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Abstract—Information Security Risk Assessment can be viewed
as part of requirements engineering because it is used to
translate security goals into security requirements, where security
requirements are the desired system properties that mitigate
threats to security goals.

To improve the defensibility of these mitigations, several
researchers have attempted to base risk assessment on argumen-
tation structures. However, none of these approaches have so far
been scalable or usable in real-world risk assessments.

In this paper, we present the results from our search for a
scalable argumentation-based information security RA method.
We start from previous work on both formal argumentation
frameworks and informal argument structuring and try to find a
promising middle ground. An initial prototype using spreadsheets
is validated and iteratively improved via several Case Studies.
Challenges such as scalability, quantify-ability, ease of use, and
relation to existing work in parallel fields are discussed. Finally,
we explore the scope and applicability of our approach with
regard to various classes of Information Systems while also
drawing more general conclusions on the role of argumentation
in security.

I. INTRODUCTION

Information security Risk Assessments (RA) are brainstorm-
ing sessions during which a group of experts look at an
infrastructure and try to find and rank vulnerabilities of the
system, while proposing countermeasures that could mitigate
the most dangerous of these so as to achieve an acceptable level
of risk. We view these countermeasures as security requirements
of the target system. As such, the process leading up to them
can be framed as Security Requirements Engineering.

Risk is commonly evaluated as a product of the likelihood
and the impact of an undesirable event (such as an attack).
Often though, these cannot be estimated quantitatively, for
example because the event is very rare. Some researchers have
proposed an alternative approach to RA: producing informal but
structured arguments that do not require quantification but still
allow the identification of important risks while also capturing
the rationale behind mitigation decisions. Such justifications
can serve the purpose of prioritizing countermeasures and
providing traceability for security requirements and the resultant
investments. Furthermore, they can serve as a basis for future
assessments.

Security checklists, traditionally used to support Risk Assess-
ments, embody experience from the past, and are good at both
detecting and mitigating known risks in an effective manner.
However, problems arise when these are used for assessing
new or changing architectures or for predicting novel risks. For
example, the growing complexity of networked applications
and critical infrastructures often makes checklists less useful.

A. Goal

We aim to replace or extend such checklists by a more
formal argumentation-based tool to support such brainstorming
sessions while providing better trace-ability of the decisions
made and allowing (semi-)automated reasoning. A first step
in this direction was the research conducted with Prakken [1].
This turned out to require too much bookkeeping overhead for
common application scenarios.

Thus, this paper aims to provide argumentation support for
Risk Assessment that is both scalable and usable in practice in
the sense that it does not make unrealistic assumptions about
quantification and does not employ complex argumentation
structures. Furthermore, such argumentation support must be
adaptive to changes in the architecture or to new vulnerabilities.

II. RELATED WORK

The research described in this paper was conducted in
the context of the TREsPASS[2] Information Security project
whose goal is to develop a RA methodology which can cope
with the fact that most numbers are not available or inaccurate.

A. Informal Argument Structures in Security

The starting point for most work on argumentation is
Toulmin’s argument structure [3], the rhetorical applications
of which were later highlighted in [4].

Although this was inspired by legal arguments, its flexibility
meant that it was also applicable to other fields, including
Information Security. Most notably, Haley et al. [5] were
one of the first to use Toulmin’s argument structure for
showing that security requirements satisfy security goals. They
also described a process for eliciting such requirements by
supporting formal proofs with informal arguments [6], later
integrated into a framework for representing and analysing



Security Requirements [7]. However, so far the technique
is unable to deal with some practical constraints, such as
incomplete information, uncertainty and limited resources
available for risk assessment and mitigation.

A second iteration of Haley’s approach, focused on the
elicitation of such requirements via a risk assessment, was
proposed by Franqueira et al [8]. It made use of public
catalogues in order to support the identification of rebuttals
and mitigations. It also introduced defeasibility relationships
between the arguments. However, this method was only
validated on a small scale example and, due to its intrinsic
complexity, we expect scalability to be a problem if an attempt
were made to apply it to full-fledged Information Systems.

Later, a tool called OpenArgue[9] was developed to support
the process, which attempted to display graphical represen-
tations of both the internal and external argument structures.
However, using this tool requires writing pseudo-code that
describes the argument. This imposes significant overhead
for the risk assessors and implies knowledge of the syntax.
Furthermore, the visual representations quickly explode in size
when realistic sets of arguments are loaded, making them only
slightly more understandable than the textual version.

B. Formal Argumentation Frameworks

Recently, attempts have been made to use logical formalisms
in the external structure of the arguments in order to better
describe the relationships between them and to allow various
formal analyses and reasoning. One of the most prominent
attempts is the ASPIC Argumentation Framework[10].

