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Abstract—Variability is an important aspect of SRAM cell 
design. Failure probabilities of Pfail≤10-10 have to be estimated 
through statistical simulations. Accurate statistical techniques 
such as Importance Sampling Monte Carlo simulations are 
essential to accurately and efficiently estimate such low failure 
probabilities. This paper shows that a simple form of 
Importance Sampling is sufficient for simulating Pfail≤10-10 for 
the SRAM parameters Static Noise Margin, Write Margin and 
Read Current. For the SNM, a new simple technique is proposed 
that allows extrapolating the SNM distribution based on a 
limited number of trials. For SRAM total leakage currents, it 
suffices to take the averages into account for designing SRAM 
cells and modules. A guideline is proposed to ensure bitline 
leakage currents do not compromise SRAM functionality. 

I. INTRODUCTION 
Decades of scaling according to Moore’s law have shrunk 

devices to such an extent that variability has become a serious 
issue at all levels of circuit design. The effects of variability 
are most noticeable in SRAM design, since SRAM cells use 
very small transistors. For this reason, statistics have long 
been part of SRAM cell design. Intra-die transistor Vt 
mismatch is still the main statistical parameter, although 
others are gaining importance. Downscaling of transistors 
leads to widened Vt-distributions (Figure 1 left). In addition, 
the amount of SRAM on large System-on-Chips (SoCs) 
continues to increase, causing the amount of variation that has 
to be taken into account to increase as well (Figure 1 right). 
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Figure 1: Increased variability leads to widening mismatch 
distributions (left). Increasing number of memory bits per SoC leads 
to a larger part of the mismatch distribution being taken into account 
in memory bitcell design (right). 

On top of this, there is a clear trend towards voltage 
scalable systems [1]-[2], resulting in an increased demand for 
voltage scalable SRAM as well. At lower supply voltages, 
SRAMs are more susceptible to variability, leaving less design 
margin for the designer. Hence it is becoming increasingly 
hard to guarantee correct SRAM operation under all process, 
voltage and temperature conditions. This translates to very 
tough requirements on SRAM parameters like Static Noise 
Margin (SNM), Write Margin (WM) and read current (Iread). 

SRAM yield should not be limited by design parameters. 
To guarantee no more than 0.1% yield loss for a 10Mb 
SRAM, a failure probability of Pfail≤10-10 is taken into account 
in SRAM bitcell design for all relevant parameters. Provided 
the probability distribution is Gaussian, Pfail≤10-10 corresponds 
to µ-6.4σ (with µ the mean and σ the standard deviation of the 
distribution). Using Monte-Carlo (MC) simulations, the 6.4σ 
limits of the SRAM parameter distributions are estimated. 
Accurate estimation of the relevant parameters at µ-6.4σ with 
plain Monte-Carlo takes billions of simulations and is too time 
consuming. Hence, a limited number of simulations is done 
(103-104), the µ and σ of the distribution are extracted and µ-
6.4σ is determined by extrapolation. This technique is not 
always accurate, since the SNM distribution is not Gaussian at 
all [1] and the distribution Iread is not Gaussian in its tail. 

This paper presents the use of the simplest form of 
Importance Sampling (IS) to drastically increase the accuracy 
of Monte-Carlo simulations. This technique was applied 
before in a complex adaptive fashion, requiring complex 
sampling algorithms and post-processing [3]. This paper 
presents a form of IS that requires less implementation effort. 
The applicability of the method is demonstrated by estimating 
the yield and probability distribution functions of SNM, WM 
and Iread. In the case of the SNM, a new method is presented 
for accurately estimating Pfail=10-10 by extrapolation. For 
SRAM total leakage currents, it suffices to take the averages 
into account for designing SRAM cells and modules. A 
guideline is proposed to ensure bitline leakage currents do not 
compromise SRAM functionality. 

