
An Empirical Study on Technical Debt in a Finnish
SME

Valentina Lenarduzzi
Tampere University
Tampere, Finland

valentina.lenarduzzi@tuni.fi

Teemu Orava

Tampere, Finland
teemu.orava@kapsi.fi

Nyyti Saarimäki
Tampere University
Tampere, Finland
kari.systa@tuni.fi

Kari Systä
Tampere University
Tampere, Finland
kari.systa@tuni.fi

Davide Taibi
Tampere University
Tampere, Finland
davide.taibi@tuni.fi

Abstract—Background. The need to release our products under
tough time constraints has required us to take shortcuts during
the implementation of our products and to postpone the correct
implementation, thereby accumulating Technical Debt.
Objective. In this work, we report the experience of a Finnish
SME in managing Technical Debt (TD), investigating the most
common types of TD they faced in the past, their causes, and
their effects.
Method. We set up a focus group in the case-company, involving
different roles.
Results. The results showed that the most significant TD in the
company stems from disagreements with the supplier and lack of
test automation. Specification and test TD are the most significant
types of TD. Budget and time constraints were identified as the
most important root causes of TD.
Conclusion. TD occurs when time or budget is limited or the
amount of work are not understood properly. However, not all
postponed activities generated ”debt”. Sometimes the
accumulation of TD helped meet deadlines without a major
impact, while in other cases the cost for repaying the TD was
much higher than the benefits. From this study, we learned that
learning, careful estimations, and continuous improvement could
be good strategies to mitigate TD These strategies include
iterative validation with customers, efficient communication with
stakeholders, meta-cognition in estimations, and value orientation
in budgeting and scheduling.

Index Terms—Technical Debt, Small and Medium-Sized En-
terprise

I. INTRODUCTION

Companies commonly spend time to reduce the Technical
Debt (TD) in their systems. Many factors can lead to TD; they
can be internal, related to the business or the environment, or
they can be external to the company [1].

TD is a metaphor from the economic domain that ”refers
to different software maintenance activities that are postponed
in favor of the development of new features in order to get
short-term payoff” [2].

Technical issues include any kind of information that can be
derived from the source code and from the software process,
such as usage of specific patterns, compliance with coding
or documentation conventions, architectural issues, and many
others. For example, when a new feature does not fit the current
architecture, the incompatibility might solved with an

immature implementation [2] than will be fixed in the future
implementing a proper solution.

Researchers have investigated different aspects of TD and
proposed different approaches to pay it back. However, only
few works have investigated concrete cases and identified the
root causes of TD in companies.

In this work, we report on an empirical study we performed
in our case company, a Finnish SME that operates in Business-
to-Business sector and develops web applications for manag-
ing sales channels.

We identified cases where we postponed different activities
and then analyzed the reason(s) for the postponement, the
issues generated by the postponement, and how the post- poned
activities were implemented later. We also highlight the
overhead generated by the postponement of the activities
themselves (the interest).

The results of this work can be beneficial not only for the
scientific community but also for other companies. As other
companies can understand the reasons why our case company
postponed some activities, and the issues generated by the
postponement, they can make more informed decisions in
similar situations. The results of this work confirm that TD
can cause significant economic losses if payback is postponed.
Also, postponing activities - even if it is beneficial in the short
term - can often be an economic disadvantage.

We investigated our case company’s TD with a focus group
involving five members of the company. Our main goal was
not to regret past losses, but to understand what happened in
the past and find ways to prevent similar situations.

The remainder of this paper is structured as follows. Sec-
tion II reports on related work. In Section III, we introduce
the empirical study design and report the results in Section IV.
The discussion is presented in Section V and conclusions are
drawn in Section VI.

II. RELATED WORK

There are several ways to prevent TD. For example, Fowler
suggested that software should be designed to be strangled,
i.e., to be surpassed by new versions easily [3], while ac-
cording to Cunningham, utilizing the modularity of objects
allows developing flexible software [2]. However, sometimes
debt cannot be avoided and in order to avoid rising costs, the
generated debt should be paid back as soon as possible.

