
A Self-Organising Map Based Algorithm for Analysis of ICmetrics Features

Xiaojun Zhai, Kofi Appiah, Shoaib Ehsan, Wah M

Cheung, Huosheng Hu, Dongbing Gu, and Klaus

McDonald-Maier

School of Computer Science & Electronic Engineering

University of Essex, Colchester, UK

{xzhai, kappiah, sehsan, wmcheu, hhu, dgu, kdm

}@essex.ac.uk

Gareth Howells

School of Engineering and Digital Arts

University of Kent

Canterbury, UK

W.G.J.Howells@kent.ac.uk

Abstract—ICmetrics is a new approach that exploits the

characteristic and behaviour of an embedded system to obtain

a collection of properties and features, which aims to uniquely

identify and secure an embedded system based on its own

behavioural identity. In this paper, an algorithm based on a

self-organising map (SOM) neural network is proposed to

extract and analyse the features derived from a processor’s

performance profile (i.e. average cycles per instruction (CPI)),

where the extracted features are used to help finding the main

behaviours of the system. The proposed algorithm has been

tested with different programs selected from the MiBench

benchmark suite, and the results achieved show that it can

successfully segment each program into different main phases

based on the unique extracted features, which confirms its

utility for the ICmetrics technology.

Keywords- ICmetrics; signal processing; feature extraction;

embedded systems; self-organizing map (SOM);

I. INTRODUCTION

The rapid growth of digital systems has transformed the
way we create, destroy, share, process and manage
information, which bring benefits in a number of embedded
consumer applications and communication systems [1].
However, this has also paved the way for fraud and other
related crimes, which make imperative the need for highly
secure embedded systems [2]. Ensuring the identity and
authenticity of electronic digital systems is therefore critical
for enabling secure communications in embedded
applications.

Compromised access to confidential data is growing due
to much personal data is increasingly held by medical, legal
and law enforcement agencies and normally access remotely
through a broad spectrum of mobile and networked devices
[3]. Such uses make it vital to increase overall dependability,
integrity and robust security of an embedded system, which
motivates researchers to searching the solutions for these
problems. Generally, an embedded system consists of two
main parts: hardware and software. There are some
techniques called Physical Unclonable Functions (PUF) [4]
or hardware intrinsic security [5] focus on the hardware
security, where the manufacturing process variation is used
to identify the integrated circuits. However, they are limited
by environmental instability, and the need to repeatedly

power cycle to gain several samples. On the other hand, there
are also many approaches for detecting software failure,
tampering and malicious exploitation of embedded systems
[1, 6], the common disadvantage of these approach are
require store the sensitive data in the system as the template,
which may weaken system's safety.

In order to search a better solution for the above
problems, a new concept termed ICmetrics (Integrated
Circuit metrics) is introduced. The concept is similar to
biometrics where human properties and features are
characterised to create a uniquely identifying metric value
[7]. ICmetrics exploits the structure and behaviour of an
embedded system, and obtain a collection of properties and
features to identify the system. In principle, an ICmetric
generated from a networked embedded system’s unique
behaviour will enable similar applications to generate unique
encryption key to secure communications and stored data
[8]. In addition, it provides the additional advantage that no
user data is required, which is essential for applications that
is no direct interaction with human operators. The ICmetrics
only rely on the properties and features of the system, which
means the system identifier (i.e. basic number or encryption
key) can be regenerated on demand and no need to locally
store it. A significant change in the system’s operation or the
readings from its sensors that will cause the system’s
properties and features to change, the system identifier will
be changed as well. Therefore, the ICmetrics could improve
both security and dependability based on exploitation of the
system’s unique behaviour.

In order to realise the ICmetrics concept for a practical
application, many challenges must be overcome. In the our
previous works [9] and [10], we aimed to explore the
possibility of applying the ICmetrics technology to generate
stable encryption keys based on characteristics derived from
embedded systems’ operation. The program counter (PC) of
a processor core was used as a source for ICmetrics features,
where full PC profiles were statistically analysed to find the
distinct values from different programs. The achieved results
showed that independent values of the PC cannot always
give unique values that can be used to identify hardware
devices. Therefore, the PC should be combined with other
measurements extracted from electronic devices’ operation
as the ICmetrics feature. Investigation of the other suitable

features for ICmetrics that is becomes the key task of current
research.

