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Abstract—Many scientific applications have linear systems
A · x = b which need to be solved for different vectors b.
LU decomposition, which is a variant of Gaussian Elimination,
is an efficient technique to solve a linear system. The main
idea of the LU decomposition is to factorize A into an upper
(U) triangular and a lower (L) triangular matrix such that
A = LU . This paper presents an OpenMP task parallel approach
for the LU factorization of dense matrices. The tasking model
is based on the individual computational tasks which occur
during the block-wise LU factorization. We describe the right-
looking variant of the LU decomposition algorithm in the task
parallel approach, and provide an efficient implementation of the
algorithm for shared memory machines. We demonstrate that
with the task scheduling features provided by OpenMP 4.0, the
right-looking LU decomposition can scale well. We then conduct
an experimental evaluation of the task parallel implementation in
comparison with the parallel-for implementation of the Gaussian
elimination with pivoting and LU decomposition using the GNU
Scientific Library on a multicore platform. From the experiments
we conclude that the proposed task-based implementation is a
good solution for solving large systems of linear equations using
LU decomposition.

Index Terms—High performance computing, multithreading,
parallel algorithms.

I. INTRODUCTION

Finding the solutions of linear systems is an important
methodology that is used by many scientific disciplines rang-
ing from density functional theory [11], quantum transport
[14], dynamical mean field theory [16], and uncertainty quan-
tification [2], for example. There are many methods for solving
a linear system with direct or iterative methods. In this paper,
we study the task-based parallelization based on a direct
method for solving a linear system. We focus on the block
LU decomposition method as a kernel which can be used to
solve a plethora of scientific problems.

Task parallelism exploits the uncoupled nature of individual
computational tasks and executes these tasks in parallel. As it
is shown in Fig. 1, tasks are generated by a single master
thread and executed by different threads in parallel. This type
of parallelism is referred to as unstructured parallelism, since
the tasks are uncorrelated amongst them and the temporal
order of execution is not important. It exposes us to multiple
program multiple data paradigm with each task containing
both work and data. As a result, care needs to be taken
with respect to its use and implementation to avoid problems

Fig. 1. Master thread creates a team of parallel worker threads; the tasks are
executed in parallel by the worker threads; at the end of the parallel region,
the tasks are merged.

with memory locality. For many scientific computations it is
more natural to express parallelism in terms of independent
loop iterations. Tasks were introduced to OpenMP in version
3.0, but there are relatively few reports of their use, and few
existing benchmarks are from technical codes.

Efficient usage of task-based parallelism can reduce the idle
time and aid in balancing the cores due to the use of dynamic
scheduling of the computational work. Dynamic scheduling
assigns work to the cores on the basis of the availability of
data for computation. This scheduling technique results in a
directed acyclic graph (DAG) and allows the cores to explore
the graph in many ways without blocking execution or letting
it idle.

A literature survey shows that many researchers have stud-
ied different parallelization schemes of LU decomposition
method on a variety of high performance computer systems
and multicore systems (i.e. dual/quad cores) using standard
interfaces such as MPI, or parallel extension of language
C/C++ such as OpenMP [6], [19]. Tan [17] shows the block
LU decomposition adaptive to a domain specific embed-
ded language. Kim et al. [13] presents a block Incomplete
Cholesky factorization that uses task-based parallelism. Booth
et al. [3] have presented a threaded version of a sparse LU
decomposition algorithm that takes advantage of both data and
task-based parallelism.

Further, experimental results of the LU decomposition on
cluster and grid computing environments using the MPI library978-1-5090-3858-9/16/$31.00 c©2016 IEEE



are presented in [1] and [5] respectively. There also exist im-
plementations on multicore system for factorization algorithms
for solving systems of equations (LU, QR and Cholesky) [4],
[9], [15], respectively.

Some efforts of using OpenMP tasks in the implementation
of LU decomposition exist. In [10], the authors showed the
performance of a block LU decomposition in the context of
extending the OpenUH compiler runtime to support flexible
task synchronization with the presence of task dependencies.
To test the efficiency of the OpenMP implementation of tasks,
a benchmark suite KASTORS is introduced [18]. KASTORS
allows the comparison of algorithms that are implemented
using task dependence versus taskwait.

