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Abstract 
Human assistive devices need to be effective with real-
time assistance in real world situations: powered 
wheelchair users require reassuring robust support, 
especially in the area of collision avoidance. However, it 
is important that the intelligent system does not take away 
control from the user. The patient must be allowed to 
provide the intelligence in the system and the assistive 
technology must be engineered to be sufficiently smart to 
recognize and accommodate this. Robotic assistance 
employed in the healthcare arena must therefore 
emphasize positive support rather than adopting an 
intrusive role. Weightless Neural Networks are an 
excellent pattern recognition tool for real-time 
applications. This paper introduces a technique for look-
ahead identification of open doorways and junctions. 
Simple sensor data in real-time is used to detect open 
doors with inherent data uncertainties using a technique 
applied to a Weightless Neural Network Architecture. 
 
1. Introduction 
 

For many users, powered wheelchair operation in 
enclosed environments such as buildings, has proved 
problematic. A major need is to be able to drive in such 
environments with minimal collisions. For those users 
with significant physical disability accurate control of the 
chair is a major challenge. The inability to avoid colliding 
with objects or other persons can deter the user from 
driving or may even cause the option of independent 
powered control to be removed because of unacceptable 
risk to the user, others and the environment. Therefore an 
intelligent system which assists the user with collision 
avoidance/assisted navigation would help maintain the 
independent mobility of the user affecting an increase in 
their quality of life. To do this requires flexible assistance 
which, despite the recent advances in autonomous robotic 

technology is still an open question. A further 
requirement of any interventional system is that the level 
of user control must be maximized [1]. This requirement 
for adaptable user control has been often been forgotten in 
research arenas, according to Nisbet (2002) [1], where   
research projects have concentrated mainly on robotic 
autonomy. User exclusion can lead to a feeling of 
disempowerment and the removal of the opportunity for 
that user, especially the younger user, to develop their 
contribution to path planning, decision making, and 
maneuvering control processes [1]. 

One major problem to be solved for any smart 
adaptive wheelchair system is maneuvering through a 
doorway. One less-abled participant in a doorway passing 
experiment only completed the task when maneuvering 
assistance was engaged [2]. Furthermore on average 2.27 
crashes occurred per participant per trial [2]; however, 
analysis also highlighted participants concern regarding 
system intervention feedback when denied passage 
through the door because of incorrect approach angle [3]. 
Therefore any trajectory assistance would require look-
ahead perception in order to: better inform the user, and 
align the wheelchair to the doorway. 

Look-ahead identification provides system and 
operator feedback for feed-forward predictive planning; 
promising smoother optimal approach trajectory 
generation and system-operator integration.  Navigational 
assistance for any wheelchair user; whilst negotiating 
doorways, round corners, or junctions, requires two 
critical problems to be addressed: The first is to develop 
advanced junction/doorway detection and identification. 
The second is to use this data in real time to modify the 
chair’s trajectory so that it will pass through the doorway 
or round a corner without collision.  

In order to achieve the first goal it is necessary to 
collect appropriate sensor data and then to manipulate 
those data using pattern recognition techniques. The way 



 

 

in which it is planned to do this is now presented in the 
following section on Sensor choice and deployment array.   

We determine from simple pattern recognition using 
the application of a weightless neural network, open 
doorways, and corners, and turns, and dead-ends, and 
therefore propose a simple real-time early door and 
junction detection approach for assistive navigation 
systems. We additionally propose that this method also 
enables a degree of perceptive round corner obstruction 
detection compared with traditional methods.  

 
2. Weightless artificial neural architectures 
 

Weightless Neural Networks (WNNs) are Neural 
networks without weights between the inputs and nodes, 
spurred from initial work by Bledsoe and Browning [4] 
(1959) on n-tuple pattern recognition systems. These 
networks use simple binary values instead of the large 
amount of training and processing needed for a weighted 
network to converge, thus allowing WNNs to work on 
more simplistic hardware. WNNs use stored look-up 
tables while weighted networks use a system of complex 
weightings. The WNNs possess exceptional pattern 
recognition abilities, particularly optical character 
recognition; data can be easily binarised using threshold 
techniques [5]. Fast simple testing and training employed 
by WNNs mean efficient implement on hardware; thus 
ideally suited for application in mobile robotics. 

