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Abstract

Landing is one of the difficult challenges for an un-
manned aerial vehicle (UAV). In this paper, we propose
a vision-based landing approach for an autonomous UAV
using reinforcement learning (RL). The autonomous UAV
learns the landing skill from scratch by interacting with
the environment. The reinforcement learning algorithm ex-
plored and extended in this study is Least-Squares Policy It-
eration (LSPI) to gain a fast learning process and a smooth
landing trajectory. The proposed approach has been tested
with a simulated quadrocopter in an extended version of the
USARSim (Unified System for Automation and Robot Simu-
lation) environment. Results showed that LSPI learned the
landing skill very quickly, requiring less than 142 trials.

1 INTRODUCTION

It is well known that landing is one of the most problem-
atic stages for both manned and unmanned airplanes [9].
Landing an airplane is a complex task because it requires a
large amount of kinetic and potential energy of the airplane
in the presence of various dynamic constraints, such as sud-
den changes in winds, carried weight, height and velocity
at each landing [9]. In unmanned air vehicles (UAVs), a
significant number of accidents happens during the landing
phase due to inexperience of pilots or sudden changes in the
weather dynamics, such as winds. Thus, automatic landing
systems are required to land UAVs safely.

In autonomous control of systems, the system to be con-
trolled requires an accurate model of the environment and
the agent in order to create controllers with optimal perfor-
mance. However, obtaining an accurate model of the en-
vironment and UAV is difficult, as the dynamics and aero-
dynamics of the system are non-linear and complex. Fur-
thermore, if for some reason the modelled system changes,
e.g. due to heavy air turbulence in the case of aircraft, the
model will no longer represent the actual aircraft. An al-
ternative to enable UAV agents to learn and adapt their be-
havior is required. One of the most common and general
frameworks for this type of learning and adaptation is re-
inforcement learning (RL). Reinforcement learning enables
an agent to learn from scratch by interacting with the envi-

ronment [19]. We will use a RL algorithm as the learning
algorithm for the UAV to learn landing skill.

To land an UAV on the target area, a solution based on
visual servoing [15] is applied, where the camera is used
to keep track of the target while the UAV is steered to
the desired configuration. An image-based visual servoing
method is used, where the control law is computed directly
from visual features, without explicit pose estimation. In
our case, we used image processing techniques to extract
features that represent the current state of the system, then
we applied a reinforcement learning algorithm known as
Least-Squares Policy Iteration (LSPI) [12] to obtain the de-
sired control law. Least-Squares Policy Iteration is designed
to solve control problems [12, 13], and uses value function
approximation to cope with large state spaces and batch pro-
cessing for efficient use of the training data. In addition,
LSPI converges faster with fewer samples than Q-learning
and no initial tuning of parameters is required [21, 12]. In
this paper, we extend LSPI so that it will work on a contin-
uous state-action space.

Prior to investigations with real robots, it is very useful to
implement any algorithm in simulation. The benefits of sim-
ulations include the fact that simulations are easier to setup,
less expensive, faster and more convenient to use. Some
learning algorithms, such as genetic algorithms, are compu-
tationally expensive, and it would take a very long time to
compute the learning on a real robot. Simulation provides
the facility of transferring a learned controller from simula-
tion and then applying it on a real robot. In our experiments,
we used an extended version of the USARSim (Unified Sys-
tem for Automation and Robot Simulation) environment as
the testing environment.

The rest of the paper is organized as follows. After dis-
cussing related work in Section 2, we explain the simulation
setup and the visual servoing process in Section 3. Then, we
describe the methodology of the implemented approach for
the learning process in Section 4. In Section 5 the experi-
mental results are presented, followed by our conclusions in
Section 6.