In this work, we develop a task-based C++ implementa-
tion of the right-looking LU algorithm for shared-memory
machines. The parallelization makes use of the task scheduling
features provided by OpenMP 4.0. We demonstrate the per-
formance of our implementation on a number of test matrices
and compare it to two reference implementations: i) LU
decomposition in the GNU Scientific Library (GSL) and ii) LU
decomposition using the OpenMP parallel for clause.

II. LU FACTORIZATION

Although there are many different schemes to factorize
matrices, LU decomposition is one of the more commonly-
used algorithms. Firstly, we describe the known LU method for
solving a system of linear equations. Consider the following
real linear algebraic system A · x = b, where A is a non-
singular matrix, b is the right-hand side and x is the vector of
the unknowns. A may be decomposed into a lower triangular
part L and an upper triangular part U that will lead us to a
direct procedure for the solution of the original system. This
decomposition procedure is especially useful when more than
one right-hand side (more than one b) is to be used. The LU
decomposition method uses the same number of multiply and
add operations as the Gauss-Jordan method. However the LU
decomposition method is much easier to parallelize because it
can be implemented using a recursive block method.

The algorithm is relatively straightforward. First, we deter-
mine the upper and lower triangular parts:

A = L · U. (1)

Then
A · x = (L · U) · x = L · (U · x) = L · y (2)

where y = U · x. Then L · y = b can be solved with forward
substitution and U ·x = y can be solved using backward sub-
stitution. Algorithm 1 is the well known Crout method which
makes LU factorization a byproduct of Gaussian elimination.
Factoring A into LU requires approximately 2

3n
3 floating point

operations (FLOPS) and doing the forward and backward
solves requires n2 FLOPS. Thus the algorithm involves a
total of 2

3n
3 + n2 FLOPS. This algorithm is the basis for

the naive OpenMP parallel for implementation given in
Algorithm 2.

Algorithm 1 Serial Crout LU
for k < n do

2: for i = k + 1; i < n do
Ai,k = Ai,k / Ak,k

4: end for
for j = k; j < n do

6: for i = k + 1; i < n do
Ai,j = Ai,j −Ai,k ·Ak,j

8: end for
end for

10: end for

Algorithm 2 Parallel Crout LU
for k < n do

2: for i = k + 1; i < n do
Ai,k = Ai,k / Ak,k

4: end for
#pragma omp parallel for

6: for j = k; j < n do
for i = k + 1; i < n do

8: Ai,j = Ai,j −Ai,k ∗Ak,j

end for
10: end for

end for

A. Block LU algorithm

As mentioned before, the LU decomposition equates the
product of L · U to A. There are three variants of the block
LU algorithm: the left-looking, right-looking and the block
based Crout algorithm. Two of the most widely used imple-
mentations are the left-looking and right-looking factorization
algorithms. Consider the following illustration of a 3 × 3 block
matrix,A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

L11

L21 L22

L31 L32 L33

·
U11 U12 U13

U22 U23

U33


(3)

Using the left-looking algorithm, we already know the values
for L11, L21 and L31 and we would like to solve for the next
block column of some width NB in L and U . Equating the
second column of L and U with that of A we obtain the
following system of equations,

A12 = L11 · U12, (4)

(
A22

A32

)
=

(
L21

L31

)
· U12 +

(
L22

L32

)
· U22

Algorithm 3 computes an LU factorization using a parti-
tioned outer product implementation.



Algorithm 3 Block LU
Factor A11 = L11 · U11

2: Solve L11 · U12 = A12 for U12

Solve L21 · U11 = A21 for L21

4: Form S = A22 − L21 · U12

Repeat 1-4 on S

If we substitute L21 and U12 from step 3 into step 4, we
obtain the Schur complement of A11. In the right-looking
variant, partial pivoting is equivalent to an update operation.
This is a particular feature of the right-looking algorithm due
to the fact that the elements of the current column are swapped
and then the swaps are also performed on columns to the right
of the current column. There are a lot of differences between
the left and the right-looking algorithms, each having their
own strengths and weaknesses. The key difference is the way
the data are accessed from the factorized part of matrix and
applied to the part of matrix that is not factorized. Therefore
the left-looking and right-looking algorithms exhibit different
memory access and data communication patterns. As a result,
their performance can be quite different on shared-memory
and distributed-memory parallel machines.

The left-looking algorithm could be regarded better in terms
of performance for data access than the right-looking variant.
Referring to equations 3 and 4, we observe that the data access
only occurs to the left of the block column which is being
updated. However, the storage layout of the matrix in memory
and how the data is distributed may lead to different choices
for one or the other. Our block based implementation is that
of the right-looking kernel.

