
Towards a Holistic Definition of Requirements Debt
Valentina Lenarduzzi

Tampere University
Tampere, Finland

valentina.lenarduzzi@tuni.fi

Davide Fucci
University of Hamburg
Hamburg, Germany

fucci@informatik.uni-hamburg.de

Abstract—When not appropriately managed, technical debt is
considered to have negative effects to the long term success of
software projects. However, how the debt metaphor applies to
requirements engineering in general, and to requirements engi-
neering activities in particular, is not well understood. Grounded
in the existing literature, we present a holistic definition of
requirements debt which includes debt incurred during the iden-
tification, formalization, and implementation of requirements.
We outline future assessment to validate and further refine
our proposed definition. This conceptualization is a first step
towards a requirements debt monitoring framework to support
stakeholders decisions, such as when to incur and eventually pay
back requirements debt, and at what costs.

Index Terms—Technical Debt, Requirement Engineering, Re-
quirement Elicitation

I. INTRODUCTION

Cunningham defines Technical Debt (TD) as ”The debt
incurred through the speeding up of software project de-
velopment which results in a number of deficiencies ending
up in high maintenance overheads” [1]. TD implies sub-
optimal design or implementation solutions giving a short-term
benefit while making changes more costly or even impossible
in the medium and long term. Unpredictable business and
environmental forces, internal or external to a company, can
result in TD which needs to be managed [2], [3].

The TD metaphor was initially concerned with software
implementation (i.e., at code level), but it has been gradually
extended to software architecture, design, documentation, test-
ing, and requirements [4]. Li et al. [5] conducted a systematic
mapping study on understanding and managing TD drawing
an overview on the current state of research. They proposed a
classification of 10 types of TD: Requirements, Architectural,
Design, Code, Test, Build, Documentation, Infrastructure, and
Versioning.

Requirements Debt (ReD) ”refers to the distance between
the optimal requirements specification and the actual sys-
tem implementation, under domain assumptions and con-
straints” [6]. Despite the importance of requirements engi-
neering activities during software development process [7], [8]
and the definition of the minimum viable product (MVP) [9],
there is still no consensus in research whether ReD should be
considered as a type of technical debt or not [8]. Different
processes could led to different requirement decomposition
and accumulate different debt [10]. We believe the reason is
the lack of formalization of ReD in the literature [5], [11].

In this paper, we challenge the current definition of
ReD [6]—which focuses on downstream activities in the
software development lifecycle, such as software development
and evolution—and extend it to include upstream activities
involving the elicitation of requirements (particularly in user-
centered requirements engineering [12]) and their translation
into specifications.

Our definition of ReD is the first step towards creating
a framework that stakeholders can use to make decisions
regarding when to incur debt, at what costs, when to pay
it back, and how to monitor it. Our vision of ReD will
be empirically evaluated in a series of studies with industry
partners and individual stakeholders.

In this paper, we aim at providing a holistic definition
of ReD which takes into account the relevant requirements
engineering activities currently investigated in the literature.
Moreover, we outline the future assessments to conceptualize
and define the decision framework.

II. DEFINITIONS

In this section, we report the basic definitions of concepts
associated to Technical Debt (TD) used to define Requirement
Debt (ReD).

Principal. In finance, it refers to the original amount of money
borrowed. From a software development perspective, the term
is used to describe the cost of remediating planned software
system violations. Ampatzoglou et al. [13] defines principal
within a TD context as: “The effort that is required to address
the difference between the current and the optimal level of
design-time quality, in an immature software artifact or the
complete software system.”

Interest. It is the negative effects of the extra effort that has to
be paid due to the accumulated amount of debt in the system,
such as executing manual processes that could potentially be
automated, excessive effort spent on modifying unnecessarily
complex code, performance problems due to lower resource
usage by inefficient code, and similar costs [14]. Ampatzoglou
et al. [13] defines interest as: “The additional effort that is
needed to be spent on maintaining the software, because of its
decayed design-time quality.”

Quantify and paying back TD. The principal should be paid
if it is less than the total interest [15]. Refactoring decision
depends on the ratio between Principal and Interest. If the

ar
X

iv
:1

90
7.

10
88

7v
1 

 [
cs

.S
E

] 
 2

5 
Ju

l 2
01

9



value is greater than one, it is not convenient to pay the
principal now with respect to the interest that will be paid
in the future [16].

III. RED—REQUIREMENTS DEBT

In this section, we provide a definition of Requirements
Debt (ReD), propose its conceptualization, and strategies for
detecting, quantifying, and paying it back.