According to Z. Li, TD occurs when technical shortcuts
are taken to gain short-term benefits that are harmful for the
system in the long term [4]. There are several reasons that lead
to technical compromises, such as unrealistic schedule, budget
constraints, or estimation errors. Highly indebted products
become inflexible and unprofitable, and the accumulation of
debt eventually leads to dead end whereupon the system has
to be replaced with a new one.

Klinger et al. [5] interviewed four software architects to
understand how decision-making regarding TD was conducted
in an enterprise environment. The results showed that the
decisions related to TD issues were often informal and ad-hoc,
which prevented tracking and quantifying the decisions and
issues. Moreover, just as in our work, this study also reported
that there was a large communication gap between technical
and business stakeholders in the discussions related to TD.

Ampatzoglou et al. [6] conducted a multiple case study
in the embedded systems industry in order to investigate the
expected lifetime of components affected by TD and the most
frequently occurring types of TD. They considered seven
embedded systems industries from five different countries. The
results showed that in order to increase the expected lifetime
of components, maintainability plays a major role. Moreover,
they found the most frequent types of TD to be test,
architecture, and code.

Recently, De Toledo et al. [7] conducted an exploratory case
study with a large company on a project with about 1,000
services. They investigated Architecture TD in the commu-
nication layer. The study combined an analysis of existing
documentation and interviews to identify issues, solutions, and
risks, providing a list of architectural issues that generate TD.

III. FOCUS GROUP

In this section, we describe the design of our study, includ-
ing the goal, the research questions, the study context and
procedure, and the data analysis.

The case product was a sales channel management tool that
the case company offers as a service (Saas). The company
is a micro-enterprise (less than 10 person), that develop a
single product (the sales management tool). The product is
customized for suppliers, providing a limited set of features,
depending on their needs.

The product has been developed for 4 years (from January
2015) and it is based on JavaScript and NoSQL and it’s devel-
oped with the MEAN stack (MongoDB, Express.js, AngularJS
and Node.js).

A. Research Questions
Based on the aforementioned goal, we derived the following

Research Questions (RQs):
• RQ1: What are the most common types of TD?
• RQ2: What are the main causes of the accumulated TD?
• RQ3: How to mitigate TD?
RQ1 aims to determine the most common types of TD in

the company and their impact on business.

RQ2 aims to investigate the causes of the TD identified in
the company.

RQ3 aims to identify ways to prevent TD from occurring
in the future based on the knowledge gained by RQ1.

B. Planning the study
We planned a focus group to last from two to three hours.

We identified a number of issues to be covered that were
sufficient for having a meaningful discussion and interaction
between the participants.

We selected five participants: the Chief Technology Officer
(CTO), the Chief Financial Officer (CFO), the Chief Marketing
Officer (CMO), and two developers. All participants voluntar-
ily participated in the study, as they were interested in how
to avoid facing similar situations as in the past and wanted to
understand which activities should not be postponed.

The session was moderated by one of the authors, that did
not vote nor participated on the identification of TD. Before the
session, the moderator introduced the goals and the rules of the
focus group. Then he presented the following six discussion
topics:
T1: Which activities have been postponed in the past?

This topic was investigated in two steps: First, the par-
ticipants answered this question individually, reporting
the activities on post-it notes. Then the moderator asked
them to read their list of activities and grouped the same
activities on the whiteboard.

T2: Which type of TD was generated by the postponed
activities?
The participants grouped the postponed activities based
on the type of TD. We adopted a classification of eleven
categories, including the ten TD categories proposed by
Li et al. [4] (Requirement TD, Architectural TD, Design
TD, Code TD, Test TD, Build TD, Documentation TD,
Infrastructure TD, Versioning TD, Defect TD) and one
new category (Organizational TD).

T3: What were the reasons for postponement?
Regarding this topic, the participants discussed the mo-
tivations for the postponement of the activities and then
reported them on the activity post-it notes created in T1.

T4: How were the activities then implemented? In this task,
the participants reported the solutions adopted to imple-
ment the postponed activities and reported them on the
activity post-it notes.

T5: What problems did the postponement cause?
The participants collaboratively discussed the problems
that caused the postponement, including economic, tech-
nical, and organizational ones. In this case as well, they
reported them on the activity post-it notes.