The Crout block algorithm is a hybrid approach in which
a block row and column is computed at each step using the
previously computed rows and columns. When solving for the
U12 block matrix, we need to use the lower triangular matrix
L11. As a result, there is a matrix-matrix multiplication that
is then used to compute the term involving U12 in the second
equation, which is then subtracted from the left hand side. An
unblocked variant of the LU decomposition is then applied to
the rectangular column of width NB to compute the remaining
block matrices L22, L32 and U22, along with the pivot entries.

III. TASK-BASED IMPLEMENTATION

In this section, we present an OpenMP task-based imple-
mentation of the block LU method using the tasking clause
structure. The right-looking LU decomposition has complex
data dependencies. Naive parallelization strategies based on
multicore BLAS or parallel for loops cannot achieve
efficient scalability on multicore shared memory clusters [12].
An efficient scalable implementation of the right-looking LU
decomposition requires a meticulous code structure of the
computation in terms of individual tasks to carry out the
computational work load.

In addition, the independent tasks also need to properly
resolve any task dependencies and granularity. We demonstrate
how the right-looking block algorithm can be parallelized on
shared memory machines using OpenMP. The computational

tasks and task dependencies are easily described, thanks to the
tasking feature in OpenMP 4.0. We do a two way comparison
with respect to Algorithm 4. One of the modes of comparisons
is using the LU decomposition from GSL. GSL offers a
variety of computing routines. The algorithm for the LU
decomposition in GSL is based on Gaussian Elimination with
partial pivoting.

A. Implementation

When using multicore CPUs, the aforementioned LU fac-
torization algorithm imposes a severe bottleneck, due to the
fact that all updates need to wait for the current panel to have
been computed. In addition, parallelization methods within the
panel computation are very limited, which lead to inefficient
performance on multicore systems. To resolve this issue, we
further split the panel into square sub-matrices or otherwise
known as tiles. When the tiled computations in the panel
are computed, we can then begin the update operations for
blocks in the trailing sub-matrix, which takes away the syn-
chronization problem. For the dense LU factorization, the tile
computation or the update of a block via matrix multiplication,
creates a single task with data dependencies.

Algorithm 4 Task Based Block LU Decomposition
#pragma omp parallel

2: #pragma omp master
for step ∈ numberOfBlocks do

4: LUPivot()
#pragma omp taskwait

6: LUPermutations()
#pragma omp taskgroup {

8: for j ∈ steps do
#pragma omp task depend(out: shadedMatrix)

10: LUSolve
end for

12: for k ∈ steps do
for l ∈ steps do

14: #pragma omp task depend(in: shadedMatrix)
LUmatrixMult

16: end for
end for}

18: end for

The latest feature of OpenMP 4.0 augments tasks with
tasking clauses and task dependencies by using the depend
clause. Our task-based algorithm for the block LU, as shown
in Algorithm ??, exploits the new features. In the simplest
sense, the depend keyword employs a list of input and
output dependencies for each task, which is essentially a list
of variables or memory addresses. This makes way for the
given task to read its input data or write its output data. The
depend keyword basically specifies the access mode for each
shared variable of a certain task.

The access modes correspond to in (read data), out (write
data) and inout(read and write data). Before beginning the
execution of a particular task, it is required by the OpenMP



tasking queue that all previously submitted dependencies be
completed. Enforcing this rule allows the application to dy-
namically set implicit barriers to related tasks without taking
a performance hit for the execution of the rest of the tasks.

Task dependencies have several benefits associated with
them. The primary advantage is that task dependencies have
decentralized synchronization operations that scale better than
the taskwait approach. Using the taskwait approach, it
can slow down the performance of the application because
the taskwait keyword waits for all of the tasks to be
completed in the particular section. In essence, the taskwait
keyword is more conservative syncing than that of just using
the task dependency clause. Another benefit of using the task
dependencies is that of a potential optimization during runtime,
which includes better data storage for NUMA systems.

