
Manual Tests Do Smell! Cataloging and Identifying
Natural Language Test Smells

Elvys Soares∗, Manoel Aranda†, Naelson Oliveira†, Márcio Ribeiro†, Rohit Gheyi‡, Emerson Souza∗,
Ivan Machado§, André Santos∗, Baldoino Fonseca†, and Rodrigo Bonifácio¶

∗Universidade Federal de Pernambuco (UFPE), Brazil
Email: eas5@cin.ufpe.br, epss@cin.ufpe.br, alms@cin.ufpe.br

†Federal University of Alagoas (UFAL), Brazil
Email: mpat@ic.ufal.br, naelson@ic.ufal.br, marcio@ic.ufal.br, baldoino@ic.ufal.br

‡Federal University of Campina Grande (UFCG), Brazil
Email: rohit@dsc.ufcg.edu.br

§Federal University of Bahia (UFBA), Brazil
Email: ivan.machado@ufba.br

¶University of Brası́lia (UnB), Brazil
Email: rbonifacio@unb.br

Abstract—Background: Test smells indicate potential problems
in the design and implementation of automated software tests
that may negatively impact test code maintainability, coverage,
and reliability. When poorly described, manual tests written in
natural language may suffer from related problems, which enable
their analysis from the point of view of test smells. Despite the
possible prejudice to manually tested software products, little is
known about test smells in manual tests, which results in many
open questions regarding their types, frequency, and harm to tests
written in natural language. Aims: Therefore, this study aims to
contribute to a catalog of test smells for manual tests. Method: We
perform a two-fold empirical strategy. First, an exploratory study
in manual tests of three systems: the Ubuntu Operational System,
the Brazilian Electronic Voting Machine, and the User Interface
of a large smartphone manufacturer. We use our findings to
propose a catalog of eight test smells and identification rules
based on syntactical and morphological text analysis, validating
our catalog with 24 in-company test engineers. Second, using our
proposals, we create a tool based on Natural Language Processing
(NLP) to analyze the subject systems’ tests, validating the results.
Results: We observed the occurrence of eight test smells. A survey
of 24 in-company test professionals showed that 80.7% agreed
with our catalog definitions and examples. Our NLP-based tool
achieved a precision of 92%, recall of 95%, and f-measure of
93.5%, and its execution evidenced 13,169 occurrences of our
cataloged test smells in the analyzed systems. Conclusion: We
contribute with a catalog of natural language test smells and
novel detection strategies that better explore the capabilities of
current NLP mechanisms with promising results and reduced
effort to analyze tests written in different idioms.

Index Terms—Test Design, Software/Program Verification, Test
Smells, Manual Tests, Natural Language Processing

I. INTRODUCTION

Test smells are indications of potential problems in the
design and implementation of automated software tests [1].
Like a code smell [2], [3], a test smell does not necessarily
mean an already existing problem but an indication of fur-
ther difficulties such as poor maintainability (i.e., duplication
of code [1]), lack of coverage (i.e., missing or unexecuted

verifications [4]), or unreliable results (i.e., non-deterministic
execution behavior [5]).

The necessary investment in configuration can lead a project
to opt for manual testing over test automation due to budget
limitations [6], [7]. In such cases, manual test descriptions
are in natural language and “often of poor quality and writ-
ten without the best practices of software engineering” [8].
Similar to known issues with natural language requirements,
documentation of tests in natural language often results in test
cases that are incomprehensible, ambiguous, and difficult to
maintain due to problems such as translation and spelling er-
rors, different description styles for similar testing procedures,
or excessive use of abbreviations [9].

Despite the format differences, bad choices when imple-
menting automatic tests [10] or describing a manual test
using natural language may pose similar threats to the test-
ing activity. For example, Table I presents a fragment of a
test description from the Ubuntu Operational System (OS)
manual tests.1 In the test, the second action step presents
two conditions, “USB 3.0 storage device” and “USB 3.0
port,” that must be met for the action “transfer a large file”
and the corresponding verification step to be performed. The
conditional logic phrased in natural language negatively affects
test comprehension and correctness. Indeed, as can be seen
in Table I, a problem in USB 3.0 file transfers may not be
identified if the tester does not use compliant equipment and
skip step 2. From the point of view of test smells, this is the
Conditional Test [11] in natural language [6].

Using the rationale presented by the example in Table I,
Hauptmann et al. [6] coined the term natural language test
smells to represent possible design problems in manual soft-
ware testing from the point of view of test smells. A set of
seven test smells is presented along with simple detection

1[Online]. “testcases\hardware\1476 USB Ports” test, available: https://
git.launchpad.net/ubuntu-manual-tests978-1-6654-5223-6/23/$31.00 ©2023 IEEE

ar
X

iv
:2

30
8.

01
38

6v
1

 [
cs

.S
E

]
 2

 A
ug

 2
02

3

https://git.launchpad.net/ubuntu-manual-tests
https://git.launchpad.net/ubuntu-manual-tests

TABLE I
STEPS OF AN UBUNTU OS TEST HAVING THE CONDITIONAL TEST SMELL PHRASED IN NATURAL LANGUAGE

No Action Verification

1 Plug a USB device in and attempt to use it The device is correctly recognized. The software normally used with the device functions
normally. The device behaves as expected. The USB device works in every port. You
are able to disconnect and re-connect the USB device correctly without errors

2 If the device is a USB 3.0 storage device and you have a USB
3.0 port, transfer a large file between the two

The transfer is above USB 2.0 speed

3 Repeat for each USB device you have

rules, such as word count or occurrences from keyword
lists. After Hauptmann et al. [6] publication, we noticed a
research gap of almost ten years concerning natural language
test smells, which did not happen in the context of smells
in automatic tests [5], [12]–[14]. Such absence motivates a
handful of questions concerning the existence of additional
natural language test smells, their frequency, the possible
problems they indicate, and whether we can benefit from the
powerful Natural Language Processing mechanisms available
nowadays. These questions motivate our work in this paper,
which aims to advance the research on natural language test
smells.