In this paper, we present an algorithm based on analyses
of a processor’s performance profile (i.e. average cycles per
instruction (CPI)) to segment the running program into
different main behaviours or phases. The algorithm utilises a
self-organising map (SOM) to cluster the samples of average
CPI into different categories, and then the post-processing
module groups them to into different phases. Based on the
segmentation results, the detailed features of the running
program can be further extracted, which can be served as one
of ICmetrics feature to distinguish the embedded systems.
The proposed algorithm has been successfully implemented
in MATLAB as a proof of concept prior to hardware
implementation. Results achieved show that the proposed
algorithm can successfully extract and segment each
program’s main behaviours based on their unique
characteristics. The used programs are chosen from the
automotive package of the MiBench suite of benchmark
algorithms [11].

The rest of paper is organised as follows. The proposed
algorithm is introduced in Section 2. The experimental setup
and the implementation results are discussed in Section 3.
Finally, the conclusions are presented in Section 4.

II. PROPOSED ALGORITHM

The PC value was explored as an ICmetrics feature in our
previous studies [9] and [10], but only separated PC values
were statistically analysed, which are unable to provide
enough information about devices’ behaviour. Contrary to
that, we observe that PC is a good source derived from high
level program. Since the way a program’s execution changes
over time is not totally random, it often can be divided into
repeating behaviours or phases [12]. Loops, conditional
branches and data transfer all can be observed in the PC
profile. More importantly, the overview of PC flow can show
the unique shape or skeleton of a program. Therefore, it is
possible to find distinctive characteristics of devices’
behaviour by analysing these unique shapes. Fig. 1 shows an
example of a program’s PC profile.

Figure 1. An example of a program’s PC profile.

The program used in Fig. 1 is angle conversion, which is
selected from the automotive package of the MiBench suite
of benchmark algorithms [11]. The angle conversion
program is mainly used to perform two tasks: degree to

radian and radian to degree angle conversions. As can be
seen from Fig. 1, the characteristics of degree to radian and
radian to degree functions have a clear boundary. However,
in order to automatically detect this boundary, approximately
6.5×10

5
 instructions in the angle conversion’s PC profile

need to be analysed, which has the potential to degrade
embedded system performance. In order to solve this
problem, an alternative solution is proposed to localise the
boundary of each main function.

A. System Performance Profile

A typical system performance can be CPI [13], which
indicates the complexity of instructions executed within a
particular period time. For example, a Branch or Jump
instructions are normally need multiple clock cycles to be
executed by processor, which also indicates function calls
are initiated. The average CPI of a processor can be
calculated as given in [13]:

 maxT f
CPI

I


 (1)

where I is the total number of instructions, T is time
consumption while executing the total number of

instructions, and
maxf is the maximum clock frequency of a

processor.
The average CPI diagram for every 10,000 instructions of

angle conversion program is shown in Fig. 2.

Degree to Radian Radian to Degree

A
v

er
a

g
e

C
P

I

Samples of CPI
Figure 2. The CPI diagram of angle conversion.

As can be seen from Fig. 2, the CPI diagram of angle
conversion program comprises the same two main phases as
the PC profile in Fig. 1. However, the number of samples
needed to be analysed is reduced to approximately 63, which
has significantly less data size compared to directly
analysing the PC profile.

The main idea behind the proposed algorithm is trying to
automatically segment the major phases from the CPI
diagram, and then transform the localised positions from the
CPI domain to the PC domain using Equation (1), which
would make it possible to extract information about any
change in program’s behaviour. After finding the local
identification information from the major program phases,
this information can be used to generate a unique identifier
for the embedded system.

B. CPI Clustering

In order to segment the major characteristics from the
CPI diagram, a SOM based neural network clustering tool is

introduced to group the CPI data by similarity. In addition, a
pre-processing and a post-processing module are also
proposed to smooth and further merge the CPI data
respectively.

1) Pre-processing Module
The original CPI diagrams normally consist of a set of

high variation peak values at some certain points which
indicate the boundaries of the major characteristics of the
program. On the contrary, the rest of data values in the CPI
diagram generally comprise a set of relatively low variation
values. Therefore, once the low variation values are grouped
together, the rest of data values define the boundaries of the
major characteristics of the program. In order to effectively
use the SOM based neural network clustering tool to group
the data values, a pre-processing module is applied to smooth
the data values, which reduces variances locally in the CPI
diagram.