II. IMPORTANCE SAMPLING 
Monte-Carlo analysis in circuit design normally assumes 

Gaussian distributed Vts of the transistors in the circuit. This 
results in many samples being drawn from around the average 



of the distribution. The extreme Vts are responsible for the 
extremes in the distributions of the output parameters (SNM, 
WM, Iread, etc.). Therefore it makes sense to have more 
samples drawn from the tails of the Vt distributions. Using a 
Gaussian distribution with a higher standard deviation for the 
Vt is the simplest way to achieve this.  
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Figure 2: The principle of Importance Sampling. Using a 
density function with a higher standard deviation in Monte-
Carlo analysis results in more samples being drawn from the 
extremes of the distribution. 
 

From Figure 2 it is clear that using a wider Gaussian 
density function for Monte-Carlo sampling, indeed more 
samples are drawn from the extremes of the density. Using a 
wider Vt sampling distribution is a very practical choice, since 
no modifications to the circuit simulator are necessary. Using 
a wider density instead of the original distribution leads to 
distorted SNM, WM and Iread distributions. The correct density 
functions and distributions are obtained by a mathematical 
transformation based on the ratio of the original and IS 
distribution. The resulting distributions are now estimated 
over a much larger range compared to applying standard MC. 

IS can be more formally described as follows. Suppose 
parameter x has a density f(x). With IS, parameter x is sampled 
according to density g(x). To compensate for sampling 
according to g(x) instead of f(x), the distribution function y, 
the sampled version of x, has to be multiplied by the ratio 
f(x)/g(x). The sampled distribution function of parameter y is 
given by equations 1 and 2. 
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where N is the number of trials.  
III. APPLICATION OF IS TO SRAM BIT CELL ANALYSIS 
This section shows that with the same number of trials, IS 

MC can estimate much lower failure probabilities than is 
possible with normal MC. It is also shown that extrapolated 
MC can lead to over- or under-estimation of the Pfail≤10-10 for 
the most important SRAM parameters: SNM, Iread and WM. 
Moreover, for the SNM, a new method allows estimating 
Pfail≤10-10 using extrapolated MC with high accuracy. 

A 65nm SRAM cell is simulated using PSP MOS 
transistor models. A supply voltage Vdd=0.9V is used, to bring 

the cell closer to its operating limits. At this Vdd, the accuracy 
with which all parameters are determined becomes more 
important. The IS simulations use Gaussian distributions with 
a σ =3σVt for the Vts of all transistors in the SRAM cell. 

A.  Static Noise Margin (SNM) 
An SRAM cell has to be stable enough to be read without 

changing the data in the cell. The SNM is a measure for the 
read stability of the cell. The SNM is the amount of noise that 
can be imposed on the internal nodes of the SRAM cell before 
it changes its state. The SNM is determined by plotting the 
voltage transfer curve of one half of the SRAM cell together 
with the inverse of the voltage transfer curve of the other half 
of the cell. The sides of the largest squares that can be drawn 
inside the eyes are SNMh and SNMl (Figure 3). Both SNMh 
and SNMl have a Gaussian distribution. The minimum of 
SNMh and SNMl is traditionally defined as the SNM [4]. 
Since taking the minimum of SNMh and SNMl is a non-linear 
operation, the distribution of SNM is no longer Gaussian. 
Therefore using extrapolated MC to determine Pfail≤10-10 does 
not yield accurate results. 
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Figure 3: The butterfly curve of an SRAM cell, used to 
determine the SNM.  
 
Figure 4 left, shows the cumulative distribution function 
(CDF) of the SNM, determined by a MC simulation using 
50k trials, both for normal MC (solid) and IS MC (dotted). 
Normal MC can only simulate down to Pfail≈10-5. Statistical 
noise becomes apparent below Pfail≈10-4. Using the simple 
form of IS, Pfail≤10-10 is easily simulated. The correspondence 
between normal MC and IS MC is very good down to 
Pfail≈10-5. Figure 4 clearly shows that using extrapolated MC 
leads to overestimating the SNM at Pfail=10-10.  
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Figure 4: SNM (left) and SNM high (right) cumulative 
distribution function for extrapolated MC (dashed), normal 
MC (solid) and IS MC (dotted). 

