
Application of ICmetrics for Embedded System

Security

Xiaojun Zhai, Kofi Appiah, Shoaib Ehsan, Huosheng

Hu, Dongbing Gu, Klaus McDonald-Maier and Wah

M Cheung

School of Computer Science & Electronic Engineering

University of Essex, Colchester, UK

{xzhai, kappiah, sehsan, hhu, dgu, kdm, wmcheu

}@essex.ac.uk

Gareth Howells

School of Engineering and Digital Arts

University of Kent

Canterbury, UK

W.G.J.Howells@kent.ac.uk

Abstract—Integrated Circuit Metrics (ICmetrics) technology

is concerned with the extraction of measurable features of an

embedded system, capable of uniquely identifying the system’s

behaviour. Any changes in these identifiers (profiles) during

consequent devices’ operation would signal about a possible

safety or security breach within the electronic system. This paper

explores the combination of program counter (PC) and Cycles

per Instructions (CPI) of a processor core as a potential

ICmetrics source for embedded system security. The use of this

combination exhibits that while isolated PC values may not

always generate a stable identifier (profile) for a device that

would distinguish the device from the rest in a considered set, the

PC and CPI sequences and frequencies in the execution flow may

serve as suitable ICmetrics features.

Keywords—ICmetrics; embedded system security; program

counter; Cycles per Instructions;

I. INTRODUCTION

ICmetrics (Integrated Circuit metrics) is a technology that
can generate unique identifiers from the distinctive
characteristics of the software and hardware associated with a
particular electronic device [1]. Based on internal and external
sensors, electronic devices sense different environmental
condition, trigger the execution of different software, perform
different tasks and even interact differently with different users.
Various features can be extracted from digital devices'
operation that may be integrated together to generate unique
identifiers for each of the devices or create unique profiles that
describe the devices' actual behaviour. The generated
identifiers can then be used to create encryption keys for
embedded devices enabling secure encrypted communication.
This technology does not only ensure secure data storage and
transmission, but also helps to detect failure, tampering and
malicious exploitation of electronic devices [2].

Similar to features (biometrics) that is closely linked or can
be characterized any particular human being, be it Iris, DNA or
fingerprint; ICmetrics is the device equivalent for
characterizing an electronic device. Compared to other popular
techniques for electronic system, such as the Physical
Unclonable Functions (PUF) technologies [3], hardware
intrinsic security [4], biometrics [5], encryption and password

[6], the ICmetrics technology can be considered as a hybrid
approach as it exploits features derived which are extracted
based on the interaction of the hardware with their users and/or
environment.

In the previous works [7] and [8], the authors aimed to
explore the possibility of applying the ICmetrics technology to
generate stable encryption keys based on characteristics
derived from embedded systems’ operation. The program
counter (PC) of a processor core was used as a source for
ICmetrics features, where full PC profiles were analysed to
find the distinct values from different programs. Kovalchuk et.
al. [9] presents some interesting properties of a processor that
can be used as ICmetrics. They explored samples of PC and
used it as ICmetric to determine the effects on systems stability
and performance. The number of occurrence of a particular PC
value is used to address how different applications utilize the
memory space. Their result shows that there are certain areas in
the memory space, occupied by a single application.

Similar to [9], Kovalchuk et. al. [8] identified the PC as a
potential ICmetric. The paper focused on possibilities of
extracting the PC values with little or no effect on the actual
program execution. They also suggested the PC may hold
interesting features to complement other parameters for a
robust ICmetric. Test conducted shows some level of identity
between simple programs in terms of sequence and frequency
of the PC values. Another interesting observation from the
paper is the fact that PC values remain the same for a particular
application when extracted by single stepping or sampling
tracing.