The pre-processing module consists of a mean filter is
used to calculate the average value inside a 1×w rectangular

window. Suppose that ()f x denotes the CPI value at

position x which is always the centre point of a rectangular
window B with size 1×w. The window mean value

()meanf x is calculated by (2):

()

() x B

mean

f x

f x
w




 (2)

In the proposed algorithm, the higher the value of w the
smoother is the CPI result, but high w value means more
computations and may remove the peak values at the
boundaries. Thus, the value of w is set to minima ‘3’ in order
to minimise the effects on the peak values at the boundaries.
Fig. 3 shows the resulting diagram after applying the pre-
processing module on the original CPI diagram.

A
v

er
a

g
e

C
P

I

Samples of Average CPI
Figure 3. Resulting CPI diagram after applying the per-processing

module.

As can be seen from Fig. 3, the curve of the resulting CPI
diagram has been significantly smoothed by the pre-
processing module, but the main peak values at the
boundaries are still intact. The next step is to apply the SOM
based neural network to cluster these data.

2) SOM Module
SOM is a type of Artificial Neural Network (ANN) that

is trained using unsupervised learning algorithm, which
learns to classify the input vectors into different categories

according to how they can be grouped in the input space
[14].

For proposed algorithm, the input vector of SOM is the
smoothed averaged CPI value. The neurons inside SOM
competitive layer are organised in hexagonal topology, and
the total number of used neurons is ‘9’. The weights of each
neuron are initialised randomly, and each weight is changed
along with the training process, and moves to the average
position of all of the input vectors for which it is a winner or
in the neighbourhood of a winner.

During the training process, the SOM neural network
tries to cluster the input values into 9 categories and maps
them into the corresponding neurons. Fig. 4 shows clustered
averaged CPI diagram when applying the trained SOM
neural network on the smoothed average CPI diagram.

A
v

er
a

g
e

C
P

I

Samples of Average CPI
Figure 4. Clustered CPI diagram.

In Fig. 4, similar CPI values are clustered in the same
categories, and marked with the same symbols. As evident
from Fig. 4, most of the major phases from the averaged CPI
diagram have been marked with the same symbols, however,
there are still some samples have not been grouped in the
corresponding category sets. Therefore, a post-processing
module is introduced to further merge the samples into the
major group.

3) Post-processing Module
The post-processing module is a stage to merge the

discrete minor clusters into few major clusters that can
correct the positions of major clusters obtained from the
SOM.

Let l and c denote the total number of averaged CPI
samples and clustered categories respectively, which will
result in the outputs of the SOM neural network generating a
matrix R with size c×l:

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...

...

l

l

c c c l

r r r

r r r

r r r

 
 
 
 
 
  

R

 (3)

The elements in R are either ‘0’ or ‘1’. A value of ‘1’ for
all elements within the same row vector indicates that they
belong to the same category, and their column index is the
location where the sample is in the smoothed averaged CPI
diagram.

Let vector
i

p consists of the column indices of the

elements ‘1’ at row i from R with size of m. The differences

between adjacent elements of the vector
i

p are calculated to

form vector di.
A scan process is firstly carried out to mark the elements

in di one by one, where every element is masked either peak
or off-peak element based on threshold t, and then, the

positions of the peak element form vector
i

p . All the

elements in
i

p are analysed in order to find the suitable

candidate positions
sL and

eL for the major cluster in

category i. The flow chart of this analysis is shown in Fig. 5.

i
p

ilength(p) 0

Yes

s i

e i

L =p (1)

L =p ()m

No
i[1 length(p)]j ilength(p)j 

No Calculate differences

between adjacent

elements of ip

s i i

e i i

L =p (p (j-1)+1)

L =p (p (j)+1)

Yes
j++

No

End

Yes

Start

0.5d m  

Figure 5. Flow chart of major group localisation.

In Fig. 5, the obtained positions of major cluster may
consist of more than one set of candidates. An extra process
is proposed to further check whether the candidates belong to
the same major cluster. The distances between the adjacent
candidate sets are calculated and if the adjacent candidate
sets have close distance, then they will be merged together.
Fig. 6 shows the calculated positions of the major clusters.