 



A new simple method is now presented to estimate the 
SNM by evaluating the distribution of only SNMh or SNMl. 
Figure 4 right shows the CDF of SNMh. The distribution of 
SNMh is a Gaussian distribution and extrapolation leads to a 
good estimate of SNMh at Pfail≤10-10. The Pfail≤10-10 limits for 
SNMh and SNM appear be to almost identical. At first sight, 
this is surprising, since the SNM and SNMh have different 
distributions. However, a small difference exists between 
SNM and SNMh/SNMl. The following describes how they are 
different. 

The SNM is defined as the smaller value of SNMh and SNMl 
 

( )SNMlSNMhSNM ,min≡  (3) 
 
Also, using a probability rule, 
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We now apply equations (3) and (4) with A={SNMh≤a} and 
B={SNMl≤a}. It is geometrically obvious from the butterfly 
curve that SNMh and SNMl cannot simultaneously be small. 
Therefore P(A∩B)=0. Assuming that SNMh and SNMl are 
identically distributed, it follows for the values of interest for 
a that: 
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A failure probability for SNMh of P(SNMh≤a)=0.5·10-10 is 

required to get the same failure probability P(SNM≤a)=10-10. 
In the example shown in this paper, the difference between a 
for P(SNMh≤a)=0.5·10-10 and P(SNM≤a)=1.0·10-10 is only 
1.2mV, which is within the statistical accuracy of IS MC. The 
extrapolated version of P(SNMh<a)=0.5·10-10 deviates from 
P(SNM≤a)=1.0·10-10 by only 0.3mV. Effectively, using 
P(SNMh<a)=0.5·10-10 means extrapolating to µ-6.5σ. This 
analysis shows it is possible to use extrapolated MC as an 
accurate estimate of the far tail of the SNM distribution.  

B. Read Current 
The read current is a measure for the speed of the memory 

cell and is therefore an important parameter. Figure 5 shows 
the extrapolated MC, regular MC and IS MC distribution for 
the read current of an SRAM cell. Again, there is a good 
match between regular MC and IS MC, down to Pfail≤10-4. 

These read current simulations were done on one side of 
the cell. Therefore, Pfail≤0.5·10-10 has to be targeted for the 
read current as well. The correspondence with the SNMh 
simulation is very good. The cells start flipping during a read 
action at almost exactly the same failure probability as where 
SNM=0mV. 

These simulations show that extrapolated MC can result in 
serious underestimation of the read current. This can lead to 
over-design of the memory cell. To be able to accurately 

simulate the worst case read current as a result of mismatch, 
IS MC is required for simulating the read current. 
Extrapolated MC is by no means accurate enough. 
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Figure 5: Read current Cumulative Distribution function of the 
extrapolated distribution (dashed), regular Monte-Carlo (solid) and 
IS Monte-Carlo (dotted). 

 

C. Write Margin 
An SRAM cell should not only be stable during read, it also 
has to be sufficiently instable to be written when desired. The 
write margin is a measure for the writeability of the SRAM 
cell. A cell is written by precharging one bitline to Vdd and 
discharging the other bitline to ground, with the wordlines at 
Vdd. The write margin can be defined as the highest 
acceptable voltage on this low bitline (Figure 6).  
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Figure 6: The internal node voltages of an SRAM cell versus 
the low bitline voltage. The write margin (WM) is defined as 
the highest bitline voltage at which de SRAM cell flips. 
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Figure 7: Write margin Cumulative Distribution function of the 
extrapolated distribution (dashed), regular Monte-Carlo (solid) and 
IS Monte-Carlo (dotted). 

 
The distribution function of the write margin was also 

simulated using extrapolated MC, normal MC and IS MC 
(Figure 7). Again, a good match is obtained between normal 



MC and IS MC. The WM is underestimated by about 10 mV, 
which is not a significant deviation. Therefore the far tail of 
the WM distribution can be estimated using extrapolated MC.  