2 Related Work

Many approaches have been introduced to make the
landing task safer in unmanned aerial vehicles. Jiang et



al. [10] applied reinforcement learning to altitude control
for airplanes, in particular the Boeing 747 with 20 state vari-
ables. They used a coefficient-based policy search method
combined with genetic algorithms to learn altitude control
for airplanes, where reinforcement feedback is the only in-
formation used to update the fitness value of each chromo-
some. Lin [14] introduced an approach for learning control
of missiles (much faster and more mission-oriented tasks).
They provided a framework to control bank-to-turn mis-
siles, which combined a fuzzy basis function network and
an adaptive critic. Saripalli et al. [16] designed and im-
plemented a hierarchical behavior-based landing algorithm
for an autonomous helicopter. They used an AVATAR he-
licopter to navigate from an initial position to a final posi-
tion in a partially known environment based on GPS and
vision. Valasek et al. [20] developed an adaptive reinforce-
ment learning control methodology for the morphing air ve-
hicle control problem. A structured adaptive model inver-
sion was used as the controller for tracking trajectories and
handling time-varying properties, parametric uncertainties,
un-modeled dynamics, and disturbances. In addition, a re-
inforcement learning module using Q-learning was used to
learn how to produce the optimal shape at every flight con-
dition. Barber et al. [4] proposed vision-based landing for
small fixed-wing UAVs, where a visual marker is used to
generate the roll and pitch commands to the flight controller.
Bourquardez and Chaumette [5] introduced a visual servo-
ing algorithm to control an airplane during landing. Visual
features are used to build the landing control providing a
linearized model of the airplane dynamics. The landing ma-
noeuvre is divided into three phases for the purpose of sim-
plification. Huh and Shim [9] introduced an automatic land-
ing algorithm for a blended wing body shaped fixed-wing
UAV based on a vision system.

Our approach provides a learning controller that adapts
its behavior through direct interaction with the environment.
The proposed approach converges faster than Q-learning
with fewer samples [21, 17, 12].

3 Simulation
3.1 USARSim Simulation

The USARSim (Unified System for Automation and
Robot Simulation) system [8] was created to provide a re-
alistic low cost simulation tool for robots in real environ-
ments. It is based on the commercial games platform Un-
real Tournament [1] which is customized to provide mod-
els of various robots and environments. Additional soft-
ware components are provided to support image and sensor
data acquisition and implement robot actions. In our ex-
periments, we used an extended version of the USARSim
software known as altURI, which was developed by one of
the authors [18].

The altURI software makes it easy to use the USAR-
Sim [8] robot simulation environment. Furthermore, the
altURI software provides images through the widely used
OpenCV vision processing library [6], as well as networked
web images in several formats. Many robots can be si-
multaneously controlled in the simulator environment. The
altURI software consist of two components and two sup-
port programs. The vision component captures images from
graphics engines and makes them available as OpenCV, web
images or a Matlab array. This component is loaded into
the graphics process and, on request, intercepts calls made
by the simulator to display a frame. The vision compo-
nent supplies images at the same resolution as the USAR-
Sim game environment but using parameters can provide
smaller or partial images (multiview). The control compo-
nent of altURI controls an instance of a robot using infor-
mation specified in a configuration file. This component
allows the action commands to be called using calls to a
simple programming interface. A support program to load
the vision component into a graphics process is provided.

(a) The environment used for (b) The landing target, detected
learning the UAV landing skill. by OpenCV.

Figure 1. Simulated environment

The modular approach allows the vision and command
components to be substituted for real robot vision and con-
trol components, or components that interact with other
simulator environments. The system removes the require-
ment for any direct simulator programming and makes it
possible to have a working robot control program in just a
few minutes. The environment used in our experiments is
shown in Fig. 1(a)

3.2 Visual Servoing

To make the automatic landing possible, the UAV must
rely on special sensors, such as vision, GPS or laser. How-
ever, a single GPS is not useful because single GPS without
a differential correction typically provides position accuracy
of at most a few meters from the ground, which makes the
last few meters in the landing process uncontrolled. By con-
trast, a laser sensor gives an accurate distance measure to the
ground. However, it consumes too much energy. Thus, we
selected a vision sensor to obtain the state variable for the
landing stage.



Figure 2. State space representation.