Based on this generic framework, together with Prakken [1],
we devised an argumentation approach tailored for Risk Assess-
ment. It replaces Toulmin arguments with ASPIC arguments in
an attempt to formalize the process as an argumentation game
in which assessors exchange arguments about how the system
can be attacked and which countermeasures are feasible. The
game is dynamic, as the defenders can add or remove elements
from the target architecture as the game progresses. While
this approach achieved good traceability, due to its high level
of formalism it is very hard to use: all arguments have to be
defined with regard to a knowledge-base using a strict syntax.
While the concept of an argumentation game seems promising,
the high overhead added by the formal logic framework poses
significant threats to both the scalability and usability of the
approach.

III. APPROACH

A. Starting Point

Our current proposal, similar to Prakken’s [1] is centred
around an argumentation game. We stripped down most of
the logical formalism that was part of the ASPIC framework,
while keeping only the basic inter-argument structure and
elements of the work-flow. The overall structure is still that
of an argumentation game, but without a pre-defined set of
explicit inference rules or ranking. We rather let these emerge
during the game.

Arguments are defined with regard to a (simplified) Toulmin
structure. In this sense, we are attempting to find a middle
ground between the Prakken et al. [1] approach and the
Toulmin-based approaches ([7], [8], [9]).

A major distinction from previous approaches is the use
of a simple tabular format as both input and storage of
arguments where these are entered from top to bottom as
they are introduced along the game (see Table I).

However, unlike Prakken[1], we do not differentiate between
different types of counter arguments and assume the inference
between fact plus assumptions and the claim to be implied.

Compared to OpenArgue, the main difference lies in the
introduction of a semi-formal defeasibility relationship between
arguments that allows semi-automated reasoning as well as
the computing of several types of reports or summaries.
Furthermore, we introduce a way by which components can
be referenced so that potentially conflicting arguments can be
highlighted.

B. Resulting Method

The assessors alternate between playing “defenders” and
“attackers". Each “team" then takes turns formulating arguments
either for or against the security of the system. In Table I,
each row represents such a turn and describes one argument,
starting with the attackers. Attacker arguments—marked by an
A in the first column—describe Risks (in terms of possible
attacks or vulnerabilities), while defender arguments describe
ways to mitigate such Risks (by introducing countermeasures,
transferring or accepting them).

There is both an internal and an external argument structure:
• Internally, each argument consists of three parts: a claim,

one or more assumptions and one or more facts. Each part
is given a unique ID. The facts are either physical facts, or
known technical specifications of the target infrastructure.
Assumptions are important parts of the argument that
the assessors are not certain of. The claim is the core
conclusion of the argument.

• Externally, there exist defeasibility relationships between
arguments. That is, each argument can rebut (i.e. attack)
one or more previous arguments by invalidating the claim
itself or one of its assumptions. However, facts cannot be
invalidated.

The two structures described above allow that each argument
directly rebuts a part of any previous argument. The Rebuts
column in Table I points to the ID of the part being rebutted. To
represent the resulting states, we adopt part of Dung’s abstract
argumentation framework [11], in which each argument can at
any moment in time be in one of two states: IN or OUT. Once
an argument is successfully rebutted (that is, the opposing
team proposes a valid counterargument), it becomes OUT, with
the counterargument being IN. This can continue recursively,
applying the following rules:

• An argument is IN if all its counterarguments are OUT.
IN arguments have not been successfully defeated in the
argument so far.



TABLE I
SNAPSHOT OF AN ARGUMENT GAME FOR CASE STUDY 1: HOME PAYMENTS SYSTEM

Player Claim Assumptions Facts Rebuts Status Flags
A/D ID STRING ID STRING ID STRING ID IN/OUT T/R

A C0
Listen in to Bluetooth:
gather authentication or

user data
A0 Bluetooth signal can be

received outside F0 Range of Bluetooth is
10m OUT

D C1 Authentication data is
encrypted A1 AES encryption is good

enough F1 Bluetooth with 2.1 (AES)
encryption C0 IN R

A C2 User socially engineered
to wire money A2 Attacker can gain user’s

trust; F2 – OUT

D C3 Social Engineering is
user risk A3 – F3

End-user agreement
transferring liability for

SocEng attacks
C2 IN T

A C4
User credentials can be

stolen by peeking
through the window

A4
Apartment located on

bottom floor(s); Curtains
open

F4 – IN

• An argument is OUT if it has a counterargument that is
IN. OUT argument have been successfully defeated in the
argument so far.