D. Leakage currents 
Leakage currents can be divided into two important 

components: total leakage current and bitline leakage current. 
Total leakage current is important for the standby power 
consumption of the memory. This can be estimated by 
multiplying the average of the total cell leakage by the number 
of cells in the memory instance. The large number of cells in 
an SRAM results in a small variation on this estimate, making 
this method sufficiently accurate. 

Bitline leakage is the sum of the leakage currents of the 
non-selected cells in the column being accessed. Too much 
bitline leakage current can result in a non-functional memory. 
During reading, one of the two bitlines of the column is 
discharged to develop sufficient differential voltage for the 
sense amp to detect. In a worst case situation, all non-accessed 
cells connected to the column being read are discharging the 
opposite bitline with their leakage currents. If the sum of the 
leakage currents is in the order of the worst-case read current, 
there is a risk of developing insufficient differential voltage on 
the bitlines and a read failure. 
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Figure 8: 1-CDF of the logarithm of the Passgate leakage current: 
extrapolated MC (dashed), regular MC (solid) and IS MC(dotted). 

 
Short columns with fewer cells have lower bitline leakage 

currents than longer columns. Hence, if a memory with long 
columns can handle the worst case bitline leakage, a smaller 
instance of that memory with shorter columns can also handle 
the bitline leakage. 

Figure 8 shows the logarithm of the passgate leakage 
current. Since the leakage current depends exponentially on 
the transistor Vt, the distribution of the logarithm is 
excellently Gaussian. The probability of a passgate leakage 
current that is 100x higher than the average is approximately 
P(Ileak,pg≥100 Ileak,pg,µ)≈10-10 for this cell, meaning this is a very 
rare event. Hence it is safe to assume only one cell has worst-
case leakage and all other cells have an average leakage 
current. Equation 6 is proposed as a guideline to ensure bitline 
leakage does not compromise SRAM functionality. 

( )( )µσ ,,4.6,,, 2 pgleakpgleakwcread ILIxI −+⋅≥  (6) 

where Iread,wc is the worst case read current, L is the 
maximum number of cells in a column and x is a margin factor 
at the discretion of the designer. 

IV. CONCLUSION 
Continuous scaling according to Moore’s law and an 

increasing number of bits used in  SRAM memories strongly 
increase the need for incorporating statistical information into 
the design of SRAM bit cells. To guarantee sufficient yield for 
a 10 Mb SRAM, failure probabilities of Pfail≤10-10 are 
required, probabilities found in the far tails of the parameter 
distributions. Accurate statistical techniques are a must to be 
able to simulate such failure probabilities. 

In this paper it is shown that accurate statistical DC SRAM 
cell simulations are possible using a relatively simple 
statistical technique like Importance Sampling (IS) Monte 
Carlo (MC) with widened Vt distributions. The technique has 
been successfully applied to accurately estimate the 
distributions of Static Noise Margin (SNM), Write Margin 
(WM) and read current Iread. 

For the SNM, it is shown that extrapolation of normal MC 
simulations overestimates the yield. In addition to the benefit 
of IS MC simulations, it has been shown that extrapolation of 
the Gaussian distributions of the individual eyes yields results 
in accurate yield estimation. The results of the latter method 
are in agreement with IS MC simulations. 

The read current distribution deviates strongly from a 
Gaussian distribution and its distribution can therefore not be 
extrapolated. The use of extrapolated distributions would 
result in a pessimistic Iread and could thus lead to over-design 
of the memory cell and/or memory architecture. Importance 
Sampling or a technique with similar statistical accuracy is 
required to make correct decisions in the design process. 

The WM can be estimated with extrapolated Gaussian 
distributions. Although a small difference of the WM at 
Pfail≤10-10 is observed between extrapolated MC and IS MC, 
this difference is not significant.  

To determine the SRAM total leakage currents the average 
current per cell is multiple by the number of cell in the 
instance. A guideline is proposed to guarantee that bitline 
leakage currents do not compromise SRAM functionality. 
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