WNN real-time execution successfully demonstrated 
by Nurmaini et al. [5] detected various obstacles, corners 
and corridors identified from sonar data with an execution 
time of 0.25μs on an Atmel AT89x55 with 256 bytes of 
RAM and 24.3 MHz clock speed; however using sonar 
has limitations due to reflection incidence angle. 

 The system that will be used in this paper is the 
Generalized Convergent Network (GCN) [6]. The layers 
in these architectures are independent but connected. The 
GCN architecture has the following properties: 

• A set of layers are created, dimensions of the input 
matrix match the number of neurons in each layer. 
If the input matrix is m by n, each layer is made up 
of mn neurons. 

•  Each layer has a “connectivity pattern” which 
determines which neurons in each layer are 
connected to which. This pattern is relative to the 
position of each neuron, which is exclusive to a 
particular layer, meaning its relative location can 
be determined within the input matrix. 

• Layers are grouped into two main parts within the 
architecture; 'Pre' and 'Main'. 

• A merge operation is executed on those constituent 
layer outputs from each group; effected on 
matching positioned neurons within each layer. 

• Output from the merge operation is an unaltered 
input into each layer of Main group. 

• Constituent layers of each group vary in the choice 
of elements committed to the inputs of their 
constituent neurons, the “connectivity pattern”. 

• The neurons within a single layer are connected in 
the same way relative to their location within the 
parsed code matrix; thus maintaining connectivity. 

 
3. Sensor choice and deployment array 
 

Infrared ranging for indoor robotic application 
removes the incident angle limitation inherent with sonar 
sensors [7]. Previous work by Nurmani et al (2009) [5] 
relied solely on sonar sensors whereas data fusion 
between infrared and sonar, Flynn (1988) states [7], can 
remove the negative aspects of each improving the overall 
result. However; for this experiment we only use infrared 
ranging as comparative, their very narrow beam angle 
introduces sharp edge detection, a potential requisite for 
better discernibility between clutter, furniture, obstacles; 
and building fabric, such as corners and doors. Ceiling 
height was found to be consistent and a good localization 
indicator [8] therefore implemented to detect doorway 
crossing; hence bounding room and linking passages.  

 

Figure 1. Three angled 5m infrared ranging 
sensors (black squares) and one zenith pointing 

5m sonar ranging sensor (white circle). 
 
Sharp GP2Y0A710K0F infrared (0.1m-5.0m) distance 

measuring units were used for angled distance ranging 
and an LV-MaxSonar®-EZ2™ with 0.05m resolution at 
3m for doorway ceiling to lintel detection. 

A typical corridor was chosen to best determine sensor 
angle for horizontal door and junction approach, an angle 
of plus and minus 60 degrees was chosen shown in Fig. 1 
in order to detect openings some 2.0m distance ahead of 
the wheelchair when passing down a 1.8m wide corridor. 



 

 

 
 
Table 1: Door and junction detection classification and WNN results 

 
4. Parsing into the weightless neural network 
 

WNNs require binary input pattern matrices to process 
data, with similar distances represented by similar 
encoded data; therefore sensor measurements require 
threshold classifying to determine a comparative binary 
pattern suitable for WNN operation.  

 
4.1. Classification 
 
    Measurements of doors, and openings, and corners, and 
junctions, and standard wheelchairs were used to define 
pass/no-pass criterion and ease of passage threshold 
criteria listed in Table. 2. Confirmation and adjustments 
were made during initial range and free space floor to 
ceiling (zenith) testing. Classification was then 
determined as listed in Table 1. 
 
Table 2: Classification thresholds 

Class Boundary /metres 

 1 2 3 4 

Left depth   <1.3 <0.75 <0.5 >0.8 
Right depth  <1.3 <0.75 <0.5 >0.8
Left width  >1.2 >0.90 >0.75 <0.75 
Right width >1.2 >0.90 >0.75 <0.75 
Ahead  >3.75 <3.75 <2.5 <1.5 
Zenith  >3.75 <3.75 <2.5 <2.1

 
    Range and angle data are used to obtain Cartesian body 
frame co-ordinates thus depth into opening and width. 

 
4.2. WNN matrix generation 
 

These threshold classified results of ranging data are 
now in a 6x4 binary format suitable to be parsed into an 
input matrix, shown in Fig. 2, comprising 5 examples of 
each class for training and 20 testing sets in each of 22 
tests. These can now be used by the WNN to determine 
the best fit identifying 15 examples of class. 