We first conduct an exploratory study to analyze a statisti-
cally relevant sample of manual test descriptions of three sys-
tems from different domains: (i) the Ubuntu Operational Sys-
tem (OS), which is open-source; (ii) the Brazilian Electronic
Voting Machine, in an institutional partnership between our
institution [name omitted for the blind review process] and the
Superior Electoral Court (TSE); and (iii) a large smartphone
manufacturer’s UI — name omitted due to non-disclosure of
proprietary information agreement —, also in partnership. In
this first study, we intend to answer the following research
questions:

• RQ1:“What already proposed natural language test
smells can be observed?”,

• RQ2:“What new natural language test smells can be
observed?”, and

• RQ3:“How frequent are these test smells?”

Answering these research questions is important to advance
the list of test smells applicable to natural language tests.
In particular, we identify the occurrence of two already
proposed natural language test smells (i.e., Conditional Test
and Ambiguous Test) and contribute to six new smells (i.e.,
Unverified Action, Misplaced Precondition, Misplaced Verifi-
cation, Misplaced Action, Eager Action, and Tacit Knowledge),
and their frequency in the systems mentioned above. As the
final product of this study, we introduce a catalog containing
these eight smells. Our catalog organizes each smell in terms
of their name, definition, problem, and identification rules.
Instead of using simple detection mechanisms (e.g., searching
for a keyword to identify a test smell), our rules are based
on powerful natural language processing capabilities like the
identification of indefinite determiners, which may indicate
non-determinism in the test description.

We conduct an empirical study using an online survey to

evaluate our catalog. We recruited 24 test professionals and
presented them with our definitions and examples, asking for
their agreement level to our propositions. In this study, we
intend to answer the following research question:

• RQ4:“How software testing professionals evaluate our
proposed smells?”

As a result of our survey, our proposals had an average
acceptance of 80.7% among the interviewed in-company test
engineers, contributing to additional concerns, such as test
reproducibility, length, maintainability, and coverage, all orig-
inating from doubts raised from poor test writing.

We also contribute to developing an NLP-based tool to
identify our catalog’s natural language test smells automat-
ically. Our tool implements our defined rules using spaCy,2

a “free, open-source library for industrial-strength Natural
Language Processing (NLP) in Python,”, and its capabilities
concerning syntactic analysis (i.e., elements of the sentences
and their properties) like verification verbs and declarative
sentences, which are present in multiple languages and whose
implementation can be is mostly reused — as we do to
Portuguese, used in the tests of the Brazilian electronic voting
machine. To evaluate our tool, we conduct one last empirical
study to answer the following research question:

• RQ5:“How precise can the automated discovery of nat-
ural language test smells be when using NLP?”

The results of this study point to a precision of 92%,
recall of 95%, and f-measure of 93.5%, indicating a suitable
detection level for our proposals. Overall, the tool execution
evidenced 13,169 test smell occurrences in the 2,007 tests
of the analyzed systems, which, by definition, may represent
enhancement opportunities to their descriptions.

To sum up, this paper presents the following contributions:

• We conduct an exploratory study for natural language
test smells on systems of different domains: open-source,
government, and industry (Section II);

• We present a catalog of natural language test smells,
with six new contributions from our study, along with
detection rules that use syntactic and morphological lan-
guage analysis, representing a novel approach enabled by
current NLP technology (Section III);

• We evaluate our catalog with 24 in-company test engi-
neers (Section IV);

2[Online]. Available: https://spacy.io/

https://spacy.io/

• We introduce a NLP-based tool to identify the proposed
test smells (Section V);

• We evaluate our tool by analyzing a sample of its results
concerning the before-mentioned systems (Section VI).

The survey dataset, tool logs, and tool validation records —
for Ubuntu OS tests — are available online [15].

II. EXPLORATORY STUDY: TOWARDS A CATALOG OF
NATURAL LANGUAGE TEST SMELLS

This section describes how we analyzed natural language
test descriptions to prospect test smells. Also, we give further
detail on the selected systems, a sample set of tests, and
the distribution (frequency) of our findings. In particular, this
exploratory study answers RQ1, RQ2, and RQ3.

A. Planning

This exploratory study aims to prospect a set of manual tests
from different systems and gather the identified occurrences of
test smells. To increase the representativeness of our results,
we selected manual tests written in natural language from
important systems of three distinct domains: open-source,
government, and industry. Considering the limits imposed by
the agreements for non-disclosure of confidential information,
we detail the obtained tests as follows:

Ubuntu OS: As open-source software [16], the Ubuntu
OS manual tests are available in a public repository.3 In the
repository, test descriptions are in English and XML format,
with standardized tags for test suites, test cases, and action
and verification steps. In total, 305 test files containing 973
tests are available.

Brazilian Electronic Voting Machine (BEVM): An open-
source web-based test management and test execution system
manages the manual test descriptions of the BEVM. In the
ecosystem, test descriptions are in Portuguese. In total, we
had access to 133 tests exported to HTML format.

Large Smartphone Manufacturer (LSM): The manual
test descriptions of this industry partner are managed by a
proprietary issue-tracking product that allows bug tracking and
agile project management. Manual test descriptions for this
system are in English. In total, 898 test descriptions were made
available for our analysis and exported to spreadsheet format.

Three authors manually and independently analyzed a ran-
domly selected subset of test descriptions to perform the
exploratory study. Using their know-how on test smells for
automatic and manual tests, the authors quoted every question-
able description and indicated the possible smell, discussing
results in follow-up meetings. It is important to emphasize
that access to BEVM and LSM tests was controlled and
accessed by cleared authors only. As to the analysis procedure,
all authors involved in this activity started with the Ubuntu
manual tests to achieve standardization of actions, continuing
the analysis in the remaining systems according to their access
grants.

3[Online]. Available: https://git.launchpad.net/ubuntu-manual-tests

Concerning the already proposed smells for tests written in
natural language, from the existing list of seven test smells [6],
five are identified using metrics from an automatic analy-
sis [17]: Badly Structured Test Suite, Inconsistent Wording,
Hard-Coded values, Long Test Steps, and Test Clones. As we
intended to manually read test descriptions and take notes of
the identified problems, using any tool to generate such metrics
was out of scope.

Finally, to make our manual analysis effort feasible, we used
Cochran’s Sample Size Formula [18] to calculate the sample
needed to obtain an 80% confidence level with a 5% margin
of error for each system individually. Table II presents the
analyzed sample test set per system:

TABLE II
ANALYZED SAMPLE SET OF TESTS PER SYSTEM.