A
v

e
r
a

g
e
 C

P
I

Samples of Average CPI

Figure 6. Calculated positions of the major groups.

After obtaining the positions of major clusters in CPI
diagram, according to (1), the corresponding positions in PC
profile can be also calculated.

III. EXPERIMENTAL SETUP AND IMPLEMENTATION RESULTS

A. Experimental Setup

For the proposed work, we have employed an embedded
system based on a STMicroelectronics STM32F207IG
microcontroller equipped with an ARM 32-bit Cortex-M3
processor [15]. A combination of KEIL µVision IDE [16]
and ULINKpro Debug and Trace Unit is used to download
the program and trace the instructions executed in the
microcontroller, where high-Speed data and instruction trace
are streamed directly to the host computer allowing off-line
analysis of the program behaviour [16].

Five programs from the automotive package of the
MIBench suite of benchmark algorithms [11] are selected:
angle conversion (AC); bit count (BC); cubic function (CF);
random numbers (RN); and square roots (SR). The five
programs are mixed together with 6 different combinations
to simulate six behaviours that resulted in an embedded
system and are listed in Table I.

TABLE I. COMBINATIONS OF THE PROGRAMS

Devices
Original benchmark algorithms

AC BC CF RN SR

Behaviour 1 1a 1 1 1 1

Behaviour 2 2 1 1 1 1

Behaviour 3 1 2 1 1 1

Behaviour 4 1 1 2 1 1

Behaviour 5 1 1 1 2 1

Behaviour 6 1 1 1 1 2
a. Means the number of times a program is executed.

In Table I, the device is firstly running AC, BC, CR, RN,
and SR only once, namely: ‘Behaviour 1’. The device is
secondly the same programs, but running AC twice, namely:
‘Behaviour 2’. Following the same principle, we get six
different behaviours in total. In general, the six behaviours
are quite similar: the only difference is each behaviour has
only one program that is executed twice, which significantly
increases the difficulty to find the differences from the large
number of executed instructions.

B. Implementation Results

The six mixed programs are downloaded and executed
separately in STM32F207IG microcontroller. While running
each program, the full executed instruction profile is traced
and delivered in real-time to the host computer via
ULINKpro Debug and Trace Unit. The µVision IDE exports
the trace data to the hard disk for off-line analysis. For the
proposed work, only PC and time information of each
instruction are recorded in the profile, which are used to
generate PC and CPI diagrams.

According to the equation (1), average CPI value is
decided by T, f and I. Since the running frequency of the
used microcontroller is 120 MHz, and the number of
instructions per interval is set to 10,000, it essentially means
that each point on the CPI diagram represents the average
CPI value taken over 10,000 instructions of execution. The
time consumption while executing 10,000 instructions is
recorded in the tracing profile.

The proposed algorithm was successfully implemented in
MATLAB, and tested using the six traced profiles mentioned
in the previous section. The Behaviour 1 in Table I is used to
simulate the normal status of the device. Smoothed Averaged
CPI samples are firstly calculated in the pre-processing
module, and then the averaged CPI samples of the
‘Behaviour 1’ are used to train the SOM neural network.
After training, the neural network is applied to cluster them
into 9 categories. At the end of process, the positions of
major clusters in CPI diagram are obtained by the post-
processing module. The rest of behaviours in Table I are
used for testing, where the same procedures and trained
SOM neural network are applied.

In Fig. 7, the major phases in average CPI profile have
been marked with different colours using the positions that
are obtained from the testing. By comparing the segmented
results of the ‘Behaviour 1’ and the rest of behaviours, it is
evident that the parameters of the major phases in the
‘Behaviour 1’ have significant differences from the others.
For example, the size and number of each phase are varied in
CPI profile, sequentially, if applying the phase locations to
PC profile (e.g. Fig. 1), detailed features of the phase can be
further analysed. By using these rough-to-fine features, a
change in the system’s operation could be detected.