Reiss and Renieris [10] present a means of visualizing and
understanding the dynamic behaviour of large complex
systems using data collected as the program runs. They first
select subsets of the raw tracing data, which is normally
voluminous and then apply run-length encoding in an attempt
to infer its structure. Gniady et. al. [11] explores the viability of
applying program counter-based prediction techniques to
optimize buffer caching. Their technique allows the operating
system to correlate the input and output operations with the
program context in which they are triggered. This paper
explores the combination of PC and Cycles per Instructions
(CPI) as a potential source of ICmetric features. The paper is

organised as follows. Section II gives an overview of the
ICmetric technology, followed by sections III and IV with
detailed properties exhibited by the PC and CPI respectively.
Section V, concludes with the potentials of combining PC and
CPI as an ICmetric feature, with future directions.

II. ICMETRICS TECHNOLOGY BASED EMBEDDED SYSTEM

SECURITY SOLUTION

The ICmetrics technology is mainly based on measurement
of potential features that are derived from characteristics of an
embedded system under different circumstances. By analysing
and employing the features, a unique identifier can be
generated and used to describe or determine the embedded
system. Typically, the circumstances of an embedded system
can change by running different software or interacting with
different users.

In order to calibrate an embedded system for a specific
circumstance, a calibration phases is applied once while an
application is running for the first time, where the features of
this application are extracted and recorded by the ICmetrics.
Those recorded unique features can then be integrated as a
unique identifier for the purpose of encryption. In this case,
while different applications or circumstances are employed in
this embedded system, the different features should then be
generated, which means based on these new features, a distinct
encryption key should be finally created. As the keys are
mismatched, the system will stop working to protect the user
data. Based on the above idea, two phases of the ICmetrics
system are required: 1) calibration phase, where features and
characteristics of an embedded system are recoded and
analysed. 2) Operational phase, where unique identifier is
generated for the key generation.

The overall ICmetrics technology based embedded system
diagram is shown below in Fig. 1.

Embedded

System
Measurements

Apply

Once Recorded

Features

Calibration Phase

Measurements
Feature

Extraction

Operational Phase

Generate

Unique

Number

Encryption Apply

Each Time

Feature Map

Fig. 1. A block diagram of a typical ICmetrics based embedded system.

In the current ICmetrics based embedded system,
identifying the devices’ characteristics and generating suitable
features for the ICmetrics system are the main challenges in
this domain [7]. The suitable features must represent the
characteristics of the embedded system, and the feature
extraction and analysing processes should not significantly
affect the performance of the embedded system. Considering

the above two points, the PC and CPI are introduced as
possible ICmetrics features in the following sections.

III. PROPOTIES OF PC

Depending on the platform and size of memory used, the
PC values of a program can be logged during its execution. The
PC values can also be significantly huge. A typical execution
of the angle conversion program [8] on an ARM9 Cortex - M3
processor can have PC values ranging from 134218632 to
134223590, using an intrusive tracing method. For a single
execution, the PC profile of an application can range from ten
to hundred thousand in a second. The profile also exhibits
some characteristics distinct to the very application in
execution. The features may be more dominant over time or
space; access to specific memory location. The spatial and
temporal features exhibited by four algorithms chosen from the
automotive package of the MiBench suite of benchmark
algorithms [8], namely: angle conversion (AC); bit count (BC);
cubic function (CF); and square roots (SR) are shown in figures
2 and 3.

1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422

x 10
8

0

0.5

1

1.5

2

2.5

3
x 10

4 AC

1.34221.34221.34221.34221.34221.34221.34221.34221.34231.3423

x 10
8

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 CF

1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422

x 10
8

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
BC

1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422 1.3422

x 10
8

0

0.5

1

1.5

2

2.5

3
x 10

4 SR

Fig. 2. Spartial PC distribution for the four different applications.

0 1 2 3 4 5 6

x 10
4

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422
x 10

8 AC

0 1 2 3 4 5 6

x 10
4

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3423

1.3423
x 10

8 CF

0 1 2 3 4 5 6

x 10
4

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422
x 10

8 BC

0 1 2 3 4 5 6

x 10
4

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422

1.3422
x 10

8 SR

Fig. 3. Temporal PC distribution for the four different applications.

The spatial distribution shows how similar application may
have common PC values. The only distinguishing feature is the
frequency of use of a particular address space, which can only
be estimated after the program, has run to completion. In the
contrary, the temporal distribution shows the pattern of use of
address space over a period of time, and can further be refined
to generate ICmetric features during the program execution.