System Manual tests Sample size

Ubuntu OS 973 141
BEVM 136 75
LSM 898 139

Total 2,007 355

B. Results

We found similarities in all systems regarding the structure
of their manual tests. Although Ubuntu’s team does not use a
specific test managing tool, they describe their tests as the
other two systems, which use open-source and proprietary
software for such activities. Fig. 1 presents a test visualization.
Table III details the test section’s writing, regarding the
sentence types, with examples from the Ubuntu OS tests.

Fig. 1. Common test design found in the exploratory study.

TABLE III
COMMON TEST STRUCTURE FOUND IN THE EXPLORATORY STUDY.

Section Sentence
type

Example

Objective Declarative This test checks that Audio project menu Works

Preconditions Declarative VMWare Player version ≥ 4.0 is required
Imperative Ensure that your system has no Internet access

before proceeding
Action Imperative Click the ‘Restart now’ button

Verification Declarative An ‘Installation Complete’ dialog appears
Imperative Verify the system upgraded correctly

The exploratory study identified eight test smells, briefly
defined in Table IV and further detailed in Section III. From
this list, two smells (i.e., Ambiguous Test and Conditional

https://git.launchpad.net/ubuntu-manual-tests

Test) are proposals from the literature on natural language test
smells [6], and the remaining ones are contributions from our
study. Also, we manually accounted for 447 occurrences of
the identified test smells, and Fig. 2 presents their distribution
per system.

TABLE IV
CATALOGED TEST SMELLS

Test Smell Brief definition

Ambiguous Test Test steps leaving room for interpretation
Conditional Test Conditional logic phrased in natural language
Eager Action Single action steps that group multiple actions
Misplaced Action Action steps written as verification steps
Misplaced Precondition Preconditions as action steps
Misplaced Verification Verification steps written as action steps
Tacit Knowledge Unexplained terms and abbreviations
Unverified Action Action steps without corresponding verifications

Fig. 2. Distribution of identified test smells per system.

C. Discussion

The structural test pattern found in the analyzed systems
(Section II-B) enabled us to propose the test smells presented
in Section III. Moreover, the distribution of such smells
demonstrates the analysis of natural language test descriptions
from the point of view of test smells to present promising
results. The manual analysis offers some insights whose reality
will be precisely shown in Section V. These insights, for now,
indicate that:

• Most observed test smells are common to all analyzed
systems (e.g., Eager Action);

• There are test smells unique to a single system (e.g., Tacit
Knowledge);

• Each system has its own test smell trend (e.g., Ubuntu
tests suffer more from Unverified Action).

Summary: Answering RQ1, we could observe two already
proposed natural language test smells in the analyzed systems.
In addition, six new test smells are observed, which answers
RQ2. Answering RQ3, the test smells are frequent throughout
the analyzed systems. In particular, Eager Action and Tacit
Knowledge tend to be the most and the least frequent ones.

D. Threats to Validity

a) Conclusion: Our identified test smells relate to the
common test structure in all three analyzed systems. How-
ever, it is important to notice that BEVM and LSM tests
are managed by well-adopted software solutions throughout
the industry, leading us to understand the found pattern as
generally widespread, possibly minimizing this threat.

b) Internal: As the accuracy of the exploratory study
(i.e., 80%) is not ideal for generalizations in the analyzed sys-
tems (i.e., 95% [18]), the distribution of test smells presented
in Fig. 2 may not be precise. We minimized this problem
by modeling and validating a Natural Language Processing
(NLP)-based tool, further detailed in Section V, to provide
the exact distribution of the presented test smells.

c) External: As external threats, analyzing a few soft-
ware systems may not be enough to identify relevant or well-
spread test smells. We minimize this probability by using sys-
tems representative of different domains and spoken languages
and finding test smells common to such systems.

III. A CATALOG OF NATURAL LANGUAGE TEST SMELLS

We now present our catalog, the main product of our
exploratory study. We show the identified test smells in terms
of their names, definition, problem, and identification rules for
their detection with examples from the analyzed Ubuntu OS
test descriptions.

A. Ambiguous Test

a) Definition: Originally proposed by Hauptmann et
al. [6], this smell indicates an “under-specified test that leaves
room for interpretation”.

b) Problem: It negatively impacts test comprehension
and execution, since the aim needs to be clarified and multiple
test executions are not comparable [6].

c) Identification: The original detection rule was the
occurrence of any word from a fixed list of “vague words.”4

As Hauptmann et al.’s [6] keyword list originated from oc-
currences in their analyzed test suites and we found a slightly
different list in our exploratory study (e.g., some, other, and
any), we noticed such keywords to be common in their
semantics (syntactic analysis). We propose a more general
set of detection rules which consider keyword semantics, and
examples, in Table V.

B. Conditional Test

a) Definition: Tests containing conditional logic phrased
in natural language.

b) Problem: The Conditional Test turns tests very com-
plex and difficult to maintain, negatively impacting test com-
prehension and correctness since it is hard to understand the
intention, and complex tests are more likely to have errors [6].

4similar, better, similarly, worse, having in mind, take into account, take
into consideration, clear, easy, strong, good, bad, efficient, useful, significant,
adequate, fast, recent, far, close

TABLE V
AMBIGUOUS TEST IDENTIFICATION

Rule Example

Verb + indefinite determiner Open any application and suspend machine
Indefinite pronouns At “Write changes to disks”, verify that

everything is right and select YES
Comparative adjectives Is the performance similar or better with no

graphical display issues?
Superlative adjectives The root filesystem uses most of the SD card.
Adverbs of manner Does fast user switching work quickly?
Comparative adverbs Does everything function better than the sta-

ble version?

c) Identification: Originally, Hauptmann et al. [6] pro-
posed a fixed list of words for its detection.5 As the list is non-
exhaustive concerning subordinating conjunctions, we propose
any subordinating conjunction, as in Table VI, to identify this
smell as a more robust detection rule.

TABLE VI
CONDITIONAL TEST IDENTIFICATION

Rule Example

Subordinating conjunctions If you have a USB drive, plug it in.

C. Eager Action

a) Definition: Single action steps that group multiple
actions.

b) Problem: This test smell may hide implementation
problems when any action lacks verification, negatively af-
fecting test effectiveness.

c) Identification: Imperative verbs represent actions. Ex-
ample in Table VII.