IV. CONCLUSION

In this paper, an algorithm based on the analysis of a
processor’s performance profile is proposed to segment a
program into different phases based on their major
behaviours from embedded systems’ operation. A pre-
processing and a post-processing module are combined with
a SOM to cluster the samples of CPI into different groups,
and then these positions of each segmented group can be
further used to find the main behaviours of each program.
The proposed algorithm has been successfully implemented
in MATLAB as a proof of concept prior to hardware
implementation. Results achieved show that the proposed
algorithm can successfully extract features from the
processor’s performance profile, based on the segmented
results, a unique ICmetric identification information can be
generated, which can be used to detect any unusual changes
in an embedded system.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
UK Engineering and Physical Sciences Research Council
under grant EP/K004638/1 and the EU Interreg IV A 2 Mers
Seas Zeeën Cross-border Cooperation Programme –
SYSIASS project: Autonomous and Intelligent Healthcare
System (project’s website http://www.sysiass.eu/).

REFERENCES

[1] M.Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh, "Hardware
Assisted Detection of Malicious Software in Embedded Systems,"
IEEE Embedded Systems Letters, vol. 4, pp. 94-97, 2012.

[2] F.-S. Corporation, F-Secure reports amount of malware grew by
100% during 2007. Helsinki, Finland, 2007.

[3] K. W. Miller, J. Voas, and G. F. Hurlburt, "BYOD: Security and
Privacy Considerations," IT Professional, vol. 14, pp. 53-55, 2012.

[4] G. E. Suh and S. Devadas, "Physical Unclonable Functions for
Device Authentication and Secret Key Generation," in 44th
ACM/IEEE Design Automation Conference, 2007, pp. 9-14.

[5] H. Handschuh, G.-J. Schrijen, and P. Tuyls, "Hardware Intrinsic
Security from Physically Unclonable Functions," in Towards
Hardware-Intrinsic Security, A.-R. Sadeghi and D. Naccache, Eds.,
ed: Springer Berlin Heidelberg, 2010, pp. 39-53.

[6] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, "Secure embedded
processing through hardware-assisted run-time monitoring," in
Proceedings of Design, Automation and Test in Europe, 2005, pp.
178-183 Vol. 1.

[7] C. Rathgeb and A. Uhl, "An iris-based Interval-Mapping scheme for
Biometric Key generation," in Proceedings of 6th International
Symposium on Image and Signal Processing and Analysis, 2009, pp.
511-516.

[8] G. Howells, E. Papoutsis, A. Hopkins, and K. McDonald-Maier,
"Normalizing Discrete Circuit Features with Statistically Independent
values for incorporation within a highly Secure Encryption System,"
in Second NASA/ESA Conference on Adaptive Hardware and
Systems, 2007, pp. 97-102.

[9] Y. Kovalchuk, W. G. J. Howells, H. Hu, D. Gu, and K. D.
McDonald-Maier, "A practical proposal for ensuring the provenance
of hardware devices and their safe operation," in 7th IET
International Conference on System Safety, incorporating the Cyber
Security Conference, 2012, pp. 1-6.

[10] Y. Kovalchuk, W. G. J. Howells, H. Hu, D. Gu, and K. D.
McDonald-Maier, "ICmetrics for low resource embedded systems," in
the 3rd International Conference on Emerging Security Technologies,
2012, pp. 121 - 126.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, "MiBench: A free, commercially representative
embedded benchmark suite," in IEEE International Workshop on
Workload Characterization, 2001, pp. 3-14.

[12] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder,
"Discovering and exploiting program phases," IEEE Micro, vol. 23,
pp. 84-93, 2003.

[13] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and B.
Davies, "The fuzzy correlation between code and performance
predictability," in the 37th International Symposium on
Microarchitecture (MICRO), 2004, pp. 93-104.

[14] T. Kohonen, "The self-organizing map," Proceedings of the IEEE,
vol. 78, pp. 1464-1480, 1990.

[15] STMicroelectronics. STM32F207IG Data Sheet. Available:
http://www.st.com/internet/mcu/product/245085.jsp

[16] KEIL. Keil µVision IDE Data Sheet. Available:
http://www.keil.com/uvision/

Figure 7. The results of average CPI segmentation. (a) Behaviour 1. (b) Behaviour 2. (c) Behaviour 3. (d) Behaviour 4. (e) Behaviour 5. (f) Behaviour 6.

http://www.st.com/internet/mcu/product/245085.jsp
http://www.keil.com/uvision/

