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Abstract—Localization plays a significant role in the au-
tonomous navigation of a mobile robot. This paper investigates
mobile robot localization based on Extended Kalman Filter
(EKF) algorithm and a feature based map. Corner angles in
the environment are detected as the features, and the detailed
processes of feature extraction are described. Then the motion
model and odometry information are elaborated, and the EKF
localization algorithm is presented. Finally, the experimental
result is given to verify the feasibility and performance of the
proposed localization algorithm.
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I. INTRODUCTION

The problem of navigation can be summarized into
answering three questions: “where am I?”, “where am I
going?” and “how should I get there?” [1]. Localization
answers the first question “where am I?”, finding a reliable
solution to this problem paves essential way for solving the
remaining two questions.

Since the first mobile robot was invented, the problem of
position determination has been investigated and a number of
methods have been put forward. These can be classified into
two general groups [2]: relative and absolute localization
methods. In relative localization, dead reckoning methods
such as odometry and inertial navigation are used to calcu-
late the robot position and orientation from a known initial
pose. However, their unbounded growth of time integration
errors with the distance travelled by the robot is unavoidable
[3].

In contrast, in absolute localization, both odometry and
external sensor data detecting distinct features of the en-
vironment are combined together to estimate the position
of the robot. The algorithms used in absolute localization
include triangulation and Kalman Filter. One of the disad-
vantages of triangulation lies in that at least three features
or landmarks are needed at the same time to calculate the
position, which is impractical in some circumstances, while
due to its robustness, Kalman filter is by far the most widely
used algorithm for problems in localization, mapping, and
navigation [1], [4] . In this paper, an Extended Kalman
Filter (EKF) is designed to fuse odometry and laser range
information to realize localization.

The rest of the paper is organized as follows. Section
II illustrates the principle of extracting the features which
are corner angles in this particular project. Then Section III
presents an odometry motion model. The design of the EKF
localization algorithm is presented in Section IV. Section V
provides the experimental result to verify the effectiveness
of the EKF algorithm. Finally, a brief conclusion and future
work are presented in Section VI.

II. FEATURE EXTRACTION

In localization, one of the significant steps is to determine
the map representation methods. Basically, the methods of
map representation can be categorized into three classes:
grid map, feature map and topological map. In this paper,
the corner angles of the environment are deployed as features
and feature map representation is adopted. The process of
feature extraction are divided into three steps, which are
illustrated in detail as follows.

A. Segmentation

A laser range finder is used to collect the range informa-
tion of the environment. A full scan of 180°is considered
as an ordered sequence of N measurements points(P ),
where each scanned point can be defined either in Cartesian
(xn, yn) or in polar coordinates (rn, αn), that is:

P =

{
Pn =

(
rn

αn

)}
, n ∈ [1, N ] (1)

then one segment Si can be denoted as

Si = {(rj , αj); (xj , yj), j = k : n} , 1 ≤ k < n ≤ N (2)

Up to now, there are various segmentation methods, some
of which are: Point-Distance-based methods (PDBS) [5], [6],
Adaptive Breakpoint Detector (ABD) [7], Kalman-Filter-
based method [7] and Extended-Kalman-Filter method [8]
etc. ADB is chosen as the segmentation method in this
paper. By applying each of them to segment the collected
laser data sets under the same experimental condition, we
can compare the accuracy, robustness and computational
efficiency of each method. Based on the comparison, ADB
is finally chosen as our segmentation method due to its
relatively high accuracy, robustness and less computational
expenses.
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Figure 1. The principle of IEPF

The general principle of ABD is: if D(ri, ri+1) > Dthd,
then segments are separated, otherwise segments are not
segmented, where Dthd is the threshold condition and
D(ri, ri+1) is the Euclidean distance between two consec-
utive scanned points

D(ri, ri+1) =
√
r2i + r2i+1 − 2riri+1cosΔα (3)

and the threshold condition is expressed as:

Dthd = ri
sinΔα

sin(λ−Δα)
+ 3δr (4)

where λ is an auxiliary parameter and δr is a residual vari-
ance to encompass the stochastic behaviour of the sequence
scanned points Pn and the related noise associated to rn.
For this project, we take λ as 10°, δr as 10 mm provided
by the laser, Δα as 1°.

B. Line-Fitting

By line-fitting, we mean estimating the line parameters
representing the specific line. Line Tracking (LT) [9] and
Iterative End-Point Fit (IEPF) [10] are two classic algorithms
for line fitting. Although LT is a very fast and adaptive
approach for line extraction, it is very difficult to choose
the threshold Tmax. On the other hand, due to its good per-
formance and being computationally inexpensive, the IEPF
and its derivatives are commonly used for line extraction in
range images [11]. Therefore, we adopted IEPF as the line
fitting algorithm.