T6: Ranking the importance of the problems.
In this task, each participant received ten votes, in the
form of adhesive ”dots”, and was asked to vote on the
most harmful problems. The participants were free to
distribute their votes as they liked, for example, assigning
all ten votes only to one activity or distributing them
evenly among the activities.

Except for Topic 1, if needed, participants were allowed to
use extra post-it notes connected to the same activity.

C. Data Analysis
The data collected from the focus group was analyzed by

determining the proportion of responses in each category. TD
causes were analyzed following the 5-Whys technique [8].

IV. RESULT

In this section, we will first report the perceived TD issues
highlighted by the participants, together with the problems the
issues generated and their causes. Finally, we will answer our
research questions.

A. Perceived Debt
The participants if of focus group identified 10 different

types of TD (TD items).
Organizational and Product Management Issues

TD1 Implementation of multiple versions of the same product,
as different customers wanted to use the system for dif-
ferent purposes. (Requirements TD, Organizational TD)
The prioritization of the features and tasks as well as the

concentrate on fast delivery to the client. The recognized
cause were Time constraints.

TD6 Testing is expensive. (Test TD) The company lacked
dedicated tested and had human resourcing challenges.
The focus group was not able to find the actual cause of
this TD.

TD7 Low code coverage in tests causes risks in development
and additional work. (Test TD) It was hard to estimate
budget and schedule in the beginning and the company
had to postpone some testing. Also, the company did not
have dedicated personnel for testing, and developers were
not as efficient in testing as dedicated tester would be.
The recognized causes were Estimation issues, Commu-
nication issue and Budget constraints.

Source Code Maturity Issues
TD8 Lack of code documentation. (Documentation TD) The

case company was commonly too busy to create code
documentation as new features has usually highest prior-
ities. The recognized cause was Time constraints.

TD9 Technical shortcuts (Code TD) These TD items are
present due to lacking time and budget. The recognized
causes were Time constraints and Budget constraints.

estimation of the cost and other effects of the customer- TD10 Duplicated code (Code TD) Developers failed to follow
specific tailoring became difficult. The recognized causes
where Specification issues, Budget constraints, Estima-
tion issues and Time constraints (e.g. related to Fast
Delivery).

TD2 Disagreement with supplier about the Minimum Viable
Product (MVP) [9]. (Requirements TD) The first version
of the system was subcontracted from an external vendor
that wanted to implement the initially agreed specification
instead of iterative development and adapting to improved
understanding of the customer needs. The recognized
causes where Specification issues, Budget constraints and
Estimation issues.

Architectural Issues
TD3 Lack of multitenancy causes budgeting increase and lack

of flexibility (Infrastructure TD). The products are
delivered as SaaS services, but the implementation forces
a totally separated installation for each customer. This
raises the operation and infrastructure costs. Multitenancy
was not originally the highest priority and then the need
of introducing it is costly. The recognized cause was
Budget constraints.

TD4 Hard to maintain a simple User eXperience (UX) with
the growth of functionalities. (Design TD) The UX was
designed by the supplier that did not want to redesign it
anymore, creating issues in adding new features while
maintaining a good user experience. The recognized
cause was Time constraints.

Development and Testing issues
TD5 Lack of automatic testing costs more in the future (Infras-

tructure TD). The testing budget was too low to enable
the creation of automatic testing during development
since the company did not even have enough time to

the ”Don’t Repeat Yourself” principle and modularize
the implementations. Instead they duplicated the code
because they were in hurry. In some case, the company
had no time to extend or generalize the existing code.
The focus group was not able to find the actual cause of
this TD.

RQ1. What are the most common types of TD?
The focus group considered the Test and Requirements TD

as clearly more significant than other types of TD, as reported
in Table 1a.

RQ2. What are the main causes of the accumulated TD?
The causes of the perceived TD items are summarized in

Table 1c
1) Budget constraints (TD1, TD2, TD3, TD7, TD9) and time

constraints (TD1, TD4, TD5, TD8, TD9) are the most
recurring reasons. Estimation issues (TD1, TD2, TD7) is
also a significant cause and closely related to budgeting
and timing.

2) Time-related causes (Time constraints), usually related
to fast delivery, recurred almost as frequently as budget
constraints. It can be speculated that the lack of time
depends on the budget.