To test out the effectiveness and applicability of these ideas
in case studies, we implemented the method as a spreadsheet
containing underlying formulas for recursively determining the
argument state, which is represented using colours (red for
OUT, green for IN).

We initially assumed the following loose mapping from
argument states to Risk states:

• Attacker arguments that are IN at the end of the game
are accepted (retained) Risks (e.g. last row in Table I)

• Attacker arguments that are OUT at the end of the game
are Reduced, totally eliminated (e.g. first two rows in
Table I), or transferred (e.g. middle rows in Table I)

A secondary functionality is relating arguments to system
architecture. The risk assessors start by drawing an architecture
diagram of the Target of Assessment (and optionally its
context), and enter a list of architecture components (nodes
or connectors in the diagram) in the spreadsheet. Arguments
are then automatically tagged with the labels of architecture
components that they refer to as they are typed. This makes it
easier for the assessors to identify potential conflicts in their
statements as they are making them. Such a conflict occurs
when a fact or statement is in contradiction with a previous fact
or statement or if it is impossible to realize due to a previous
statement about the same component. This labelling also helps
avoid inconsistent views about the system among the assessors.

As stated above, facts cannot be invalidated, so it is important
they are mutually consistent. Some facts may be properties
of the Target of Assessment postulated by the defenders of
the system. This means that we assume it is in the power of
the defender to make decisions about the ToA architecture,
and that these decisions will be implemented. For the system
developers these facts are hence requirements.

IV. RESEARCH METHOD

Based on previous work, including a survey of common Risk
Assessment methods, tools and frameworks [12], we tried to
identify possible limitations or current approaches and scope
for improvement.

To advance the state of the art, the approach was iteratively
validated and improved via Technical Action Research and
two Case Studies. This has resulted in four versions of the
approach, each supported by spreadsheets:

1) Reduce complexity of ASPIC-based approach of Prakken
et al[1] ⇒ 1st version

2) Improve the method after a Case study on Home
Payments System with students ⇒ 2nd version

3) Improve the method after a Risk Assessment of the Home
Payments System with experts ⇒ 3rd version

4) Improve the method after a Case Study on Cloud-based
Infrastructures ⇒ 4th and latest version; it is this version
that is described above.

The Case Studies are described in Sections V and VI.

V. CASE STUDY 1,2: THE HOME PAYMENTS SYSTEM

A. Case Description

This case study is centred on customer privacy protection
and is owned by one of the project partners. The system
consists of set-top boxes located in customer’s homes, some
centralized servers and personalized NFC-active bank cards.
The set-top boxes are connected to the TV and allow the user to
perform various financial operations (including but not limited
to online banking, allocation of funds, payment of bills and
online shopping) from the comfort of their home, by using
the card as a means of authentication. A basic architecture
diagram is shown in Figure 1.

This case study is intentionally under-specified for two
reasons: (1) the system, developed by Consult Hyperion, is
still at the prototype stage; and (2) this allows for more
freedom with regard to the design decisions that can be taken



Fig. 1. Home Payments System

during the assessment. Thus, we are also looking to test if the
approach might be used during product design phases, where
Security Requirements elicitation is more crucial than after
implementation.

B. Case-Specific Observations

This case study was used twice: a pilot round in which the
assessors were IT Security PhD students and a second round
with senior Information Security researchers. The following
observations were made during both sessions:

Assumptions are non-exhaustive: Attacker assumptions are
usually about the system and its context, while the defenders
usually make assumptions about the attacker’s profile and
skills. A common problem with assumptions is that even
when asking the participants to make them explicit, there are
always some that remain hidden. Hidden assumptions cannot
be explicitly attacked. This can be overcome by stating an
opposing assumption as part of the counter-argument.

Reduced Risks are not the same as eliminated Risks: Attacker
arguments which are out OUT at the end of the game signify
eliminated or reduced risks (e.g. middle rows in Table I). While
for eliminated Risks, the attack is completely prevented, in
the case of reduced risks, although the impact or likelihood
have been sufficiently reduced, the attack itself might still be
possible. To represent this, defender arguments that only partly
mitigate the Risk (to an acceptable level) are flagged “R" (i.e.
reduced).

Transferred risks should be clearly marked: Transferring
Risks is a treatment option available during Risk Assessments
(usually accomplished via insurance, end-user agreements, etc.).
This means that the attack is still possible but liability for
the potential negative consequences has been transferred. To
support this, arguments that transfer the consequences of a
Risk are flagged “T" (i.e. transferred).