TABLE VII
EAGER ACTION IDENTIFICATION

Rule Example

Multiple imperative
verbs

Change some sound settings or other settings (night
mode, call history, SMS, etc.) and display them on
the phone, download some applications, etc.

D. Misplaced Action

a) Definition: Indicative of a structurally malformed test,
the Misplaced Action smell arises when action steps are
written as results.

b) Problem: It negatively impacts test maintainability,
since the test structure is not consistent.

c) Identification: Imperative verbs, excluding verification
verbs,6 present in verification steps. Example in Table VIII.

E. Misplaced Precondition

a) Definition: Also an indicative of structurally mal-
formed tests, here, preconditions are written as action steps.

5if, whether, depending, when, in case
6Verification verbs identified in use: check, verify, observe, recheck

TABLE VIII
MISPLACED ACTION IDENTIFICATION

Rule Example

Imperatives, excluding verifica-
tion verbs, as verification steps

Give a name to the directory and add
files to it as you did in the previous step

b) Problem: Difficulties in test correctness, since the
incorrect placement of preconditions may influence the tester
to report test failure should a precondition be unattended.

c) Identification: When the first action step declares the
SUT state. The common format of SUT state is a noun
(subject) followed by an auxiliary verb, followed by a past
participle verb or adjective in the same sentence (Table IX).

TABLE IX
MISPLACED PRECONDITION IDENTIFICATION

Rule Example

Subject followed by an auxiliary
verb followed by another verb on
the past participle

The monitor is not connected, and
the PC is not paired

F. Misplaced Verification

a) Definition: Another indicative of structurally mal-
formed tests, this smell arises when verification steps written
as action steps.

b) Problem: It negatively impacts test maintainability,
since the test structure is not consistent.

c) Identification: Sentences containing verification verbs
written as or along with action steps. Example in Table X.

TABLE X
MISPLACED VERIFICATION IDENTIFICATION

Rule Example

Verification in or as an action step Close flip and check app continuity

G. Tacit Knowledge

a) Definition: This test smell is related to the use of
unexplained terms and abbreviations presuming the tester’s
familiarity to domain-specific definitions.

b) Problem: It negatively impacts test comprehension
and execution.

c) Identification: Abbreviations and domain-specific
terms not explained in the test description or external reference
document (i.e., glossary). A hypothetical example, since we
are not authorized to disclose BEVM tests, is in Table XI.

TABLE XI
TACIT KNOWLEDGE IDENTIFICATION

Rule Example

Unexplained terms and abbreviations Check for reported residual votes

H. Unverified Action

a) Definition: Action steps that miss corresponding ver-
ification steps.

b) Problem: Absent verification steps negatively affect
test execution and correctness since there is no instruction on
how the system should behave, leaving room for the testers’
interpretation.

c) Identification: Action steps with no corresponding
verification steps.

IV. CATALOG EVALUATION

In this section, we present the online survey performed to
evaluate our proposals. This activity, in particular, answers
RQ4.

A. Planning

This study planned to assess the opinions of software testing
professionals (e.g., engineers, analysts, and managers) about
the manual test smells we proposed in Section III through an
online survey. By stating their agreement with our definitions
and examples and commenting on their answers, the software
testing professionals would validate whether our proposals
represented valid test smells in theory and practice.

We assembled an online survey with questions correspond-
ing to the given definition and example, same as presented in
Section III. Respondents were presented with the following
answering options (unique): “I strongly agree”, “I agree”,
“Indifferent”, “I disagree”, and “I strongly disagree”. Also,
every question had an optional comment field.

We recruited participants through individual email invita-
tions, using emails from our industry partner. The invitations
were sent to participants of manual test teams, quality as-
surance professionals, and test managers, none of whom had
compensation or obligation to respond to the survey.

B. Results

We performed the survey in March 2023, achieving 24 re-
sponses for 110 sent emails (21.8% response rate). Concerning
the demographics, we had participants from Brazilian teams,
where 83.3% defined their primary work area as the industry
— over academia — and their average declared experience
with software testing was 4.3 years. Fig. 3 details the results
concerning the participants’ opinions on our proposals.

C. Discussion

Regarding the proposed test smells (Section III), the opinion
of experienced test professionals (industry partner) served as
validation that obtained a high acceptance rate (Fig. 3). We
present the details in the following paragraphs.

Already present in the literature, the Ambiguous Test smell
(Section III-A) definition was ratified by 83% of the respon-
dents. Among the agreeing comments, the ambiguity may
indeed cause tests to be poorly performed depending on the
tester experience, as in “My experience can improve the test
coverage, however for a beginner tester is not be clear the
ways to test an interruption, and this can induce he/she to

repeat the same procedure/routine or try few different ways
to suspend the app.” Among the testers that disagree with the
test smell definition, the variance allowed by non-deterministic
terms is beneficial to test different scenarios, as seen in “I
would say that exploratory test cases use a similar approach
and it has been working”.

Known in automatic and manual testing, the Conditional
Test (Section III-B) smell definition and example had the
acceptance of 83% of the respondents. Concerns about the
conditionals being able to improve the test coverage on fea-
tures not always available arise in both sides, as in the agreeing
opinion “The only part I would not agree is if it is related to
a feature that the product may not actually have implemented,
for example, NFC.”, and the disagreeing opinion “The test
writer attempted to cover more possible verifications. If a step
or accessory can’t be verified all the test is not blocked, and
the test becomes applicable to different kinds of product”.

As the first proposal of our work, the Eager Action (Sec-
tion III-C) test smell definition was ratified by 87.5% of
respondents, with no disagreeing opinion. Among the com-
ments, difficulties in the test execution and concerns about the
verifications can be found in “it seems rather confusing and
not pointing to any settings overall, it is covering multiple
scenarios” and in “There isn’t a guarantee that the tester
checked all configurations available”.

Ratified by 75% of the respondents, the Misplaced Action
(Section III-D) test smell had supporters that manifested
concerns about test structure, as in “Verification steps should
be in the end of test cases. Preconditions at the beginning,
and actions in the middle.” Testers that do not agree with the
given definition manifest no concern to test structure, since
they comprehend the test objective, as in “If the action keeps
the step valid as a single one, it makes sense to be written”.