Algorithm 4 shows the task and task dependencies in
steps 9-14. For example, the task that has been augmented
with depend (out: shadedMat) means that once that
task has executed the LU solve block operation, any task
that is decorated with the dependency clause depend (in:
shadedMat) can be executed. In the case when multiple
dependency clauses are present, the task can only be ex-
ecuted after all tasks in the dependency list are complete.
The taskwait acts similar to a barrier but for tasks. The
taskwait keyword ensures that the current execution will
pause until all tasks have been executed. It can be thought of as
a scheduling point, where threads process tasks. The master
construct is needed so that tasks will be created by a single
thread only. If we do not employ the master construct, each
task would get created omp_num_threads times, which
would be incorrect. If we do not explicitly implement the task
scheduling points that are present inside the code region, there
is a chance that the OpenMP runtime might start the execution
of the tasks at its own discretion.

IV. COMPUTATIONAL RESULTS

A. System Platform and Computational Process

For our experimental evaluation we used a dual-socket Intel
Xeon CPU E5-2680 v2 (20 total cores) with 2.80 GHz clock
speed and 64 GB of memory. The system ran GNU/Linux,
kernel version 2.6, for the x86 64 ISA. All programs were
implemented in C++ using OpenMP and were compiled using
GCC, version 6.1.0, with the −O3 optimization flag. Several
sets of randomly generated matrices in double precision with
sizes ranging from 1024 x 1024 to 16384 x 16384 were used
to evaluate the performance of the parallel algorithms . To
compare the parallel algorithms, the practical execution time
(in seconds) was used as a measure. Practical execution time
is the total time in seconds an algorithm needs to complete
the computation, and it was measured using the function of
the C++ Chronos Library.

B. Analysis Based on Computational Results

In the serial case, we notice in Tables I and II that the
GSL library is slower in all aspects than that of the task-based
and for-loop based implementations for large matrix systems.

However, for small to medium sized systems, Table I shows
that the execution time is similar between all three imple-
mentations. The performances given in Table II, in terms of
giga floating point operations per second (GFLOP/s), between
the three implementations vary. That is due to the fact that
three implementations are in fact three different algorithms.
If the algorithms were identical then the FLOP/s would have
been similar. For the largest matrix tested, 16384 x 16384, we
notice that with a single thread, the total execution time taken
by the task-based approach is 10% less than the OMP-For
implementation, and 34% less than the GSL implementation.
In terms of FLOP/s, the GSL implementation is approximately
30% less than that of the block LU approach used in the
task-based implementation. The conclusion drawn from the
experiments on the single thread is that the block based matrix
LU decomposition is more effective on larger systems than
those that do not take advantage of such properties.

The experiments that are run on multiple threads paint
a different picture. What we notice is that for smaller to
mid-sized systems, 1024 x 1024 to 1936 x 1936, the OMP-
For based implementation tends to get better performance in
terms of FLOP/s as depicted in Figures 3 and 5. The better
performance is seen as the number of threads is increased
compared to the OMP-Task based algorithm. We can also see
OMP-For’s better performance in terms of the execution time
in Figures 2 and 4.

On the contrary, for the medium to large-sized systems, the
task-based implementation outperforms the OMP-For imple-
mentation. With 16 threads the execution time for the task-
based approach with a 4096 x 4096 matrix is approximately
half of the OMP-For implementation, as shown in Figures
6, while for the large matrix of size 16384 x 16384, the
task-based implementation is four times faster than that of
the OMP-For counterpart, shown in Fig. 8. The scalability of
the task based algorithm for the medium sized 4096 x 4096
system has more desirable results. Figure 7 shows that with 16
threads, the task-based approach is three times more scalable
than the naive OMP-For implementation. Figure 9 shows that
we achieve seven times more scalability than the parallel
for loop implementation with the 16384 x 16384 matrix.

We notice that the parallel for loop implementation
loses its linearity in scaling as shown in Figure 9. We hypoth-
esize the possibilities as to why this may be happening. The
data initialization is being done in such a way that the data
is not being distributed evenly among the NUMA domains.
Since we are loading the matrix in a serial manner, all of
the memory that is being allocated is residing on a single
NUMA node. If this is the case, the naive implementation
will not benefit from the full memory bandwidth available
on our system. If we enable memory interweaving within
NUMA policy so that we can have the memory allocation
spread across both NUMA nodes, the scaling behavior may
improve. The option of enabling the memory interweaving
would allow each thread with 50% local memory access and
50% remote memory access instead of having all threads on
a single CPU being hit by 100% remote memory access. Our



TABLE I
COMPARISON OF OMP-TASK, OMP-FOR AND GSL LU DECOMPOSITION
ON A SINGLE THREAD. VALUES REPRESENT TOTAL TIME OF EXECUTION
FOR EACH ALGORITHM IN SECONDS. AS WE CAN SEE, THAT THE BLOCK

DECOMPOSITION IS EFFECTIVE FOR LARGER NUMBER OF ELEMENTS.