IV. PROPOTIES OF CPI

In embedded system, processing throughput is one aspect
of a processor’s important parameter. Typically, CPI or its
multiplicative inverse of Instructions per Cycle (IPC) is used to
represent a processor’s performance [12]. Most computers or
embedded systems run synchronously at a constant clock rate,
the CPU clock rate depends on the specific CPU architecture
and its hardware implementation technology used. A program
is comprised of a number of micro operations which depend on
the instruction sets and the exact CPU architecture that are used
in the embedded system. For example, the well-known CPU
design strategy: Reduced Instruction Set Computing (RISC)
normally has 5 stages:

Instruction

Fetch

Instruction

Decode
Exeution

Memory

Access

Result

Store

Next Instruction

Fig. 4. A block diagram of a typical RISC processing steps.

In Fig. 4, each stage needs one clock cycle for passing an
instruction through the stages sequentially. The number of
CPU clock cycles for each instruction varies in the used
hardware architectures. For example, without pipeline strategy,
a new instruction is fetched in the first stage at least 5 clock
cycles, but a new instruction may be fetched every cycle if the
pipeline strategy is used. In addition, some of instructions
require multi-cycle to be executed as they need access to
memory during the processing (e.g. Load, Store and Jump).
Therefore, the number of CPU cycles needed for a single
instruction to be executed in a computer system is termed as
CPI. A program normally consists of varying instructions,
which means the program should have varying CPI values
during execution. Thus, average CPI value that can be used to
describe the system performance varies in a specified period of
execution. The average CPI of an embedded processor can be
calculated as given in (1) [13]:

maxT f
CPI

I


 (1)

where I is the total number of instructions, T is time
consumption while executing the total number of instructions,

and maxf is the maximum clock frequency of an embedded

processor.

Although PC can exhibit some properties of a program, a
large number of data need to be processed for the feature
extraction. In this case, if all the PC data are analysed, the
system performance may degrade. Therefore, according to the

discussion of the CPI properties, CPI can be an alternative
feature for the ICmetrics system.

Fig. 5 shows an example of PC and CPI diagrams of a
program executed in ARM based embedded system.

 (a)

C
P

I

Samples of CPI

(b)

Fig. 5. Example of PC and CPI diagrams. (a) PC. (b) CPI.

In Fig. 5, each point on graph (a) represents an executed PC
value, and each point on graph (b) represents average CPI
value taken over every 10,000 instructions executed. From the
point of view of processing data volume, (using the two
graphs), the CPI graph only contains 0.01% data volume of the
PC graph. This could significantly reduce the processing time
for the analysis of ICmetrics features. From the point of view
of feature extraction, although the CPI graph has much less
information compare to the PC graph, the main features of the
executed program is remained. For example, the peaks PC
values normally indicate where the branch jump instructions
occur, which means certain function or condition are called or
triggered. Therefore, it is possible to obtain enough information
to identify the executed program from these points. As can be
seen from Fig.5 (b), the CPI graph still remains the main
characteristics of the program, especially, the relationship of
these peaks are retained.

In Fig.5 (b), every single average CPI value is taken over
every 10,000 instructions per interval. However, this interval
number can be chosen differently. If fewer instructions are
taken, more details of the program can be obtained. Fig. 6
illustrates several average CPI graphs for the same program
when using different intervals.

(a) (b) (c)

Fig. 6. Average CPI graphs for the same program with different intervals. (a) interval set to 1,000. (b) interval set to 5,000. (c) interval set to 20,000.

As can be seen from Fig. 6, while using different intervals,
the average CPI graphs for the same program are significantly
different. Generally, more details of the program’s behaviour
can be obtained if less interval value is used, for example, those
branch jump points are not present in Fig. 6 (b) and (c) but can
be detected in Fig. 6 (a). According to this property, we could
explore the sizes of the intervals to obtain the best suitable
value for a specific program. Once a fixed interval is found, the
feature extraction for the ICmetrics system would benefit from
the balance of the system accuracy and performance.