The concerns described by the Misplaced Precondition
(Section III-E) test smell definition were accepted by 87.5%
of the respondents. Unfortunately, as that was not a mandatory
task in this survey, the respondents provided no comments to
this test smell description.

The Misplaced Verification (Section III-F) test smell was
our least accepted proposal, even though counting with 62.5%
agreeing opinions. Testers claim the test clarity to benefit
from the separation into action and verification steps, as in
“I agree because I think that is more clear and organized
for the test have it in separated (verification) steps”. On
the opposite hand, testers that did not agree also claimed
maintainability benefits of keeping action and verification steps
written together, as in “these actions help to avoid too many
steps in a script and reduces the effort in test maintenance”.

Our most accepted proposal, the Tacit Knowledge test smell
(Section III-G) definition had the support of 91.6% respon-
dents. The excessive use of abbreviations and unexplained
domain-specific terms is indeed a concern to agreeing respon-
dents, as in “In my experience, I have faced many new testers
and interns having problems knowing abbreviations in test
cases”. Disagreements call attention to test maintainability,
as in “I would say it is a case by case scenario where it

Fig. 3. Survey results

could be bad either way. I could have overly long texts due to
unnecessary repetition that could be solved by Basic Glossary
before the TCs (test cases). Or a inverse scenario where the
tester is not provided with edge information to that test.”

Our last proposal, the Unverified Action test smell (Sec-
tion III-H) had the approval of 75% respondents. No agreeing
respondent gave further details on their answer. Disagreeing
respondents manifested concern about the verification steps
to every action, as in “Not every action, in a sequence of
actions, generates a relevant result to be verified.” and “In
some situations the expected result is too obvious and can be
dispensed. I believe that this helps to not tire the reader.”

Summary: The online survey shows software testing pro-
fessionals to mostly agree with our proposals. In addition to
positively answering RQ4, their comments show additional
concerns, such as test reproducibility, length, maintainability,
and coverage, all originated from poor test writing.

D. Threats to Validity

Concerning the internal results, some respondents made the
same claim for better organization when a test has action and
verification steps written together or separated, for instance,
both representing agreeing and disagreeing opinions. However,
the wide acceptance of our proposals votes in favor of our
interpretation of the possible prejudices, minimizing the threat.

We used responses from software testing professionals who
work for our industrial partner, and this bias may influence
the generalization of results to other audiences. We minimize
this probability through the respondents’ experience, of about
4.3 years in average (Section IV-B), and whose answers tend
to be similar to experienced professionals who test software
in other domains.

Concerning the construct validity, the lack of an attention
checking question could bias the results towards the confirma-
tion of our proposals. We minimize this threat by providing
examples with attention terms stressed with bold fonts, as in
Section III examples.

V. A TOOL TO DETECT SMELLS IN MANUAL TESTS

We present the development of an NLP-based tool, which
we call Manual Test Sensei, to detect the natural language

test smells we described in Section III. This effort shows
how implementing our rules for natural language test smells
identification is feasible using the current state of the NLP
technology.

We use Python and spaCy [19], a commercial open-source
software released under the MIT license [20], to implement the
NLP tool containing our rules for discovering natural language
test smells. SpaCy features convolutional neural network
models for part-of-speech (POS) tagging [21], dependency
parsing [22], text categorization, and named entity recognition
(NER) [23]. Fig. 4 shows a visualization of the dependency
parsing — arrows above the sentence — and the POS tagging
— labels beneath each sentence element — for the Conditional
Test example of Section III-B.

The motivation for choosing this combination of program-
ming language and NLP library were (i) using market tools
focused on results and performance to analyze industrial-scale
software and (ii) the availability of language models beyond
English since BEVM tests are in Portuguese.

The chosen strategy enabled us to implement most of our
identification proposals. However, identifying the Tacit Knowl-
edge (Section III-G) requires a more comprehensive solution.
To perform it, one would consider (i) external documentation
(e.g., glossaries and execution manuals) — non-existent in
Ubuntu and not provided in the BEVM and LSM — and
(ii) a list of standard terms used in manual software testing
and considered tacit in every manual testing scenario, where
every outsider term would characterize the Tacit Knowledge
test smell if not clarified. To our knowledge, the proposition
of such a list requires a formal study.

Also, we had to consider the different test file formats
according to each analyzed project (Section II-A): XML for
the Ubuntu OS, HTML for the BEVM tests, and spreadsheet
for LSM tests. To that end, specific parsers were created for
each system’s test file format. Fig. 5 presents a simplified
UML class diagram of the Manual Test Sensei tool, where the
parsers — responsible for transforming a test file into several
test objects — and the test smell matchers are shown. Finally,
the tool produces a CSV file as output containing the test file
name, the identified test smell, the specific words or sentence

Fig. 4. spaCy’s visualizer module example

span that characterize the test smell, and the analyzed (action
or verification) step.

Fig. 5. Simplified UML class diagram of the developed NLP tool

The tool source code is available in an online repository at
https://github.com/easy-software-ufal/manual-test-sensei.

VI. TOOL EVALUATION

Once the proposition and development of the Manual Test
Sensei tool — implementing our natural language test smell
identification rules — proved possible using current NLP
technology (Section V), in this last study, we present the tool
results and validation, therefore demonstrating how precise is
the tool performance. This activity, in particular, answers RQ5.

A. Planning

This study planned to execute the Manual Test Sensei tool
against the entire test set of the three analyzed systems and
validate the results. Therefore, we could verify whether the
distribution found in the exploratory study (Section II) is
maintained in the Manual Test Sensei execution results, as
well as the accuracy — in terms of precision, recall, and f-
measure metrics [24], [25] — of such results.

Although we executed our tool against the entire test set
of the three systems, manually validating the tool’s output of
13,169 smells would be infeasible. Therefore, we randomly
selected 101 tests distributed in proportion to the number of
tests available in every analyzed system.