We define three types of ReD (see Figure 1).

Users’ Needs

SRS

Impl.

Users’ needs
Type 0

Type 1

Type 2

R
e
D

Users

Analysts

Devs

Fig. 1: Types of Requirements Debt (ReD) incurred, their
relationship, and main stakeholder involved.

A. ReD Type 0: Incomplete Users’ needs

Represents the debt incurred when neglecting users’ needs
expressed using feedback channels. Such channels are, for
example, app stores, social media, and interviews with cus-
tomers. In particular, this type of debt is incurred when i)
within a channel, not all users’ needs are captured (e.g., due
to the complexity of processing large amount of feedback)
and ii) one or more relevant channels are not considered. In
both cases, the incurred ReD can be implicit (e.g., causing an
unplanned cost) or explicit (e.g., necessary due to a deadline).

How to detect. Currently, i) could be addressed by leveraging
techniques for automatically classifying users’ feedback and
stakeholders, summarizing it, and recommend new features
based on it. One example is the work of Maalej et al.
which applies such techniques for app stores analytics [12].
Regarding ii) Nayebi et al. [17] presents the limitations of app
stores in acquiring users’ needs. The authors show that Twitter
can provide additional information which app developers can

exploit to deliver better products. Moreover, feedback reported
in Twitter is more objective than the one reported in app
reviews. This work shows the importance of investigating
several sources of users’ needs and presents an initial approach
to detect whether all relevant channels are considered.

How to quantify. ReD Type 0 can be quantified as the cost
to formalize and implement the neglecting needs (Principal).
We should considered two extra extra effort (Interest) related
to:

• the current development stage, as implementing a ne-
glected need is more expensive in an advanced stage,

• which components need to be modified to fix ReD. For
example, implementing a neglected users’ need impacting
the graphic user interface will cost less than one impact-
ing the architecture.

How to pay back. Once the neglected users’ need is identified,
it is formalized and included in the software requirements
specification document.

B. ReD Type 1: Requirement smells

Represents the debt incurred when a requirements engineer,
business analyst, or developer (i.e., analyst) formalizes users’
needed into SRS. Femmer et al. [18] defined a set of Require-
ments Smells (Table I)—i.e., linguistic constructs which can
indicate a violation of the ISO29148 standard for requirements
quality. If such ambiguity is not removed the requirement can
be wrongly implemented, hard to reuse, evaluate and extend.

How to detect. Like code smells, requirements smells do
not necessarily lead to a defect, can be (semi-)automatically
detected within a SRS document, and removed using standard
techniques. These techniques leverage natural language pro-
cessing (e.g., POS tagging) or simple dictionary lookups to
identify problematic terms and language constructs (Table I).

How to quantify. ReD Type 1 can be quantified as the cost to
fix the requirement smells within a SRS (Principal). However,
the cost related to the harmfulness of each requirement smell
(Interest) needs to be considered. With harmfulness, we mean
the different negative impact that each requirements smell can
have on activities relying on SRS.

How to pay back. As for code smells, refactoring (e.g., re-
moving a problematic language construct leading to ambiguity
while maintaining the original goal of the specification) is
needs to be applied to pay back this type of ReD.

C. ReD Type 2: Mismatch implementation

Represents the debt incurred when developers implement
a solution to a requirement problem. This type captures the
mismatch between stakeholders’ goal framed in the SRS and
the actual system implementation. This type of debt can
be also incurred when the requirements problem, framed in
the SRS, changes while the implementation does not change
accordingly [6]. A sub-par implementation can be the result
of the incurred Type 1 debt.



TABLE I: Requirement Smells [18]

Requirement Smells Description Detection Strategy
Subjective Language ”Subjective Language refers to words of which the semantics is not objectively defined,

such as user friendly, easy to use, cost effective”
Dictionary

Ambiguous Adverbs and Adjectives ”Ambiguous Adverbs and Adjectives refer to certain adverbs and adjectives that are
unspecific by nature, such as almost always, significant and minimal”

Dictionary

Loopholes ”Loopholes refer to phrases that express that the following requirement must be fulfilled
only to a certain, imprecisely defined extent”

Dictionary

Open-ended, non-verifiable terms ”Open-ended, non-verifiable terms are hard to verify as they offer a choice of
possibilities, e.g. for the developers”

Dictionary

Superlatives ”Superlatives refer to requirements that express a relation of the system to all other
systems”

Morphological Anal-
ysis, POS tagging

Comparatives ”Comparatives are used in requirements that express a relation of the system to specific
other systems or previous situations”

Morphological Anal-
ysis, POS tagging

Negative Statements ”Negative Statements are statements of system capability not to be provided. Some argue
that negative statements can lead to under specification, such as lack of explaining the
system’s reaction on such a case”

Dictionary, POS tag-
ging

Vague Pronouns ”Vague Pronouns are unclear relations of a pronoun” POS tagging

How to detect. Detection of this type of ReD can be based
on approaches for traceability between SRS and source code.
Knowledge-based approaches (e.g., RE-KOMBINE [6]) can be
used to monitor requirements for changes and understanding
their impact on the current implementation of the system.