OMP-Task OMP-For GSL
1024 x 1024 0.2688 0.2635 0.3078
1936 x 1936 2.03 1.75 2.18
4096 x 4096 18.07 17.97 25.68
16384 x 16384 1056.85 1147.34 1596.62

TABLE II
COMPARISON OF OMP-TASK, OMP-FOR AND GSL LU DECOMPOSITION

ON A SINGLE THREAD. VALUES REPRESENT TOTAL NUMBER OF
GIGA-FLOATING POINT OPERATIONS PER SECOND FOR EACH ALGORITHM.

AS WE CAN SEE THAT THE BLOCK DECOMPOSITION IS EFFECTIVE FOR
LARGER NUMBER OF ELEMENTS.

OMP-Task OMP-For GSL
1024 x 1024 2.643 2.68 2.327
1936 x 1936 2.394 2.74 2.178
4096 x 4096 2.541 2.445 1.693
16384 x 16384 2.788 2.568 1.845

second hypothesis is that the tapering off of the performance
of the naive implementation may be due to the use of the
static scheduler with a large number of threads. There is an
inevitable unbalance between the slowest and fastest threads,
which could introduce large variations during the runtime
when the iterations are divided in large chunks. However, we
have not tested these hypotheses yet, and further investigations
are needed to understand the loss of scalability beyond 4
threads in the OMP-For implementation.

For the case of poor performance of the task-based imple-
mentation with small matrices, we attribute it to the cost of the
task generation. There have been methods proposed to limit
the overheads in task generation when some degree of cutoff
threshold is signaled [8]. One of the proposed cutoff method,
max-level, is based on the depth level of the recursion for
divide-and-conquer based programs. Another is based on the
number of tasks in the system, specified as some factor k
times the number of parallel execution threads. The study in
[8] claims that the culprit for poor tasking performance is when
no cutoff is specified. There are different cutoff strategies that
are best suited for different applications and it is worthwhile
to explore this avenue as they may decrease task overhead and
increase application performance. For example, Adaptive Task
Cutoff (ATC) is a strategy which dynamically selects the cutoff
at runtime based on profiling data that is sampled early in the
program’s execution [7]. These strategies are not investigated
in this study. However, when we reach larger sized systems,
the task based approach clearly outperforms the other two
implementations, diminishing the issue of the task generation
overhead for large matrix systems.

V. CONCLUSIONS

On multicore systems a formulation of the block-wise LU
factorization based on individual tasks and the dependencies
between them is introduced. The design of such an algorithm
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Fig. 2. Comparison of the execution time of the LU decomposition of a 1024
x 1024 matrix with different numbers of threads for the task-based (OMP-
Task) and omp parallel for (OMP-For) implementations.
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Fig. 3. Scalability of the OMP-Task and OMP-For implementations for a
1024 x 1024 matrix.

leads to an almost optimal scaling behavior for different matri-
ces. We showed via numerical experiments that the modified
LU factorization algorithm yields a higher parallel speedup
compared to a naive parallel-for implementation and the GSL
LU decomposition. Furthermore, the principal technique of
task-based parallelism is applicable to various other matrix
algorithms. This forms a foundation for matrix implemen-
tations on future architectures with multicore or many-core
processors. The study needs to be extended to study the
modified block task-based algorithm of the LU factorization
on distributed memory machines.

There are still many things to improve. One is to improve
the experimental study of the task based implementation
and the two reference implementations for large numbers
of cores, across the nodes. Future work will also study the
performances of the task-based implementation with different
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Fig. 4. Comparison of the execution time of the LU decomposition of a 1936
x 1936 matrix with different numbers of threads for the task-based (OMP-
Task) and omp parallel for (OMP-For) implementations.
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Fig. 5. Scalability of the OMP-Task and OMP-For implementations for a
1936 x 1936 matrix.

compilers. Ultimately, programming scalable algorithms for
future architectures requires important design decisions for the
multi-core systems. Such design decisions have to take into
account task scheduling, load balancing and minimizing task
overhead costs.
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