A camera is fixed at the central bottom of the UAV, and
provides images of the landing target. In our experiments,
the landing target is a full black circle surrounded by circles
with grey color range (starting from black and ending with
white) as shown in Fig. 1(b). The target was selected be-
cause a circle will be detected as a target even the lighting
is changed. The state space variables are extracted from the
image of the target.

The process of detecting the target is done in three steps
using OpenCV. The first step is to capture a frame and im-
plement a Canny edge detection operator. The second step
is to detect a number of circles using a Hough transform and
calculating their center. The third step is to use the original
image to select the circle that has a black center and white
circumference.

3.3 Experiments Setup

In our experiments, we used a quadrocopter UAV to test
our proposed approach on the landing task as shown in
Fig. 2. The landing station is shown in Fig. 1(b). The
state space is represented by three state variables (r, 0,
¢), where r is radial distance of that agent in the space
from the center of the target, 6 represents the azimuthal
angle in the xy-plane from the x-axis of the target with
0 < 6 < 360, and ¢ represents the polar angle from the
z-axis with —90 < ¢ < 90. All the state variables are esti-
mated from the captured image. Before starting the experi-
ments, we captured two images with the UAV at a distance
of 2 and 4 meters from the target, respectively. We used
these images to interpolate the relative radial distance, 7,
during subsequent processing. The state space is shown in
Table 1.

4 Methodology
Many RL methods are time consuming, especially for

learning a complex task with a large state-action space from
scratch [7, 2]. Nevertheless, many methods have been tried

Table 1. State Space Parameters

Parameter Parameters Range
T [0, 10]meters

0 [0°,360°]

10) [—90°,90°]

(1) 120 if it gets to the goal,

Reward (2) -1500 if it finishes outside state space,
(3) equal to a value, this value is decrease
as ¢ or 6 increase

Goal State 7 =[0,0.1]m, 6 = [0°,10°], ¢ = [—5°, 5°]

Control Lateral Velocity: [—5, 5]

Linear Velocity: [—5, 5]

to accelerate the reinforcement learning process by combin-
ing it with different methods, such as neural networks, plan-
ning, etc. However, the high computational complexity or
tuning of the initial parameters has limited the potential of
such techniques to solve many problems. We propose to
address this challenges by using and extending a reinforce-
ment learning algorithm called Least-Squares Policy Itera-
tion (LSPI) [12].

4.1 Least-Squares Policy Iteration

In this work, we applied least-squares policy iteration
(LSPD) [12, 13] as the learning algorithm. LSPI converges
faster with fewer samples than traditional approaches, since
the samples are used more efficiently. This property comes
from the fact that LSPI evaluates the policy with a single
pass over the set of samples, and all the samples can be
used in each iteration to evaluate the policy. LSPI is par-
ticularly suited to mobile robot applications because it does
not require careful tuning of initial parameters, e.g., learn-
ing rate. As it has no learning rate parameters to tune, and
does not take gradient steps, there is no risk of overshooting,
oscillation or divergence, which are difficulties many other
algorithms have to face. This property comes from the fact
that the policy is evaluated over a history of samples. Thus,
LSPI is insensitive to initial parameter settings. In the next
paragraphs, we will explain the theoretical part of LSPI and
how it was extended to work on a continuous action space.

LSPI approximates Q-values, @7, for a given policy, m,
with a parametric function approximation instead of eval-
uating the optimal state-action values function directly to
find the optimal policy. More precisely, the value function
is approximated as a linear weighted combination of k basis
functions (features) as:

k
Q(s,a) = Q" (s,a,w) = Z(bi(s,a)wi = ®(s,a)TW,
i=1
ey

where ¢; is the ith basis function and w; is its weight in
the linear equation, k is the number of basis functions (fea-



tures). The k basis functions (features) represent informa-
tion extracted from the state-action pairs, and were designed
manually.

With the help of Eq. 1, the TD update equation given
in [19] can be re-written as W ~ R+~ P"®W, where P is
a (||| A| x k) matrix, representing the basis functions for all
state-action pairs. This equation can be reformulated [12]
as follows: ®T(® — yP™®)w™ = ®TR , where P is a
stochastic matrix that contains the transition model of the
process, and R is a vector that contains the reward values..