How to quantify. The interest on ReD Type 2 is the amount
of change between the current implementation and the SRS.
Accordingly, it is quantified as the cost of comparing the
current implementation with the set of possible changes [19]
(Principal) plus the implementation of the selected change
(Interest).
How to pay back. The actions for paying back this type of
ReD consists in the implementation of the best new solution
matching the updated SRS.

IV. FUTURE ASSESSMENT

A. ReD concept preliminary validation

Our next step is to preliminary validate the conceptual-
ization of debt in requirements engineering. To that end, we
designed a study to understand what practitioners consider as
debt during requirements engineering process, compare it to
the ReD conceptualization, and understand their motivations
to incur the different types of ReD.

We will carry out an exploratory study (Figure 2), structured
as a mixed research method, composed by a set of interviews,
a focus group, and a final set of group interviews.

Based on these results, we will design and conduct detailed
case studies, involving companies in order to monitor the
requirement elicitation process.

Fig. 2: Study design for ReD concept validation.

Interviews. The first round of interviews will be carried out
by means of a questionnaire based on open-ended questions to

avoid driving the interviewee to a predefined set of answers.
The interviews will be organize in three sections.

1) Personal and company information. We aim to collected the
profile of the practitioners, considering age, country, gender,
predominant roles, and working experience in requirement
engineering. Moreover, we will collect the organization size
via the number of employees and the common application
domain.

2) Requirement Debt (ReD). We will include questions regard-
ing the three Requirements Debt types (Type 0, 1 and 2) as
defined in Section III. We will ask the practitioners to evaluate
and discuss these definitions from their point of view.

3) Perceived Critically of Requirement Dept Types. We aim
to capture the perception of requirements issues from our
respondents. We will ask practitioners to rate their concerns
about requirement debt and what they consider harmful.

Focus group. Relevant issues and problems are freely
discussed and the answers provided during the interviews will
cluster into topics. Open discussion can reveal the type of
information that can be helpful in outlining key issues in each
of the three types of ReD.

Group interviews. The last step will be executed with the
support of a closed-ended questionnaire, based on the clustered
answers identified in the focus group. The interviewer will
explain each question to the participants who answered to
the questions on a paper-based questionnaire. The interviews
will be organized considering only the questions related to Re-
quirement Debt (ReD) and Perceived Critically of Requirement
issues.

Recruitment and Data Collection. The study will be con-
ducted by invitation only to have a better control over the
individual respondents. The strategy to define an invitation
list is two-fold, i) requirements engineers, business analysts,
and software developers within companies in the NaPiRE net-
work [20] and among our contacts, and ii) software developers
sampled from the app stores (e.g., Google Play Store, Apple
Store). The latter are especially important to assess Type 0



ReD as they usually have direct access to users through the
stores feedback and review functionalities.

B. Requirement smells harmfulness

In the immediate future, we plan to elaborate on Type
1 ReD as there is no empirical evidence of harmfulness
of requirement smells, according to the definition and the
detection approach proposed by Femmer et al. [18]. We will
follow the approaches widely adopted to assess the harm-
fulness of code smells on different software qualities [21],
[22], [23], [24]. We will triangulate data from requirements
platforms, such as issue trackers and requirements repositories
platforms [25], with studies involving requirements engineers,
business analysts, and software developers [26].

V. RELATED WORK

In this section, we report key related work on Technical
Debt (TD) and Requirement Technical Debt (ReD) evaluation
and management.

A. Technical Debt

Different approaches and strategies have been proposed to
evaluate TD. Nugroho et al. [27] proposed an approach to
quantify debts in terms of cost to fix technical issues and its
interest. They monitored data from 44 software systems and
empirically validated the approach in a real system.

Seaman et al. [15] proposed a TD management framework
that formalizes the relationship between cost and benefit in
order to improve software quality and help decision making
process during maintenance activities.