The principle of IEPF is to search for a breaking point of a
cluster (or segment), which occurs at the maximum perpen-
dicular distance to a line. The process starts by connecting
the first and last data points of a cluster via a straight line.
The straight line can be formulated as(Ax+By + C = 0),
where A = yf − ys, B = xs − xf , C = −Axs − Bys,
(xs, ys) is the coordinate of the first point, (xf , yf ) is the
coordinate of the last point. Then for all data points between
the extreme points, a perpendicular distance d⊥ to the line

is calculated as follows.

d⊥,k =
Axk +Byk + C√

A2 +B2
. (5)

If the maximum perpendicular distance d⊥ to the line is
greater than a threshold dth, the corresponding point which
has the maximum perpendicular distance is determined as
the break point. The same process starts by connecting the
first data point and the new generated break point, as well as
connecting the new generated break point and the last point.
This is done recursively until the last point or the maximum
perpendicular distance between extreme points is less than
the threshold dth. All the points determined by this method
are defined as the breaking points of the cluster, including
two end points of the cluster. Thus, all the points between
two neighboring breaking points are considered as points on
the same line. Figure 1 shows the schematic description of
IEPF algorithm.

The next step is to determine the line parameters. There
are two forms of parameters representing a straight line, the
traditional form is:

y = mx+ q (6)

where q and m is the y-intercept and the slope of a
line respectively. This form of line representation is called
Slope-Intercept form, which is simple and however has
one shortcoming, i.e. the vertical lines require infinite m

(gradient). When the Slope-Intercept form of parameters is
used to calculate the angle of two intersecting lines on a
computer, an infinity error will appear.

Fortunately, we have another form of line parameters, i.e.
polar form, which is given as follows:

ρ = xcos(θ) + ysin(θ) (7)

where ρ ≥ 0 is the perpendicular distance of the line to the
origin, the angle θ is bounded by −π < θ ≤ π and is the
angle between the x axis and the normal of the line.

This polar form of line representation does not have the
shortcoming of Slope-Intercept form. It is more appropriate
and accurate to be applied as the form of the line parameters,
which will be used as the line parameters here.

We then adopt the line fitting algorithm that was originally
proposed by Lu et al. [12] to fit the line parameters, which
are referred to ρ and θ. Adopting the Least Square regression
method, line parameters can be obtained by the following
equations:

tan(2θ) =
−2Σ(ym − yi)(xm − xi)

Σ[(ym − yi)2 − (xm − xi)2]
(8)

θ = 0.5atan

( −2Σ(ym − yi)(xm − xi)

Σ[(ym − yi)2 − (xm − xi)2]

)
ρ = xmcos(θ) + ymsin(θ) (9)
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Figure 2. The result of feature extraction

where

xm =
1

N
Σxi and ym =

1

N
Σyi (10)

where (xm, ym) are the Centroid of the Cartesian coordi-
nates. (xi, yi) is the coordinate of each point on the line. N
is the number of points in the sector scan we wish to fit line
parameter to.

C. Corner Angle Calculation

As long as the line parameters of two intersecting lines are
determined, it is easy to calculate the corner angle between
these two intersecting lines, i.e. simply by subtracting the
parameter θ of one line from that of another line, that is

α = θ1 − θ2 (11)

Following all the steps stated in this section, we are able
to extract the corner angle feature from the raw laser data.
As can be seen in Figure 2, two corner angles are found (the
position where two lines intersect) and also calculated.

III. MOTION MODEL

The EKF has two phases, one is prediction phase and the
other is update phase. In the prediction phase, the motion
model is used to predict the current position of the mobile
robot, based on not only the previous estimated position, but
also the odometry information such as translational velocity
and rotational velocity. According to Thrun et al. [13], there
are two most widely used forms of motion model for mobile
robots, i.e. velocity motion model and odometry motion
model.

The velocity motion model has being widely used in the
localization and mapping of mobile robots. However, the
shortcoming of this model lies in the fact that when the
rotational rate ω approaches to 0, the term υ

ω
in the model

will become infinity, which will result in the calculation

Figure 3. Odometry model: the robot motion in the time interval(t−1, t]
is approximated by a rotation δrot1, followed by a translation δtrans and
a second rotation δrot2 [13]

error. Therefore, odometry motion model is used in this
paper as the motion model in the prediction phase of the
EKF algorithm. The detailed illustration is presented as
follows.