For every selected test, an author would first analyze it
manually and indicate the found test smells, then verify the
tool results for that test, and finally indicate the results that
were correct or true positives (TP), incorrect or false positives
(FP), and the missed or false negatives (FN) test smells.
Table XII presents the distribution of the randomly selected
tests per system:

TABLE XII
DISTRIBUTION OF SELECTED TESTS IN THE VALIDATION SAMPLE

System Total tests Sample size

Ubuntu OS 973 49
BEVM 136 7
LSM 898 45

Total 2,007 101

B. Results

A total of 2,007 test descriptions were analyzed by the
Manual Test Sensei tool. The tool indicated 13,169 test smells,
with an average of 6.5 test smells per analyzed test, noticeably
higher than the 1.2 test smells found in the exploratory study
(Section II). Considering the analyzed systems individually,
we obtained an average of 8.5 test smells per Ubuntu OS test,
5.8 test smells per BEVM test, and 4.5 test smells per LSM
test. Table XIII presents the results per test smell and system.
Finally, a distribution of the found test smells per analyzed
system is presented in Fig. 6.

TABLE XIII
TOTAL NLP RESULTS

Test Smell Ubuntu BEVM LSM Total

Ambiguous Test 2,627 185 1,776 4,588
Conditional Test 277 110 193 580
Eager Action 2,664 299 1,191 4,154
Misplaced Action 318 19 124 461
Misplaced Precondition 45 3 74 122
Misplaced Verification 428 161 513 1,102
Unverified Action 1,967 11 184 2,162

Total 8,326 788 4,055 13,169

Three authors performed the verification as defined in
Section VI-A. The selected sample of 101 tests resulted in
708 results for this activity. The analysis of such results by
the involved authors resulted in 15 disagreements comprising
doubts in syntactical and morphological text analysis, properly
clarified in a discussion meeting. Table XIV presents the
detailed validation totals per system and the precision, recall,
and f-measure metrics achieved by the tool in this validation
activity.

C. Discussion

The high expressiveness of the adopted technology, either
in the identification of dependency relationships (e.g., subject
+ auxiliary verb + participle verb) or in the identification of

https://github.com/easy-software-ufal/manual-test-sensei

Fig. 6. Distribution of test smells per system.

TABLE XIV
DETAILED NLP TOOL VALIDATION AND METRICS

System TP FP FN Precision Recall F-measure

Ubuntu OS 384 43 18 0.9 0.96 92.64
BEVM 25 0 0 1 1 1
LSM 213 13 12 0.94 0.95 94.46

Total 622 56 30 0.92 0.95 93.53

the Part of Speech (POS) (e.g., indefinite pronouns), enabled
us to implement most of the detection rules as defined in
Section III. Only one identification rule could not be imple-
mented entirely, which was the Conditional Test, identified
through subordinating conjunctions (SCONJ) at the beginning
of a dependent clause in a sentence. As spaCy does not
natively support splitting sentences into clauses, which varies
from language to language, identifying SCONJ in a dependent
clause in the middle of a sentence results in many identification
problems by the pre-trained models. This problem resulted in 8
false negatives identified in the validation activity, representing
approximately 27% of the test smells not identified by the tool.

We encountered various formatting, spelling, and character
encoding conversion issues in the test descriptions. Using
numbered and unnumbered lists, parentheses, and the lack of
correct punctuation impaired the NLP engine classification in
some cases reported as false positives and false negatives. For
example, the implemented mechanism was not able to identify
a subordinate clause in the sentence “(If on a ‘laptop’) Is
plugged to a power source,” nor in “Type in your user name
and press Enter (you can accept the default if you wish),” and
could not differentiate the link label in the sentence “Click the
Choose Payment Method link,” which lacked quotes, and was
erroneously classified as multiple actions.

However, even with the implementation challenges and
some test malformations mentioned, the result obtained in the
metrics of precision, recall, and f-measure for the tool can still
be considered expressive. The results remain promising even
when using a trained model for a different idiom and executing
the same rules — except for the list of verification verbs
used in the Misplaced Verification detection, which needed
a partner in Portuguese for BEVM tests — as seen in the

metrics presented by Table XIV.
According to Table XIII, the most frequent test smells

detected were the Ambiguous Test (i.e., 34.8%) and Eager
Action (i.e., 31.5%). An interesting distribution noticed is
that, from the 4,588 occurrences of the Ambiguous Test, we
accounted for 2,225 (i.e., 48.5%) occurring in action steps and
2,363 (i.e., 51.5%) occurrences in verification steps, meaning
that ambiguous tests have an almost equal probability of
presenting testers with difficulties in “what to perform in the
test” and “what to verify as a result.” However, being less
frequent may not mean less harm to the testing activity. It
is important to remember that a Misplaced Precondition can
induce the tester to declare the test failed if the precondition
is not met and the test cannot be executed [26], [27].

Comparing the distribution of test smells found in the
exploratory study (Section II) and the one found by the NLP
tool (Section VI-B), shown in Fig. 7, we noticed that some
test smells had a different percentage result between the two
activities, which was the case of the Ambiguous Test and the
Conditional Test. This expressive difference was due to the
more precise identification of the tool in cases of undefined
determinants, which may escape the most attentive — or not
sufficiently trained in the exploratory study — eyes. Still, the
precision difference in the exploratory study (Section II) and
the tool validation (Section VI-B), necessary for this study to
be feasible, influenced the found deviation.

Fig. 7. Comparison between the exploratory study and the NLP tool results.

Furthermore, we noticed that test smells not found in the
exploratory study for specific systems, such as the Misplaced
Precondition for the BEVM tests, are now among the results
of the NLP tool (Table XIII), even with few occurrences
(i.e., 3). This result is also expected and included in the
exploratory study’s 5% margin of error (Section II-A). Finally,
the proportional distribution of test smells per system shown
in Fig. 6 shows that although the tests of the analyzed systems
suffer from the test smells found, they do so in different
proportions.

Summary: The results obtained in the tool validation show
that our detection rules are effective in identifying the con-
sidered test smells. In particular, we achieved a f-measure of

93.53%, which answers RQ5.

D. Threats to Validity

Internal: The tool’s results may contain errors. We manually
analyzed 101 tests to minimize this threat, which meant more
than 700 results, according to Table XIV. This amount of
results was enough to guarantee statistical validity [18] for
the 13,169 results generated by the tool.

External: The generalization of the obtained results is
impossible with the selected sample of three systems. We min-
imize this threat by choosing highly expressive systems from
different domains to analyze. Nevertheless, an exploratory
study would confirm whether our results indicate some degree
of probability to the analysis of other systems.