The weights W of the linear function Q™ can be ex-
tracted by solving the following linear system of equa-
tions [12]:

W = A7 'b, ()
A = OT(®—yP"D), (3)
b = OTR, “)

but the values of P and R will be unknown or too large to
be used in practice. To overcome this problem, LSPI learns
A and b by sampling from the environment. A sample is
defined as {s, a, s', 7}, where s, a, s', r are the current state,
action, next state, and immediate reward respectively. Given
a set of samples, D = {{s;,a;,s},r;}|i =1,2,...,L}, an
approximate form of ®, P"® and R can be constructed as
follows:

R p(s1,a1)"
Q = , (®)]
¢(SL’GL)T
) ¢(s1,m(s1))"
Pio = , (6)
¢(s7,,m(s7))"
1
R = . (7)
L

With @, P™® and R, the optimal weights can be found
using Eq. 2. Thus, by combining the policy-search effi-
ciency of the approximate policy iteration with the data effi-
ciency of approximate estimation of the Q-value function,
we obtain the Least-Square Policy Iteration (LSPI) algo-
rithm [13]. The aim of LSPI is to learn a policy, 7, that
maximizes the corresponding Q-function by taking advan-
tage of the efficient search of the approximate policy itera-
tion.

The policy evaluation step of the approximate policy iter-
ation depends on the Q-value function estimation described
in Eq. 1. So, whenever a new sample is collected, the
weights of the approximation are updated. After the pol-
icy evaluation phase has finished processing, the policy im-
provement starts by selecting a policy that maximizes the
approximate representation of the Q-value, as follows:

7(s|w) = arg max ¢(s, a) w, (8)

Lagoudakis and Parr [12, 13] showed that these estimates
converge on the optimal weights of the linear function ap-
proximation as the number of samples increases.

In traditional LSPI [12, 13], the action space was repre-
sented by a fixed number of actions (discrete action space).
In this work, we extend the approach to work with a con-
tinuous action space (controlling the lateral and linear ve-
locity of the UAV). The agent has to learn the correct di-
rection (right and left for the lateral velocity, or forward
and backward for the linear velocity) and optimal value for
turning. The optimal value for the lateral and linear veloc-
ity is calculated from the optimal w™. After w™ is calcu-
lated from solving the linear system of Egs. 2, we calculate
Q“ = ¢ xw™ for each ¢ in ®. Then, the action value will be
equal to the average value of w™ that gives maximum Q’r.

4.2 Computational Complexity

A standardized measurement of the computational time
complexity of an algorithm is the number of elementary
computer operations it takes to solve a problem, in the worst
case. The number of computer operations depends on the
“size” of the problem. In the following table, we will give
the time complexity of some basic reinforcement learning
approaches and the implemented approach, where the equa-
tions for calculating the number of elementary computer op-
erations required by value iteration (VI) and policy iteration
(PD) is taken from [11].

Value iteration and policy iteration approaches depend
on the total number of states and actions, which make these
approaches inapplicable for large or continuous state-action
space. In our approach, the cost of each iteration of the
approximate policy iteration in LSPI with continuous state-
action space (LSPI-CSA) is:

O(NB?+ NB?+ (N B?«hm)+ (N B*hm) + N B+hm)

)
where N B is the number of basis function used and N B <
|S] x |A|, where |S| and |A| represents the total number
of states and actions respectively, and hm represents the
number of samples collected. In our experiments, we in-
vestigated the number of samples, hm, required to reach
the optimal behavior. We tested for hm = 50, 100 or un-
limited and observed that hm = 100 or unlimited does not
make a major difference compared to hm = 50. Therefore,
we used hm = 50 in our experiments (meaning that at each
step, we collect one sample and 49 samples from the previ-
ous learning). Thus, the time complexity of the approximate
policy iteration is less than the value iteration and policy it-
eration approaches, and it is not affected by the number of
states.