3) Other causes were not as significant.
4) In some cases, the causes of the TD remain unknown.

RQ3. How to mitigate TD?
Based on the discussion of the focus group we highlighted

three main aspects that could be improved to mitigate TD.
1) Learning from customers. Organizations have to under-

stand what should be built using prototypes and validation
with customers.

(a) Perceived by interviewees and total points (b) perceived TD types and sum of point (c) Count of TD motivations presented

TABLE I: Results. Motivations are counted once for each TD

2) Careful estimation. The whole organization should under-
stand the technical boundaries to avoid estimation errors.
They should use previous tasks to improve their effort
estimation regarding the development of new tasks. Un-
derestimation can cause additional expenses for company.
Customers should pay for the overall costs of the system;
they tend to pay only for visible costs, which are only the
tip of the iceberg. The costs of testing and documentation,
which tend to be under the surface, should be made visible
to them. The company has to find the right pricing balance
in order to remain competitive. Underestimating the
amount of work can lead to compromises in less
visible costs.

3) Continuous improvement. Organizations can gradually
improve the quality. Deficiencies in development areas
should not be postponed. Companies should invest in
testing and documentation because their TDs are hin-
dering development and ultimately take up a lot of the
developers’ precious time. A lack of tests increases the
need for manual testing and the risk of regression. Lack
of documentation diminishes knowledge and adds tacit
knowledge. Evanescence of knowledge will accumulate
the costs of testing and documenting over time. Compa-
nies have to find the critical point in mitigating TD where
benefit is bigger than cost.

V. DISCUSSION

Identifying TD and its possible root causes helped the
company to understand their most critical issues. Conversation
helped to determine the causes of accrued TD to enable miti-
gating TD in the future. Ways to mitigate TD were explored
based on the results. Budget constraints were considered as
the most critical root cause of TD; however, time constraints
and fast delivery were considered almost as critical.

Time constraints can be related to budget constraints when
they are caused by HR constraints. However, they do not al-
ways relate to budget as more employees do not automatically
remove time constraints. According to FP. Brooks [10], work
distribution follows Amdahl’s law. Thus, the more work is
distributable, the more time is saved by adding developers. The
required learning curve and the need for more communication
lessen the benefit of having more employees. Thus, even if

the budget is sufficient, time constraints can remain until the
team reaches its optimal performance in group development,
as reported by B. Tuckmann [11].

When discussing the lack of documentation, the CTO said,
”We faced this TD about not having the documentation when
you [developer] came and we did these bug fixes during the
autumn. Had there been these, I think it would have been a
little bit easier.”

A. Learning from Customer

Learning from the customers is the first answer to RQ3
regarding how to mitigate TD. As stated by one developer,
when the organization knows the customer’s needs, it it is
easier to go in the right direction. When there are many
customers, User Experience Design becomes more important
as a generalized solution has to satisfy everyone’s needs at the
same time. ”We are kind of having it done by experimenting
and communicating more with the customers to understand
what they need and we are doing it in an iterative way to
solve the customer’s problem, but this works until we have
only handful of customers.”

Idea validation with users using prototyping could follow
validated learning as suggested by E. Ries [12]. According to
M. Christel et al. [13], the customer has to be supported in
requirements elicitation because the customer’s understanding
is limited. However, the CTO stated that the customer should
be consulted only for major decisions and should not be
bothered with every minor detail.

Problems caused by a lack of validation were emphasized
when the subject company outsourced their software devel-
opment. Sections that are more important for the business
than strategically can be outsourced. Outsourcing can allow
companies to focus on their core competence, but suppliers
have their own interests and all the decisions have to be well-
reasoned. The CFO stated ”that was why we were so upset with
them [the Supplier] because the plan was to have something
not so solid in the back end but we could have a couple of
customers to actually test. Problem is that they chose not to
give us that; we had to wait two years before we were able
to have a customer to test the MVP and that was their big
mistake.”