VII. RELATED WORK

Hauptmann et al. [6] presented possible problems in manual
test descriptions performed in natural language from the point
of view of test smells. Together with coining the term Natural
Language Test Smells, the authors propose a set of seven
smells: Hard-Coded Values, Long Test Steps, Conditional
Tests, Badly Structured Test Suites, Test Clones, Ambiguous
Tests, and Inconsistent Wording. Also, the authors present iden-
tification strategies for their proposals that rely on keyword
lists and complimentary metrics (i.e., number of words) and
the frequency of the proposed test smells in nine industrial
test suites. In our work, we extend the current catalog by
adding six new test smells, their discovery strategies and
frequency, and providing updates for the discovery of two of
Hauptmann et al.’s list, which we base on broader definitions
focused on morphological and syntactical language analysis,
thus exploring the capabilities of current Natural Language
Processing mechanisms.

Rajkovic and Enoiu presented a tool called NALABS to de-
tect bad smells in natural language requirements and test spec-
ifications [28]. Similarly to Hauptmann et al. [6], the proposed
tool uses keyword lists to measure vagueness, referenceability,
optionality, subjectivity, and weakness metrics. They also used
Automated Readability Index (ARI) to measure readability
and the number of words and conjunctions to measure test
complexity. Again, our work differentiates from Rajkovic and
Enoiu’s work because we use current NLP mechanisms to
identify words using morphological and syntactical language
analysis.

Transferring the concept of code smells to requirements
engineering, Femmer et al. [29] introduced a lightweight static
requirements analysis approach that allows for quick checks
when requirements are written down in natural language. In
another work, Femmer et al. [30] derived a set of smells
from the natural language criteria of the ISO/IEC/IEEE 29148
standard, showing that lightweight smell analysis can uncover
many practically relevant requirements defects. Like our work,
they also use tool support to analyze text in natural language
descriptions.

Previous works presented test smells in test code. Some
of these smells are related to ours, although we focused

on natural language test smells. Meszaros et al. [11] and
Peruma et al. [13] studied test smells in test code, such as
Conditional Test and Conditional Test Logic, which are related
to Hauptmann et al. [6] natural language test smell. Aljedaani
et al. [31] also listed the Assertionless Test smell, defined
by the absence of assertions, which is similar to our idea of
natural language tests having no verification steps (Unverified
Action).

VIII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we extended the current research on Natural
Language Test Smells by contributing six new test smell
propositions, strategies for their detection, and their frequency
in a sample of three representative systems in the government,
open-source, and industry domains. Also, we proposed updates
for two well-known test smells applicable to natural language
test descriptions. Unlike the current research, we proposed
a novel detection strategy for natural language test smells
that relies on syntactical and morphological text analysis,
thus exploring the capabilities of current Natural Language
Processing mechanisms.

To conduct this work, we performed two independent and
complimentary parts: first, we performed an exploratory study
whose results we validated with industry test professionals. We
guided the development of an NLP-based tool in the second
part. The results and validation metrics showed our strategy
to be effective, detecting test smells with over 90% precision,
even in a multiple-idiom context.

In future work, we intend to (i) enable the implementation
of the Tacit Knowledge test smell by performing a formal study
to define common terms in software testing terminology that
may be considered tacit in any manual execution of software
tests; (ii) execute the tool analysis in other candidate systems
whose test management is performed using the same tools
as BEVM and LSM tests to verify the generalization of our
results; and (iii) aggregate tests — and test file formats —
from uncovered systems in the results.

Finally, we verified that some cataloged test smells also
exist in the case of automatic tests. Moreover, the results of
this study show that, like their automatic correlates, natural
language test smells are also quite frequent, corroborating the
title statement.

ACKNOWLEDGMENT

We thank the Brazilian Superior Electoral Court (TSE)
and our industrial partner for kindly allowing their tests
to be analyzed in our study. This research was partially
funded by CNPq grants 312195/2021-4, 421306/2018-1,
310313/2022-8; and FAPEAL grants 60030.0000000462/2020
and 60030.0000000161/2022. Also, this work is par-
tially supported by INES (National Institute of Software
Engineering): CNPq grant 465614/2014-0, CAPES grant
88887.136410/2017-00, and FACEPE grants APQ-0399-
1.03/17 and PRONEX APQ/0388-1.03/14.

REFERENCES

[1] A. van Deursen, L. Moonen, A. van Den Bergh, and G. Kok, “Refac-
toring test code,” in 2nd International Conference on eXtreme Program-
ming and Flexible Processes in Software Engineering, ser. XP. USA:
CiteSeer, 2001, pp. 92–95.

[2] N. Oliveira, M. Ribeiro, R. Bonifácio, R. Gheyi, I. Wiese, and B. Fon-
seca, “Lint-based warnings in python code: Frequency, awareness and
refactoring,” in 2022 IEEE 22nd International Working Conference on
Source Code Analysis and Manipulation (SCAM), ser. SCAM 2022,
2022, pp. 208–218.

[3] F. Medeiros, G. Lima, G. Amaral, S. Apel, C. Kästner, M. Ribeiro, and
R. Gheyi, “An investigation of misunderstanding code patterns in c open-
source software projects,” Empirical Software Engineering, vol. 24, pp.
1693–1726, 2019.

[4] A. Tahir, S. Counsell, and S. G. MacDonell, “An empirical study into the
relationship between class features and test smells,” in APSEC. New
York, NY, USA: IEEE, 2016, pp. 137–144.

[5] F. Palomba and A. Zaidman, “The smell of fear: On the relation between
test smells and flaky tests,” Empirical Software Engineering, vol. 24,
no. 5, pp. 2907–2946, 2019.

[6] B. Hauptmann, M. Junker, S. Eder, L. Heinemann, R. Vaas, and P. Braun,
“Hunting for smells in natural language tests,” in 35th International
Conference on Software Engineering, ser. ICSE. New York, NY, USA:
IEEE, 2013, pp. 1217–1220.

[7] L. Fernandes, M. Ribeiro, R. Gheyi, M. Delamaro, M. Guimarães, and
A. Santos, “Put your hands in the air! reducing manual effort in mutation
testing,” in Proceedings of the XXXVI Brazilian Symposium on Software
Engineering, ser. SBES ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 198–207.