Separate teams are better.: Allowing participants to take
turns playing attacker and defender leads to them already
having a counter-argument in mind when stating an argument,
and thus subverts the argumentation dynamics of the game.
Separate, fixed teams do not only mitigate this, but also instil

Fig. 2. IaaS Cloud architecture

a level of competitiveness between the two teams, resulting in
better-formulated arguments.

VI. CASE STUDY 3: THE CLOUD-BASED INFRASTRUCTURE

A. Case Description

Cloud-based implementations are now commonplace, with
various service providers outsourcing their IT infrastructure
to the cloud. Such virtualized infrastructures give rise to
completely new categories of Risk, as well as new requirements
with regard to identifying and mitigating such risks. As such, in
order to explore the limits of applicability of the new method,
a Risk Assessment was conducted in collaboration with IBM
Research Zurich. As the target for assessment, a generic IaaS
infrastructure was imagined. An overview of this infrastructure
is presented in Figure 2.

The architecture consists of two infrastructure layers:
• A physical layer, owned by the Cloud Provider. This

consists of some servers, connected to each other via
an internal network, and to the Internet via an external
uplink. Each server runs a number of virtual machines
belonging to the Cloud Customers which are managed
via an interface called a Hypervisor. The entire physical
infrastructure is managed by the Cloud Administrator,
who can also access and manage the virtual machines
(e.g. resource allocation) via an SSH connection to the
Hypervisor console.

• A virtual layer, consisting of a large number of virtual
machines, networks and databases. Each Cloud Customer
owns and controls a sub-set of virtual machines. A Cus-
tomer Administrator is usually responsible for configuring
and managing these for each Cloud Customer.

B. Case-Specific Observations

This case study was conducted with junior researchers on
virtual infrastructures from IBM Zurich. The observations
listed in the first two Case studies were confirmed during
the third study. However, many new observations surfaced,
mostly specific to Cloud-based infrastructures:

The introduction of a third, virtual, layer in-between the
physical and logical domains, together with the dynamic nature



of this layer makes assessing Cloud-based infrastructure a
more complex undertaking compared to traditional Information
Systems. When you add to this the introduction of the cloud
provider as a new stakeholder and the mixed ownership of
components across these three domains, the separation between
system and context fades away and the amount of incomplete
or missing information w.r.t the infrastructure explodes.

As described in Cloud Risk Assessment documents from
ENISA [13] and the CSA [14], the fact that cloud customers
do not usually have any control of or information about the
physical infrastructure and resource allocation itself gives rise to
a new host of vulnerabilities, ranging from resource exhaustion
to collocation exploits.

Because none of the stakeholders have the ability to
directly influence the components owned or managed by the
others, countermeasures for Cloud-specific Risks are mostly
implemented via SLA clauses. These commonly have expiration
dates and even time constraints for implementation due to
contractual periods, making them significantly different to the
more technical countermeasures the technique was designed to
handle. This is because there is no clear transfer or mitigation
of the Risk. Instead, partial transfer of risk by means of such
SLA clauses is common. The way these clauses are written
and how compensation is specified determines the degree to
which Risk is transferred. The proliferation of organizational
entities with heavy reliance on SLAs dictating the relationships
between such entities also make assessments more complex,
as well as making our method less applicable.

Despite the above difficulties, we were able to complete the
Risk Assessment. However, the results looked significantly
different from those identified in the previous case study.
First of all, the attacker’s facts were almost always missing.
The same was true for the defender’s assumptions. The
attacker’s assumptions usually implied the existence of a known
vulnerability while the claims mostly referred to relationships
between Vulnerabilities and Risks that are described in [13]
and [14]. Therefore, it seems that while the method is flexible
enough to be applied to such different scenarios, it does not
offer significant added value in cases like this.

VII. VALIDITY AND SCOPE

In order to avoid problems related to participant bias,
repeated testing and maturation, completely different panels of
experts were used for each of the Risk Assessment sessions.
None of the participants had seen or heard about the method
before the session so as to further avoid selection bias. Only
observations that have been confirmed in at least two of the
three sessions are described in this paper.

Furthermore, subsequent iterations produced improved ef-
fects, with the exception of the assessment of Cloud-based
infrastructure. This leads us to believe that the effects are
indeed produced by the tool, although the tool has limited
applicability when dealing with (partially) virtualized and/or
outsourced infrastructures.

A. Applicability

During validation, and especially in the third case study,
conclusions were drawn about the limitation of the method.
The flexible argument structure and lack of Security-specific
features in theory make it applicable to a wide range of
scenarios that are based on brainstorming and require trace-
ability.

