences on the nsse and other surveys,”
in Florida Association of Institutional Research, 2006, pp. 1–33.

[19] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the charac-
teristics of high-rated apps? a case study on free Android applications,”
in International Conference on Software Maintenance and Evolution,
2014, pp. 301–310.

[20] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “On the use of
replacement messages in API deprecation: An empirical study,” Journal
of Systems and Software, vol. 137, pp. 306–321, 2018.

[21] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors
that impact the popularity of GitHub repositories,” in International
Conference on Software Maintenance and Evolution, 2016, pp. 334–
344.

[22] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012.

[23] R. Sindhgatta, “Using an information retrieval system to retrieve source
code samples,” in International Conference on Software Engineering,
2006, pp. 905–908.

[24] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in International Conference on Software Engi-
neering, 2005, pp. 117–125.

[25] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
Helping to navigate the api jungle,” in Conference on Programming
Language Design and Implementation, 2005, pp. 48–61.

[26] D. Poshyvanyk and A. M. and, “Jiriss - an eclipse plug-in for source code
exploration,” in International Conference on Program Comprehension,
2006, pp. 252–255.

[27] N. Sahavechaphan and K. Claypool, “Xsnippet: Mining for sample
code,” in Conference on Object-oriented Programming Systems, Lan-
guages, and Applications, 2006, pp. 413–430.

[28] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining api
usage examples from test code,” in International Conference on Software
Maintenance and Evolution, 2014, pp. 301–310.

[29] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting
apis with examples: Lessons learned with the apiminer platform,” in
Working Conference on Reverse Engineering, 2013, pp. 401–408.

[30] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus, “How
Can I Use this Method?” in International Conference on Software
Engineering, 2015, pp. 880–890.

[31] R. P. L. Buse and W. Weimer, “Synthesizing api usage examples,” in
International Conference on Software Engineering, 2012, pp. 782–792.

[32] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,”
in International Conference on Software Engineering, 2014, pp. 664–
675.

[33] H. Niu, I. Keivanloo, and Y. Zou, “Learning to rank code examples for
code search engines,” Empirical Software Engineering, vol. 22, no. 1,
pp. 259–291, Feb. 2017.

[34] J. Sillito, F. Maurer, S. M. Nasehi, and C. Burns, “What Makes a Good
Code Example?: A Study of Programming Q&A in StackOverflow,” in
International Conference on Software Maintenance, 2012, pp. 25–34.

[35] D. Yang, A. Hussain, and C. V. Lopes, “From Query to Usable Code: An
Analysis of Stack Overflow Code Snippets,” in International Conference
on Mining Software Repositories, 2016, pp. 391–402.

[36] C. K. Roy and J. R. Cordy, “Near-miss function clones in open source
software: An empirical study,” Journal of Software: Evolution and
Process, vol. 22, no. 3, pp. 165–189, 2010.

[37] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irl-
beck, “On the Extent and Nature of Software Reuse in Open Source
Java Projects,” in International Conference on Top Productivity Through
Software Reuse, 2011, pp. 207–222.

[38] D. Yang, P. Martins, V. Saini, and C. Lopes, “Stack Overflow in Github:
Any Snippets There?” in International Conference on Mining Software
Repositories, 2017, pp. 280–290.

	I Introduction
	II Code Samples in a Nutshell
	III Study Design
	III-A Selecting the Case Studies
	III-B Source Code Analysis (RQ1)
	III-C Evolutionary Analysis (RQ2)
	III-D Popularity Analysis (RQ3)
	III-E Client Usage Analysis (RQ4)

	IV Results
	IV-A Source Code (RQ1)
	IV-B Evolution (RQ2)
	IV-C Popularity (RQ3)
	IV-D Client Usage (RQ4)

	V Implications
	VI Threats to Validity
	VII Related Work
	VIII Conclusion
	References