(a) 1st Sequence

(d) 4th Sequence

(e) Sth Sequence

(f) 6th Sequence

Figure 3. Image Sequence of the Landing.

Table 2. UAV Landing Complexity

required number of iterations is shown in Table 3.

S Experiments

In our experiments, we used the quadrocopter UAV
model AR100 [3]. Quadrocopters belong to the class of
vertical take-off and landing (VTOL) aerial vehicles. A ma-
jor advantage of this type of aerial vehicle is the ability to
launch from the stowing position without the need for com-
plex launching facilities. Furthermore, quadrocopters have
a large number of degrees of freedom, and offer highly dy-
namic flight capabilities.

In our experiments, we implemented the modified LSPI
using two different types of basis functions, i.e. polynomial
basis functions (PBF) and radial basis functions (RBF) on
the UAV landing task. Both approximations gave a smooth
landing trajectory. However, to compare the performance of
the proposed improvement using RBF and PBF, a number
of experiments were done to check the number of iterations
required by LSPI to converge to the optimal policy. We
performed 100 experiments and the average results of the

Complexity Table 3. Comparison of RBF and PBF
Pal\rlzmgfr AL ‘_0 - i LSPZCSA Basis | Order | Number of | Average Number of
State e “min éand Function Iteration Iterations over
Calculation (Pmaz — Tmin) r 100 experiments
No. Of State 25920 Continuous state PBF 2 23.231 27
Four actions Four actions Continuous action
Action (right or left) PBF 4 3-9 4.8
(Forward or Backward) RBF N/A 2-3 2.1
NB 20
Complexity | Worst Case: Worst Case: Worst Case: In the case of using PBF, we tested using polynomials of
(Number 10,749,542,400 | 17,425,008,230,400 | for hm= 50 is 29,470 . .
of Computer for hm= 100 is 50.520 order 2 and 4. For PBF with order 2, LSPI required more
Operations) than 27 iterations to converge for each state, while for the

polynomial of order 4, LSPI required between 3 and 9 it-
erations to converge for each step. Thus, we used PBF of
order 4 in our simulated experiments. In the case of using
RBEF, we used the Gaussian function. Furthermore, LSPI
with PBF requires from 3 to 9 iterations with an average of
4.8 iterations to converge on the optimal policy, while LSPI
with RBF requires from 2 to 3 iterations with an average of
2.1 iterations. We used PBF or RBF because we believe that
it is a simpler notion and provides a more intuitive explana-
tion than other function approximation schemes.
USARSim software is used for simulating our problem
setup. A bounded environment with no physical obstacles
was chosen for clarity of results. We used a simple circular
shape in the environment to represent the landing station.
Using the experimental setup described in Section 3.3, the
UAV can control the altitude, lateral, linear and rotational
velocities, where altitude velocity controls the up and down
movement of the UAV, lateral velocity controls the right and
left velocity of the UAV, linear velocity controls the forward
and backward movement of the UAV, and rotational veloc-
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Figure 4. Samples of the learned path

ity controls the rotation movement of the UAV. In our ex-
periments, the UAV learns to control the lateral and linear
velocities, while the UAV’s altitude velocity was set to de-
crease at a fixed rate. If the UAV falls below a certain height
that causes it to lose track of the target, the RL controller in
the UAV is stopped for safety purposes.

The learned path is shown in Fig. 4, where L1, L2, L3,
L4 are different starting locations of the UAV. The UAV
can land on the target from different starting locations with
the learned visual servoing approach. Figure 3 shows a se-
quence of images displaying the landing process with the
learned controller. With the extended version of LSPI, the
UAV can learn the landing skill in less than 142 trials.

6 Conclusion

This paper describes the implementation of a visual ser-
voing approach based on reinforcement learning to enable
a UAV learn and improve the landing skill. Simulation re-
sults showed that, with LSPI as the learning algorithm, the
quadrocopter UAV learned the landing skill very quickly,
generating a smooth landing trajectory. Future work will
include investigating the effects of wind to achieve a more
faithful simulation, and transferring the learned skill from
simulation to a real UAV.
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