TD Description Points
TD2. Disagreement with supplier 7
TD5. Lack of automatic testing 7
TD1. Implementing multiple products 3
TD0. Technical shortcuts 3
TD6. Expensive tests 2
TD3. Lack of multitenancy 2
TD8. Lack of code documentation 2
TD7. Low code coverage in tests 2
TD10. Duplicate code 2
TD4. Hard to maintain simple UX 0

TD Type Points
Test TD 11
Requirements TD 10
Code TD 5
Organizational TD 3
Infrastructure TD 2
Documentation TD 2
Design TD 0
Architectural TD 0
Build TD 0
Versioning TD 0
Defect TD 0
Grand Total 30

Possible cause of motivations Count
Budget constraints 5
Time constraints 5
Estimation issues 3
Specification issues 2
Communication issues 1
Design issues 1

B. Careful Estimation

Careful estimation is the second answer to RQ3. SMEs need
to use their budget wisely. A limited budget forces a company
to generate TD which it hopes to pay back as soon as possible.
Payback time can be when the company gets enough funding.
The risk of a roadblock through a ”TD bankruptcy” increases
when new requirements emerge and need attention, leading
to the rewriting of existing features, which should be avoided
by estimating the costs of TD. Moreover, outsourcing part
of the development to consultants, also increase the risk of
requirement TD [14] related to misunderstandings [15] and
increase the communication overhead [16].

For an SME, budget constraints are inevitable and the
company needs ways to cope with its budget. Considering the
lifecycle of companies, Nilsson et al. [17] claimed that in the
pre-deployment phase, architectural and structural TD should
be avoided. Other types of TD such as test and documentation
TD can be incurred in that phase. Communication is important
especially at the beginning in order to avoid wrong decisions
that later become TD. Any historical analysis of budget
constraints is speculative and thus no single reason can be
named. Inadequacy in in specification validation can drain
the budget. TD2, disagreement with the supplier, was one of
the most important TD items. The CFO stated that concrete
prototypes could have helped validation. Lack of prototyping
consumed time and caused bitterness. Decisions made were
not optimal in the long term and caused TD.

Planning requires good communication. Stakeholders
should make sure they consider every aspect of new features,
utilizing, for example, the Architecture Trade-off Analysis
Method (ATAM) to find possible trade-offs in architecture
decisions by formally listening to all stakeholders [18]. A
customer approaches the product from a top-down perspective.
They cannot see all the technical details related to the imple-
mentation of a feature. On the other hand, developers are able
to see the bottom-up perspective and know all the technical
aspects quite well. However, they might have deficiencies in
domain knowledge and cannot value all the customer’s needs.
Both parties become victims of the Dunning-Kruger effect [19]
when they fail to look below the surface.

When discussing the implementation of features for multiple
products, the CFO said ”I don’t think they [the Supplier]
took really that much time to understand because in every
meeting we repeated the same. It was very important and in the
specification, the written specification, and even in the contract
they signed, this was written.” The supplier’s developer for his
part commented ”the Client’s team was not able to convince
us of that and explain the idea really well. The reason is the
domain knowledge, the deficiency on the Supplier’s side.”

Just as with suppliers, companies face challenges in justi-
fying the work to be done with customers. The customers do
not see the less visible costs, which should be communicated
to them as they improve the long-term health of the system.
The CFO gave the following example: ”We had an issue that
one of our customers wanted to modify the questions. [...] It

was quite a big change and they said that ’no, we won’t pay
that much’ and then we said we cannot do it. They were not
very happy but we had no choice. It was too expensive and
the client did not see any value in that.”

Careful estimation avoids risks. In addition to commu-
nication issues, estimation errors can be reasons that drain
the budget. As mentioned in the Results, underestimation is
unprofitable for the company. Estimation errors occur because
of unpredictable complexity of a task. Developers might not
see all the sub-tasks concerning a new task when doing the
estimation at the beginning of the development of a new task.
Every new task is unique and has little in common with
the previous tasks. A little knowledge of the subject makes
developers overconfident, which leads to them underestimating
the amount of work. Again, only the tip of the iceberg is seen
and a new task is seen as simpler than it actually is in the end.

When pricing and schedule are unrealistic, development will
focus only on the most critical areas. Pessimism in estimation
could help to improve quality, but the challenge is to maintain
competitiveness with bigger companies that have economies
of scale and can use their capital to fund all the various
aspects. Companies can find estimation challenging, as stated
by the CFO: ”The client paid us like 10,000 euros for the
customization and between our hours and what we paid to
do that modification it costed us 15,000-17,000 euros. We
accepted the specification but we totally did not understand
how much it would actually cost and how much time it would
take because it was done in a rush.”