Zazworka et al. [28] investigated source code analysis
techniques and tools to identify code debt in software systems,
focusing on TD interest and TD impact on increasing defect-
and change-proneness. They applied four TD identification
techniques (code smells, automatic static analysis issues, grime
buildup, and modularity violations) on 13 versions of the
Apache Hadoop open source software project. They collected
different metrics, such as code smells and code violations.
The results showed good correlation between some metrics
and defect and change proneness, such as Dispersed Coupling
and modularity violations.

Different approaches or strategies have been proposed to
manage TD. Guo et al. [29] proposed a portfolio approach in
order to help the software manager in decision making. This
approach provides a new perspective for TD management.

Nord et al. [30] defined a measurement-based approach
to develop metrics in order to strategically managing TD.
This approach could optimize the development cost over time
without stopping the development process. They successfully
applied the approach to an ongoing system development effort.

B. Related Work on Requirement Technical Debt

At the best of our knowledge, there are few works that inves-
tigated Requirement Technical Debt proposing some approach
to evaluate and take under control this type of debt.

Ernst et al. [6] defined technical debt in requirements as ”the
distance between the implementation and the actual state of

the world” They conceptualized a requirements modeling tool,
RE-KOMBINE, that 1) identifies technical debt by means of
the notion of optimal solutions to a requirements and 2) allows
to understand how implementations match stakeholder goals.

Abad and Ruhe [31] defined a systematic method to manage
requirements-related decisions. The methods includes several
factors that affect Technical Debt; the authors extend the
concept to requirements and use historical project data to
provide a predictive model for requirements decisions with
the goal of reducing uncertainty.

Moreover, Wattanakriengkrai et al. [32] investigated self-
admitted requirement debt—defined as ”source code comments
deliberately created by developers in order to demonstrate that
some parts of the code are missing, incomplete, or cannot
satisfy the requirement of clients”—that developers clearly
identify in the code due to requirements incompleteness.
Based on this definition, they show an approach to identify
requirement self-admitted technical debt on 10 open source
projects analyzed using text processing techniques.

VI. CONCLUSION

Despite the importance of requirements elicitation and man-
agement during software development process, there is still
no consensus in research whether Requirement Debt should
be considered as a type of technical debt and a lack of
formalization in the literature.

In this paper, we challenge the current definition of ReD,
extending it with upstream requirements engineering activities
involving the elicitation of requirements and their translation
into specifications.

Our definition of ReD is the first step towards creating
a framework that stakeholders can use to make decisions
regarding when to incur debt, at what costs, when to pay it
back, and how to monitor it.

Our vision of ReD will be empirically evaluated in a series
of studies with industry partners and individual stakeholders.

ACKNOWLEDGMENTS

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” in OOP-
SLA ’92, 1992.

[2] A. Martini, J. Bosch, and M. Chaudron, “Investigating architectural
technical debt accumulation and refactoring over time: A multiple-case
study,” Information and Software Technology, vol. 67, pp. 237 – 253,
2015.

[3] T. Besker, A. Martini, R. E. Lokuge, K. Blincoe, and J. Bosch, “Embrac-
ing technical debt, from a startup company perspective,” in International
Conference on Software Maintenance and Evolution (ICSME), Sep.
2018, pp. 415–425.

[4] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sul-
livan, and N. Zazworka, “Managing technical debt in software-reliant
systems,” in Workshop on Future of Software Engineering Research,
2010, pp. 47–52.

[5] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
vol. 101, pp. 193 – 220, 2015.

[6] N. A. Ernst, “On the role of requirements in understanding and managing
technical debt,” in Proceedings of the Third International Workshop on
Managing Technical Debt, ser. MTD ’12, 2012, pp. 61–64.



[7] K. Schmid, “On the limits of the technical debt metaphor some guidance
on going beyond,” in 4th International Workshop on Managing Technical
Debt (MTD), 2013, pp. 63–66.

[8] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spı́nola,
“Towards an ontology of terms on technical debt,” in International
Workshop on Managing Technical Debt, 2014, pp. 1–7.

[9] V. Lenarduzzi and D. Taibi, “Mvp explained: A systematic mapping
study on the definitions of minimal viable product,” in 42th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), Aug 2016, pp. 112–119.

[10] D. Taibi, V. Lenarduzzi, A. Janes, K. Liukkunen, and M. O. Ahmad,
“Comparing requirements decomposition within the scrum, scrum with
kanban, xp, and banana development processes,” in Agile Processes in
Software Engineering and Extreme Programming. Springer Interna-
tional Publishing, 2017, pp. 68–83.

[11] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F. A. Fontana,
“Technical debt prioritization: State of the art. a systematic literature
review,” 2019.