The motion of a mobile robot during (t − 1, t] can be
decomposed into 3 steps as shown in Figure 3: the first
rotation, then translation and the second rotation.

For most of the commercial mobile robots, it is easy to
obtain the odometry information x̄t−1 = (x̄, ȳ, θ̄)T and x̄t =
(x̄′, ȳ′, θ̄′)T , which are used to generate the motion model
as follows:

δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ (12)

δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)2 (13)

δrot2 = θ̄′ − θ̄ − δrot1 (14)⎛
⎜⎝

x′

y′

θ′

⎞
⎟⎠ =

⎛
⎜⎝

x

y

θ

⎞
⎟⎠+

⎛
⎜⎝

δtranscos(θ + δrot1)

δtranssin(θ + δrot1)

δrot1 + δrot2

⎞
⎟⎠ (15)

Equation 15 is the odometry motion model. Practical expe-
rience suggests that odometry, although still erroneous, is
generally more accurate than velocity motion model.

IV. EXTENDED KALMAN FILTER ALGORITHM

Following the successful implementation of feature ex-
traction and motion model, the Extended Kalman filter
localization algorithm can be designed and expressed in
Table I. The input parameters are μt−1, Ωt−1, x̄t−1, x̄t, zt,
ct, m, where μt−1 and Ωt−1 is respectively the estimated
position and the covariance matrix of the position at time
t − 1, x̄t−1 and x̄t are the odometry at time t− 1 and t

respectively. zt is the observation vector, ct is the signature
of the extracted features, and m is the a priori map.

Prediction Step (Lines 1-8): The EKF localization algo-
rithm uses the motion model defined in equation (15). Gt

in line 4 is derived by taking the derivative of equation (15)
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Table I
THE EKF LOCALIZATION ALGORITHM

Algorithm EKF localization (μt−1,Ωt−1, x̄t−1, x̄t, zt, ct,m)

1: δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ

2: δtrans =
√

(x̄− x̄′)2 + (ȳ − ȳ′)2
3: δrot2 = θ̄′ − θ̄ − δrot1

4: Gt =

⎛
⎜⎝

1 0 −δtranssin(θ + δrot1)

0 1 δtranscos(θ + δrot1)

0 0 0

⎞
⎟⎠

5: Vt =

⎛
⎜⎝
−δtranssin(θ + δrot1) cos(θ + δrot1) 0

δtranscos(θ + δrot1) sin(θ + δrot1) 0

1 0 1

⎞
⎟⎠

6: μ̄t = μt−1 +

⎛
⎜⎝

δtranscos(θ + δrot1)

δtranssin(θ + δrot1)

δrot1 + δrot2

⎞
⎟⎠

7: Ω̄t = GtΩt−1G
T
t + VtMtV

T
t

8: Qt =

(
σ2
r 0

0 σ2

φ

)

9: for all observed features zit = (rit, φ
i
t)

T do
10: j = cit
11: q = (mj,x − μ̄t,x)2 + (mj,y − μ̄t,y)2

12: ẑit =

( √
q

atan2(mj,y − μ̄t,y ,mj,x − μ̄t,x)− μ̄t,θ

)

13: Hi
t =

⎛
⎝ −mj,x−μ̄t,x√

q
−mj,y−μ̄t,y√

q
0

mj,y−μ̄t,y

q
−mj,x−μ̄t,x

q
−1

⎞
⎠

14: Si
t = Hi

t Ω̄t[Hi
t ]

T +Qt

15: Ki
t = Ω̄t[Hi

t ]
T [Si

t ]
−1

16: μ̄t = μ̄t +Ki
t(z

i
t − ẑit)

17: Ω̄t = (I −Ki
tH

i
t)Ω̄t

18: end for
19: μt = μ̄t

20: Ωt = Ω̄t

21: return μt,Ωt

with respect to x, y, θ respectively. Vt in line 5 is derived
by taking the derivative of equation (15) with respect to
controls δrot1, δtrans, δrot2 respectively. Mt in line 6 is the
covariance matrix of the noise in control, which is referred
to δrot1, δtrans and δrot2. Mt is formulated as

Mt =

⎛
⎜⎝

Mt(1,1) 0 0

0 Mt(2,2) 0

0 0 Mt(3,3)

⎞
⎟⎠ (16)

where Mt(1,1) = α1|δrot1|+α2δtrans, Mt(2,2) = α3δtrans+
α4(|δrot1| + |δrot2|), Mt(3,3) = α1|δrot1| + α2δtrans. The
parameters α1 to α4 are robot-related error parameters,
which specify the error accrued with motion [13].