Companies can improve in finding critical point in estimates
by time meanwhile preparing for estimation errors. As stated
by C. Parkinson [20], his namesake law leads to overestimation
since after some point, finishing a task requires the same time
regardless of the allocated time. Meanwhile, according to D.
Hofstadter [21], his namesake law leads to underestimation
since a task requires more time than estimated although the
estimator would be aware of estimation challenges.

C. Continuous Improvement
Continuous improvement is the third answer to RQ3. Ac-

cording to a developer, the quality of the code has suffered
from a lack of unit tests. Testing is needed to validate
conformance. One developer stated: ”Requirements were not
written anywhere and if you touch and you happen to break
something it’s even hard to regulate what’s broken until it gets
into the customer’s hands.”

Companies need to find the golden mean in quality improve-
ment, where the cost-benefit ratio is the lowest [22]. Moreover,
companies should consider continuous quality monitoring ap-
proaches, instead of one-shot refactoring [23] [24].

Testing, documenting, and bug fixing are ways to reduce
waste in software development. Testing and fixing bugs be-
come more difficult over time when software entropy in-
creases. According to the CFO, “at the latest stage when we
are going to do the automated testing, which is very important
anyway, it’s going to cost us quite a lot because we need to dig
into the old code of the application so we need to go back.“

VI. CONCLUSION

In this work, we analyzed the main reasons for Technical
Debt (TD) in an SME company, the problems it created, and
how the company mitigated it. We investigated what happened
in the past, so as to avoid making the same mistakes again,
or to make reasoned choices. Our participants considered the
most significant TD items to be disagreement with suppliers
and lack of test automation. The most significant TD types
were Test and Requirements. Possible root causes were budget
constraints, estimation and specification issues, and fast deliv-
ery. Overall, the most important root causes were considered to
be budget constraints, time constraints, and estimation issues.

Attempting to build a connection to management theory
helps to understand the issue of TD in depth. Based on the
analysis of the results and related work, the following methods
can be used to mitigate TD:

• Learning from customers - prototyping with the cus-
tomers to find the right direction and communicating
efficiently with the stakeholders;

• Careful estimation - using meta-cognition to learn esti-
mation;

• Continuous improvement - using limited budget and time
wisely to bring value.

Another result is that requirements were not validated
properly at the beginning when a product was outsourced to
an external supplier. Moreover, the developers underestimated
the time for testing and bug fixing. As estimation errors are
harmful to budgeting and scheduling, awareness of one’s own
competence and transparency in communication can avoid
risks in the future.

This work provides an overview of the main issues related to
TD in our case company. However, we are aware of different
threats that may have influenced the results. Some participants
might not have reported some TD issues for different reasons.
The presence of the company’s technical management (CTO,
CFO, and CMO) could have influenced the answers of the
developers. The focus group was conducted over a period of
two hours, and therefore we probably have not reported all
the issues that occurred during the history of the company,
but only the most recent or the most significant ones.

Further studies are needed to create a stronger bond between
the effects of validation and estimation on the one hand and
budgeting and scheduling on the other hand. Benchmarks of
our estimations with existing dataset [25] and adopting TD
management tools widely used by competitors [26] [27] could
be a viable solutions to mitigate this threat. Understanding
these laws also requires interdisciplinary studies that combine
computing, quality management, and psychology. A contin-
uous quality management approach [24] [23], could help to
prevent TD. Moreover, management studies help to develop
better processes, while psychology and organizational studies
can explain why estimation errors occur. Understanding root
causes by looking at them through these fields will result in
better knowledge of TD and help SMEs avoid pitfalls, thereby
enabling them to be even more successful.

REFERENCES

[1] A. Martini, J. Bosch, and M. Chaudron, “Investigating architectural
technical debt accumulation and refactoring over time: A multiple-case
study,” Information and Software Technology, pp. 237 – 253, 2015.

[2] W. Cunningham, “The wycash portfolio management system,” SIGPLAN
OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[3] M. Fowler, “Stranglerapplication,” 2004. [Online]. Available:
https://www.martinfowler.com/bliki/StranglerApplication.html.