[12] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe, “Toward data-driven
requirements engineering,” IEEE Software, vol. 33, no. 1, pp. 48–54,
2015.

[13] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic literature
review,” Information and Software Technology, vol. 64, pp. 52 – 73,
2015.

[14] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
Journal of Systems and Software, vol. 86, no. 6, pp. 1498 – 1516, 2013.

[15] C. B. Seaman and Y. Guo, “Measuring and monitoring technical debt,”
Advances in Computers, vol. 82, pp. 25–46, 12 2011.

[16] A. Martini and J. Bosch, “An empirically developed method to aid
decisions on architectural technical debt refactoring: Anacondebt,” in
38th International Conference on Software Engineering Companion, ser.
ICSE ’16, 2016, pp. 31–40.

[17] M. Nayebi, H. Cho, and G. Ruhe, “App store mining is not enough for
app improvement,” Empirical Software Engineering, vol. 23, no. 5, pp.
2764–2794, Oct 2018.

[18] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, “Rapid quality
assurance with requirements smells,” Journal of Systems and Software,
vol. 123, pp. 190–213, 2017.

[19] N. A. E., S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
it? manage it? ignore it? software practitioners and technical debt,” in
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2015, 2015, pp. 50–60.

[20] D. M. Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra,
A. Vetrò, T. Conte, M.-T. Christiansson, D. Greer, C. Lassenius et al.,
“Naming the pain in requirements engineering,” Empirical software
engineering, vol. 22, no. 5, pp. 2298–2338, 2017.

[21] S. M. Olbrich, D. Cruzes, and D. Sjøberg, “Are all code smells harmful?
a study of god classes and brain classes in the evolution of three
open source systems,” in IEEE International Conference on Software
Maintenance, ICSM, 09 2010, pp. 1–10.

[22] D. Sjøberg, A. Yamashita, B. Anda, A. Mockus, and T. Dybå, “Quantify-
ing the effect of code smells on maintenance effort,” IEEE Transactions
on Software Engineering, vol. 39, pp. 1144–1156, 08 2013.

[23] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells
have a significant but small effect on faults,” ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 4, pp. 33:1–33:39, Sep. 2014. [Online].
Available: http://doi.acm.org/10.1145/2629648

[24] F. Palomba, G. Bavota, M. D. Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainability
of code smells: A large scale empirical investigation,” Empirical Softw.
Engg., vol. 23, no. 3, pp. 1188–1221, Jun. 2018.

[25] V. Lenarduzzi, , and N. S. D. Taibi, “The technical debt dataset,” in
The Fifteenth International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE’19), 2019.

[26] D. Taibi, A. Janes, and V. Lenarduzzi, “How developers perceive
smells in source code: A replicated study,” Information and Software
Technology, vol. 92, pp. 223 – 235, 2017.

[27] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical
debt and interest,” in Workshop on Managing Technical Debt, ser. MTD
’11, 2011, pp. 1–8.

[28] N. Zazworka, A. Vetro’, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull, “Comparing four approaches for technical debt identification,”
Software Quality Journal, vol. 22, no. 3, pp. 403–426, Sep. 2014.

[29] Y. Guo and C. Seaman, “A portfolio approach to technical debt manage-
ment,” in Workshop on Managing Technical Debt, ser. MTD ’11, 2011,
pp. 31–34.

[30] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search
of a metric for managing architectural technical debt,” in WICSA-ECSA,
2012, pp. 91–100.

[31] Z. S. H. Abad and G. Ruhe, “Using real options to manage technical
debt in requirements engineering,” in 23rd International Requirements
Engineering Conference (RE), 2015, pp. 230–235.

[32] S. Wattanakriengkrai, R. Maipradit, H. Hata, M. Choetkiertikul,
T. Sunetnanta, and K. Matsumoto, “Identifying design and requirement
self-admitted technical debt using n-gram idf,” in Workshop on Empir-
ical Software Engineering in Practice (IWESEP), 2018, pp. 7–12.

http://doi.acm.org/10.1145/2629648

	I Introduction
	II Definitions
	III ReD—Requirements Debt
	III-A ReD Type 0: Incomplete Users’ needs
	III-B ReD Type 1: Requirement smells
	III-C ReD Type 2: Mismatch implementation

	IV Future Assessment
	IV-A ReD concept preliminary validation
	IV-B Requirement smells harmfulness

	V Related Work
	V-A Technical Debt
	V-B Related Work on Requirement Technical Debt

	VI Conclusion
	References