 

 
Figure 2. Generating the WNN input matrix 

 
5. Results 
 

Several 1.8m wide corridors around a University 
research department were examined and used to provide 
sensor data for WNN junction and doorway 
determination. The method of collecting those data was 
representative of a wheelchair user exiting a room 
negotiating a corridor and entering/exiting another room, 
in comparison with experimentation by others [2, 3].  

Identification of these test classes listed in Table 1 
were 94% successful for classification, and briefly 
summarized, Table 3, were 93% for object identification.  

   WNN architecture
1 2 3 4 5 

   Percentage class identification and sample quantity 

Class  % Qty % Qty % Qty % Qty % Qty 

Dead end slow 85.2 61 94.1 17 94.6 56 57.3 24 85.9 64 
Dead end stop 100 6 100 6 100 6 100 6 100 6
Left turn caution 100 17 89.6 13 81.1 10 82.8 4 100 10
Left turn clear 100 13 100 17 92.7 17 100 19 100 15
Left turn door 100 1 100 1 0 0 0 0 100 1
Open corridor 100 243 100 257 99.2 227 91.8 248 100 222
Right corner caution 100 2 78.8 4 77 4 100 1 100 3
Right corner clear 100 9 98.4 9 98.7 7 100 9 100 8
Right corner door 100 2 80.7 3 81.5 2 100 3 100 2
Right turn caution 100 9 100 8 80.8 9 100 7 100 8
Right turn clear 100 15 99.2 17 93.8 15 100 15 100 15
Right turn door 100 5 100 8 49 3 100 2 100 4
T-Junction 0 0 0 0 100 2 0 0 25 2
Door crossing 92.1 19 90 20 11.4 44 96.8 19 100 28
No door crossing 100 41 100 40 100 16 100 41 100 32

Total 91.8 443 88.7 420 77.3 418 81.9 398 94.1 420 



 

 

 
 

Table 3: Door and junction detection summary 

 
When comparing the results with a similar experiment, 

Nurmani et al (2009) [5] reported 94% for classification 
and 95% for identification. However in this experiment 
class detection was achieved using 3 infrared sensors 
compared with 8 sonar sensors and their classification 
consisted of 9 classes compared to 15 (out of a possible 
18) detected on this typical real-world representation. 
Additionally infrared does not suffer with excessive 
crosstalk, and noise limited range, which they reported 
occurred when using sonar.  

Furthermore their reported detection range was less 
than 0.4m compared to >1.5m obtained in this 
experiment. 

It should be noted that the representative wheelchair 
user path did not pass any left corners, and only one T- 
Junction was negotiated. Results tabulated in Table 3 
combine left and right categories for ease of display, 
although correctly identified, “no turn” (false turn) 
represents correctly identified “open corridor” when 
passing an alcove; hence an obstructed turn identified. 
WNN architectures labeled 1-5 in Table 1 and Table 3 
represent various neuron layer configurations.  

 
6. Conclusions 
 

Advanced, “look-ahead”, junction and doorway 
detection were successfully demonstrated at a distance of 
1.5m; significantly greater than previously demonstrated 
using sonar [5]. Thus allowing sufficient time to schedule 
any smooth trajectory change if required, and provide 
effective user feedback. Furthermore simple doorway 
crossing detection was demonstrated which effectively 
bounds rooms; thus locations become simpler to map in a 
dimensionless, or loose, yet logical manner. 

Simple smaller low cost sensors, infrared (0.1m-5.0m) 
distance measuring units, are less prone to mechanical 
wear and accidental damage than scanning sensors: 
Carlson reported sensor damage from collisions when 

more expensive mechanical larger laser range scanner 
sensors were employed [2].  

This perceptive look-around corner technique can be 
employed to provide wheelchair users advance warning, 
due to sensor position and angle, before they see it, thus 
potentially allowing earlier velocity and trajectory 
modification when approaching hazards and turns. 
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Percentage correctly identified for each WNN 

architecture and sample quantity 

 Qty %1 %2 %3 %4 %5
Door 6 66.7 66.7 16.7 16.7 66.7 
Turn clear   7 100 100 100 100 85.8
T-Junction  1 0 0 100 0 100
Dead-end  5 100 100 100 100 100
No turn 2 100 100 50 100 100
Door crossing  3 100 100 100 100 100
Corner 2 100 100 100 100 100

Total 26 81 81 81 66.7 93 