[4] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical
debt and its management,” Journal of Systems and Software, vol. 101,
pp. 193–220, 2015.

[5] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise
perspective on technical debt,” in MTD ’11, 2011, pp. 35–38.

[6] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou,
P. Abrahamsson, A. Martini, U. Zdun, and K. Systa, “The perception
of technical debt in the embedded systems domain: An industrial case
study,” in MTD ’16, Oct 2016, pp. 9–16.

[7] S. De Toledo, A. Martini, A. Przybyszewska, and D. Sjoberg, “Architec-
tural technical debt in microservices. a case study in a large company,”
in TechDebt 2019, 2019.

[8] T. Ohno, Toyota production system: beyond large-scale production. crc
Press, 1988.

[9] V. Lenarduzzi and D. Taibi, “MVP explained: A systematic mapping
study on the definitions of minimal viable product,” in Euromicro
Conference on Software Engineering and Advanced Applications, 2016.

[10] F. P. Brooks Jr, “The mythical man-month (anniversary ed.),” 1995.
[11] B. W. Tuckman, “Developmental sequence in small groups.” Psycholog-

ical bulletin, vol. 63, no. 6, p. 384, 1965.
[12] E. Ries, The lean startup. Crown Books, 2011.
[13] M. G. Christel and K. C. Kang, “Issues in requirements elicitation,”

Carnegie-Mellon Software Engineering Inst, Tech. Rep., 1992.
[14] V. Lenarduzzi and D. Fucci, “Towards a holistic definition of require-

ments debt,” in 13th International Symposium on Empirical Software
Engineering and Measurement, Sept 2019.

[15] D. Taibi, V. Lenarduzzi, A. Janes, K. Liukkunen, and M. O. Ahmad,
“Comparing requirements decomposition within the scrum, scrum with
kanban, xp, and banana development processes,” in Agile Processes in
Software Engineering and Extreme Programming, 2017.

[16] D. Taibi, V. Lenarduzzi, M. O. Ahmad, and K. Liukkunen, “Comparing
communication effort within the scrum, scrum with kanban, xp, and
banana development processes,” in 21st International Conference on
Evaluation and Assessment in Software Engineering, ser. EASE’17,
2017.

[17] H. Nilsson and L. Petersson, “How to manage technical debt in a lean
startup,” 2013.

[18] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Car-
riere, “The architecture tradeoff analysis method,” in Inter. Conference
on Eng. of Complex Computer Systems, 1998, pp. 68–78.

[19] J. Kruger and D. Dunning, “Unskilled and unaware of it: how diffi-
culties in recognizing one’s own incompetence lead to inflated self-
assessments.” J. of personality and social psych., vol. 77, no. 6, 1999.

[20] C. N. Parkinson and R. C. Osborn, Parkinson’s law, and other studies
in administration. Houghton Mifflin Boston, 1957, vol. 24.

[21] D. R. Hofstadter et al., Gödel, Escher, Bach: an eternal golden braid.
Basic books New York, 1979, vol. 20.

[22] S. H. Vathsavayi and K. Systä, “Technical debt management with genetic
algorithms,” in Euromicro SEAA, 2016.

[23] V. Lenarduzzi, C. Stan, D. Taibi, D. Tosi, and G. Venters, “A dynamical
quality model to continuously monitor software maintenance,” in 11th
European Conference on Information Systems Management, 2017.

[24] A. Janes, V. Lenarduzzi, and A. C. Stan, “A continuous software quality
monitoring approach for small and medium enterprises,” in International
Conference on Performance Engineering Companion, 2017.

[25] V. Lenarduzzi, , N. Saarimäki, and D. Taibi, “The technical debt dataset,”
in Int. Conf. on Predictive Models and Data Analytics in software
engineering (PROMISE’19), Sept 2019.

[26] V. Lenarduzzi, A. Sillitti, and D. Taibi, “A survey on code analysis
tools for software maintenance prediction,” in Software Engineering for
Defence Applications - SEDA, 2019.

[27] V. Lenarduzzi., A. Sillitti, and D. Taibi, “Analyzing forty years of software
maintenance models,” in International Conference on Software
Engineering Companion (ICSE-C), 2017.