However, we have noticed that for at least some of these
cases it would not provide worthwhile utility. This is partly
due to the significant overhead of formulating each argument
according to the template. When the statements or decisions
are simply a claim based on a few assumptions or facts, there is
little added benefit in attempting to structure them. Such cases
do not benefit from describing the defensibility relationship
between various arguments because there is no back-and-fourth
rhetorical discourse or the argument’s inner workings are of
little significance to the conclusions.

Finally, the added benefit of using argumentation is mostly
visible when the architecture is known because to allow
traceability to components (further explained in Section IX).

VIII. FUTURE WORK

As the features required go beyond what is normally
achievable via spreadsheets, a dedicated software tool will most
likely offer significant increases in the usability and scalability
of the approach, while potentially adding extra functionality.

Besides improving the tool, we have identified several other
directions for improvement and further research with regard to
argumentation in Security.

We have observed that arguments, in the context of Risk
Assessment and/or Security Requirements Elicitation, take the
form of traceability links between the requirements, vulnera-
bilities, components and attacker profiles. In this respect, they
outperform the use of checklists. However, the added overhead
raises the question of what level of traceability is necessary
and sufficient and how that level can be provided without
overburdening the process. While the approach described in
this paper come closer to this desired equilibrium than ASPIC
and OpenArgue for some types of assessments, more research
is required in order to more precisely determine at what level
the method’s cost are outweighed by its benefits..

Furthermore, due to limited time, only two real-world cases
have been used for validation. To properly assess the potential
benefits and limitations of the process described in this paper,
as well as its wider applicability, more Case Studies would
need to be conducted on other cases.

Finally, we have identified a relationship between our
approach and current approaches in the field of design
rationale and group decision support systems, described in
Sections VIII-B and VIII-A respectively. Exploiting this sim-
ilarity might not only expand the applicability and scope of
the method, but could improve the tool itself by integrating
some proven elements from these, more developed fields.
Consequently, this link has to be further explored.



A. Relation to Group Decision Support Systems

In each round, only one argument is described. This means
the team has to agree on the argument being presented to
the other team before submitting it. This suggests a parallel
with group decisions support systems (otherwise known as
group decision rooms), where a software tool mitigates the
interactions between various stakeholders in order to help
achieve a consensual opinion. Such concepts could also be
applied to our approach, thus increasing its (perceived) utility
by providing the users with extra functionality.

B. Relation to Design Rationale

The Security Requirements resulting from the assessment
could be in the form of technical countermeasures, but can
also specify policies or more general design decisions w.r.t
the target system. Especially for systems under development
or prototypes, these Security Requirements together with the
claims they support are very similar to “design rationale" in
the sense that they describe and motivate the desired properties
of the system; in this case, in terms of the Risks they are
preventing.

The principles of capturing “design rationale as a by-
product" of other related decision-making tasks, described
in [15, Chapter 4.3] could be applied in order to evolve the
approach in this direction as well as providing a more consistent
method of storing the arguments.

IX. CONCLUSIONS

Most Case Study participants agreed that the method pro-
posed in this paper might be feasible, provided that the obvious
limitations of spreadsheet tables are effectively mitigated. That
is, bookkeeping is reduced compared to the ASPIC-based
approach and could be further reduced by designing a custom
software tool. Furthermore, using such an argumentation-based
approach requires minimal training and no experience. For
each session, a 10-minute presentation was sufficient for the
participants to be able to start using the method. The average
duration of each session was 2 hours.

However, one of the main findings is that, despite our
expectations, there does not seem to be a deep argument game
during these assessments. This is because for each identified
Risk or Attack, a suitable mitigation is found (either via a
countermeasure, or by transferring or accepting the Risk). The
“attacker" team can either accept the defender’s argument and
move on, or try to subvert the countermeasure by describing
a slightly altered attack path. However, such an altered attack
could, to all intents and purposes, also be viewed as a new
round instead of a counter-argument (or rebuttal). So each
round of the game contains at most two rounds: an attacker
argument followed (optionally) by a defender counterargument.

Furthermore, the method is not affected by the presence or
absence of quantitative values of likelihood and impact of Risk.

This makes us optimistic that flexible Risk Assessment and/or
Security Requirements elicitation tools, which can work with
both quantitative and qualitative values, can be developed.

Architecture diagrams need to be more or less definite and
known during the Risk Assessment as they provide crucial
input. Furthermore, the scalability of Risk Assessment methods
and tools increases inversely with the complexity and ambiguity
of architecture. This also applies to our approach, as we noticed
that if information is missing with regard to the components
or technical specification of the architecture, it can drastically
affect the method’s utility.
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