Correction Step (Lines 9-21): Let j = cit be the identity
of the landmark or feature that corresponds to the i-th
component in the measurement vector. Then we have lines
11 and 12, which is the measurement model. In line 13, Hi

t

is the Jacobian of the predicted measurement with respect
to the robot location, computed at the predicted mean μ̄t.
Lines 14-18 complete the correction step of the EKF.

Figure 4. Experimental environment (The unit of coordinates is mm)

V. EXPERIMENTAL RESULT

Theoretically, the application of the EKF localization
algorithm will prevent the estimated position from drifting
which is the characteristic of using odometry alone. To
test the feasibility and effectiveness of the EKF localization
algorithm, the mobile robot is programmed to move in a
circular trajectory while observing the surrounding environ-
ment(shown in Figure 4) with a laser range finder.

As can be seen from Figure 4, the environment is a
quadrangle ABCD with four vertexes at which the corner
angles can be easily distinguished from each other. If we
denote the corner angle by a, the x-coordinate of the vertex
point of the corresponding angle by mx, the y-coordinate
of the vertex point of the corresponding angle by my , the
feature vector F can be given by a collection of triplets:

F = {f1, f2, f3, f4}

=

⎧⎪⎨
⎪⎩
⎛
⎜⎝

a1

m1,x

m1,y

⎞
⎟⎠ ,

⎛
⎜⎝

a2

m2,x

m2,y

⎞
⎟⎠ ,

⎛
⎜⎝

a3

m3,x

m3,y

⎞
⎟⎠ ,

⎛
⎜⎝

a4

m4,x

m4,y

⎞
⎟⎠
⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩
⎛
⎜⎝

100

3000

-1850

⎞
⎟⎠ ,

⎛
⎜⎝

80

2120

2650

⎞
⎟⎠ ,

⎛
⎜⎝

70

-1050

2620

⎞
⎟⎠ ,

⎛
⎜⎝

110

-2742

-1880

⎞
⎟⎠
⎫⎪⎬
⎪⎭

(17)

The global coordinates of these four angle points are
measured by a VICON tracking system in the robot arena,
which can precisely track the objects within the range of the
sight of the camera systems.

The mobile robot starts moving from (-1500,0), while the
EKF algorithm is executed to obtain the corrected position
by fusing both the odometry and the observed feature infor-
mation. For each time instance (every 100 ms), odometry
data can be directly read from the robot. We have the
estimated position calculated by EKF as well as the ground-
truth position from the VICON system. By comparing these
three types of position data, we can verify the effectiveness
of the EKF localization algorithm.

Figure 5 shows the experimental data collected from
one trial of experiment, providing the odometry, estimated
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Figure 5. Experimental result: the odometry, estimated position and
ground-truth position are shown

position and the ground-truth position of each instance. Each
point in the figure corresponds to an instance in which a
measurement is obtained and the filter is updated. However,
due to the circular characteristic of the environment, some
points may overlap with each other. Since it is difficult to tell
apart the three types of position of each time instance, we
can not clearly see the effectiveness of the EKF algorithm
in this figure.

Therefore, we apply the distance error to better demon-
strate the effectiveness of the proposed algorithm. Figure
6 shows the distance error between the odometry and the
ground truth respectively. The distance error between the
estimated position is calculated from EKF and the ground
truth. More specifically, the distance error is calculated as:

DEOGi =
√

(xo,i − xg,i)2 + (yo,i − yg,i)2 (18)

DEEGi =
√
(xe,i − xg,i)2 + (ye,i − yg,i)2 (19)

where DEOGi is the ith distance error between odom-
etry and the ground truth. DEEGi is the distance er-
ror between estimated position and the ground truth.
(xo,i, yo,i), (xe,i, ye,i), (xg,i, yg,i) are the ith coordinates of
the odometry, estimated position and the ground truth re-
spectively.

As shown in Figure 6, the distance error between the
odometry and the ground truth keep increasing as time goes
by, demonstrating that the odometry position is drifting.
Nevertheless, the distance error between the estimated po-
sition calculated from EKF and the ground truth remains
almost the same level, which means that our implementation
of EKF algorithm is successful.

VI. CONCLUSIONS

This study presents an EKF based mobile robot local-
ization algorithm, in which the detailed process of feature
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Figure 6. Experimental result: the distance errors

extraction and the odometry motion model are firstly illus-
trated. The elaborated design and expression of the EKF
localization algorithm are then presented. The experiment
results are given to verify the feasibility and effectiveness
of the proposed EKF localization algorithm.

However, the presented algorithm is implemented in
a priori map which may not be always available. The
future work will focus on the simultaneous localization
and mapping (SLAM) using EKF or other more advanced
algorithms.
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