V. CONCLUSION

The ICmetrics technology can automatically extract and
analyse the features derived from an embedded system, and use
these features to generate unique basic number for the purpose
of encryption. The embedded system could benefit from it by
automatically detecting frauds and protecting data
communication during the system run time.

PC alone is not enough to segment the individual phases of
a program in execution. The peaks extracted from the CPI
maps directly into the PC profile, which identifies a particular
phase within a program. The phase is an interval within a
program that has similar behaviour. By analysing similar
phases, a unique basic number can be generated and
subsequently used as encryption key in the ICmetrics security
system. If an automated approach can be developed capable of
identifying these phases, it would make it possible to extract
information about how a program is changing in a way that
could generalise to all embedded systems.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the UK
Engineering and Physical Sciences Research Council under
grant EP/K004638/1 and the EU Interreg IV A 2 Mers Seas
Zeeën Cross-border Cooperation Programme – SYSIASS
project: Autonomous and Intelligent Healthcare System
(project’s website http://www.sysiass.eu/).

REFERENCES

[1] Y. Kovalchuk, K. D. McDonald-Maier, and G. Howells, "Overview of
ICmetrics technology-security infrastructure for autonomous and
intelligent healthcare system," International Journal of u- and e- Sevice,
Science and Technology, vol. 4, pp. 49-60, 2011.

[2] M.Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh, "Hardware
Assisted Detection of Malicious Software in Embedded Systems," IEEE
Embedded Systems Letters, vol. 4, pp. 94-97, 2012.

[3] G. E. Suh and S. Devadas, "Physical Unclonable Functions for Device
Authentication and Secret Key Generation," in 44th ACM/IEEE Design
Automation Conference, 2007, pp. 9-14.

[4] H. Handschuh, G.-J. Schrijen, and P. Tuyls, "Hardware Intrinsic
Security from Physically Unclonable Functions," in Towards Hardware-
Intrinsic Security, A.-R. Sadeghi and D. Naccache, Eds., ed: Springer
Berlin Heidelberg, 2010, pp. 39-53.

[5] A. K. Jain, P. Flynn, and A. Ross, Handbook of Biometrics: Springer
US, 2008.

[6] W. Sheng, G. Howells, M. C. Fairhurst, F. Deravi, and K. Harmer,
"Consensus Fingerprint Matching with Genetically Optimised
Approach," Pattern Recognition, vol. 42, pp. 1399-1407, 2009.

[7] Y. Kovalchuk, W. G. J. Howells, H. Hu, D. Gu, and K. D. McDonald-
Maier, "A practical proposal for ensuring the provenance of hardware
devices and their safe operation," in 7th IET International Conference on
System Safety, incorporating the Cyber Security Conference, 2012, pp.
1-6.

[8] Y. Kovalchuk, W. G. J. Howells, H. Hu, D. Gu, and K. D. McDonald-
Maier, "ICmetrics for low resource embedded systems," in the 3rd
International Conference on Emerging Security Technologies, 2012, pp.
121 - 126.

[9] Y. Kovalchuk, H. Huosheng, G. Dongbing, K. McDonald-Maier, D.
Newman, S. Kelly, et al., "Investigation of Properties of ICmetrics
Features," in the 3rd International Conference on Emerging Security
Technologies (EST) 2012, pp. 115-120.

[10] S. P. Reiss and M. Renieris, "Encoding program executions," in the 23rd
International Conference on Software Engineering, 2001, pp. 221-230.

[11] C. Gniady, A. R. Butt, and Y. C. Hu, "Program-counter-based pattern
classification in buffer caching," in the 6th conference on Symposium on
Opearting Systems Design & Implementation, 2004, pp. 27.

[12] K. Hwang and N. Jotwani, Advanced Computer Architecture: Tata
McGraw-Hill Education, 2010.

[13] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and B.
Davies, "The fuzzy correlation between code and performance
predictability," in the 37th International Symposium on
Microarchitecture (MICRO), 2004, pp. 93-104.