[8] B. Hauptmann, “Reducing system testing effort by focusing on com-
monalities in test procedures,” Ph.D. dissertation, Technische Universität
München, Germany, Jul 2016.

[9] K. Juhnke, A. Nikic, and M. Tichy, “Clustering natural language test
case instructions as input for deriving automotive testing dsls,” Journal
of Object Technology, vol. 20, no. 3, pp. 1–14, 2021.

[10] F. Dalton, M. Ribeiro, G. Pinto, L. Fernandes, R. Gheyi, and B. Fonseca,
“Is exceptional behavior testing an exception? an empirical assessment
using java automated tests,” in Proceedings of the 24th International
Conference on Evaluation and Assessment in Software Engineering,
ser. EASE ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 170–179.

[11] G. Meszaros, xUnit test patterns: Refactoring test code. Boston, USA:
Pearson Education, 2007.

[12] V. Garousi and B. Küçük, “Smells in software test code: A survey of
knowledge in industry and academia,” Journal of Systems and Software,
vol. 138, pp. 52–81, 2018.

[13] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and
F. Palomba, “On the distribution of test smells in open source android
applications: An exploratory study,” in 29th Annual International Con-
ference on Computer Science and Software Engineering, ser. CASCON.
USA: IBM Corp, 2019, pp. 193–202.

[14] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J.
Hellendoorn, “Test smells 20 years later: detectability, validity, and
reliability,” Empirical Software Engineering, vol. 27, no. 7, p. 170, 2022.

[15] E. Soares, M. Terceiro, N. Oliveira, M. Ribeiro, R. Gheyi, E. Souza,
I. Machado, A. Santos, B. Fonseca, and R. Bonifácio, “Manual
Tests Do Smell! Cataloging and Identifying Natural Language

Test Smell - Replication Package,” 7 2023. [Online]. Available:
http://doi.org/10.6084/m9.figshare.22652620.v2

[16] C. Ltd., “Ubuntu operational system,” https://ubuntu.com/download,
[Accessed 02-May-2023].

[17] K. Sparck Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of documentation, vol. 28, no. 1, pp.
11–21, 1972.

[18] J. E. Bartlett II, J. W. Kotrlik, and C. C. Higgins, “Organizational
research: Determining appropriate sample size in survey research,”
Information technology, learning, and performance journal, vol. 19,
no. 1, pp. 43–50, 2001.

[19] M. Honnibal and I. Montani. spacy – industrial-strength natural
language processing in python. [Online]. Available: https://spacy.io/

[20] J. H. Saltzer, “The origin of the “mit license”,” IEEE Annals of the
History of Computing, vol. 42, no. 4, pp. 94–98, 2020.

[21] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn Treebank,” Computational
Linguistics, vol. 19, no. 2, pp. 313–330, 1993. [Online]. Available:
https://aclanthology.org/J93-2004

[22] J. Nivre, M.-C. de Marneffe, F. Ginter, Y. Goldberg, J. Hajič, C. D.
Manning, R. McDonald, S. Petrov, S. Pyysalo, N. Silveira, R. Tsarfaty,
and D. Zeman, “Universal Dependencies v1: A multilingual treebank
collection,” in Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16), May 2016, pp. 1659–
1666.

[23] M. Honnibal and I. Montani, “spacy 2: Natural language understanding
with bloom embeddings, convolutional neural networks and incremental
parsing,” To appear, vol. 7, no. 1, pp. 411–420, 2017.

[24] C. J. Van Rijsbergen, “Foundation of evaluation,” Journal of documen-
tation, vol. 30, no. 4, pp. 365–373, 1974.

[25] D. M. Powers, “Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation,” arXiv preprint
arXiv:2010.16061, 2020.

[26] E. Soares, M. Ribeiro, G. Amaral, R. Gheyi, L. Fernandes, A. Garcia,
B. Fonseca, and A. Santos, “Refactoring test smells: A perspective from
open-source developers,” in Proceedings of the 5th Brazilian Symposium
on Systematic and Automated Software Testing, ser. SAST 20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 50–59.

[27] E. Soares, M. Ribeiro, R. Gheyi, G. Amaral, and A. Santos, “Refactoring
test smells with JUnit 5: Why should developers keep up-to-date?” IEEE
Transactions on Software Engineering, vol. 49, no. 3, pp. 1152–1170,
2023.

[28] K. Rajkovic and E. P. Enoiu, “Nalabs: Detecting bad smells in natural
language requirements and test specifications,” Mälardalen Real-Time
Research Centre, Mälardalen University, Tech. Rep., February 2022.
[Online]. Available: http://www.es.mdu.se/publications/6382-

[29] H. Femmer, D. Méndez Fernández, S. Wagner, and S. Eder, “Rapid
quality assurance with requirements smells,” Journal of Systems and
Software, vol. 123, pp. 190–213, 2017.

[30] H. Femmer, D. M. Fernández, E. Juergens, M. Klose, I. Zimmer, and
J. Zimmer, “Rapid requirements checks with requirements smells: Two
case studies,” in Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, ser. RCoSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, pp. 10–19.

[31] W. Aljedaani, A. Peruma, A. Aljohani, M. Alotaibi, M. W. Mkaouer,
A. Ouni, C. D. Newman, A. Ghallab, and S. Ludi, “Test smell detection
tools: A systematic mapping study,” in Evaluation and Assessment in
Software Engineering, ser. EASE 2021. Association for Computing
Machinery, 2021, pp. 170–180.

http://doi.org/10.6084/m9.figshare.22652620.v2
https://ubuntu.com/download
https://spacy.io/
https://aclanthology.org/J93-2004
http://www.es.mdu.se/publications/6382-

	Introduction
	Exploratory Study: Towards a Catalog of Natural Language Test Smells
	Planning
	Results
	Discussion
	Threats to Validity

	A Catalog of Natural Language Test Smells
	Ambiguous Test
	Conditional Test
	Eager Action
	Misplaced Action
	Misplaced Precondition
	Misplaced Verification
	Tacit Knowledge
	Unverified Action

	Catalog Evaluation
	Planning
	Results
	Discussion
	Threats to Validity

	A tool to detect smells in manual tests
	Tool Evaluation
	Planning
	Results
	Discussion
	Threats to Validity

	Related Work
	Concluding Remarks and Future Work
	References

