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Abstract— Emerging computing relies heavily on secure back-

end storage for the massive size of big data originating from the 

Internet of Things (IoT) smart devices to the Cloud-hosted web 

applications. Structured Query Language (SQL) Injection Attack 

(SQLIA) remains an intruder’s exploit of choice to pilfer 

confidential data from the back-end database with damaging 

ramifications. The existing approaches were all before the new 

emerging computing in the context of the Internet big data mining 

and as such will lack the ability to cope with new signatures 

concealed in a large volume of web requests over time. Also, these 

existing approaches were strings lookup approaches aimed at on-

premise application domain boundary, not applicable to roaming 

Cloud-hosted services’ edge Software-Defined Network (SDN) to 

application endpoints with large web request hits. Using a Machine 

Learning (ML) approach provides scalable big data mining for 

SQLIA detection and prevention. Unfortunately, the absence of 

corpus to train a classifier is an issue well known in SQLIA research 

in applying Artificial Intelligence (AI) techniques. This paper 

presents an application context pattern-driven corpus to train a 

supervised learning model. The model is trained with ML 

algorithms of Two-Class Support Vector Machine (TC SVM) and 

Two-Class Logistic Regression (TC LR) implemented on Microsoft 

Azure Machine Learning (MAML) studio to mitigate SQLIA. This 

scheme presented here, then forms the subject of the empirical 

evaluation in Receiver Operating Characteristic (ROC) curve. 
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I.  INTRODUCTION  

Recent years have seen a continuous upward trend in big 
internet data, and the volume of the Cloud-driven applications 
will only continue to grow with more individuals, governments 
and businesses adopting and hosting files and applications in the 
Cloud. A Google search of ‘SQLi hall of shame’ [1] throws light 
on how topical SQLIAs issues are. SQL Injection (SQLI) is not 
only a vulnerability arising from developers’ lack of security 
awareness in web application development to sanitised input data, 
but an exploit of the free text processing capability of the SQL 
engine which has ramifications in both legacy and new web 
application lacking sanitation becoming SQLI vulnerable. 

The SQL language syntax is in plain English, and the SQL 
keywords and tokens are also in plain text. Therefore, the SQLIA 
problem is a plausible candidate to apply predictive analytics 
employing a supervised learning model trained with historical 
attack signatures, including SQL tokens and safe web requests 
patterns to predict SQLIA at SQL query injection points.  

Unfortunately, web applications are designed for different 
requirements. Thus, web application domain context is so diverse 
to have a standardised pre-existing pattern-driven data set to train 
a supervised learning model. Moreover, as such, non-availability 
of a data set that covers every application domain context is an 
issue well known in SQLIA research in applying AI techniques. 

We opine patterns exist in every input data in both legacy and 
new web applications that can be leveraged to generate as many 
derivations of member strings. Applying ML techniques requires 
data set with sufficient learning data arising from patterns that 
exist in the input data. There is a need to build a prediction model 
trained from data set of the desired application domain context to 
predict SQLIA. In our labelling of the data set, the presence of 
known attack signature at injection points will contain patterns of 
SQL tokens and symbols which are deemed SQLIA positive. 
Conversely, the valid web requests (SQLIA negative) would take 
the form of generating all possible member strings. We apply 
Non-Deterministic Finite Automata (NFA) implemented in 
Regular Expression (RegEx) to define the constraint patterns, and 
employing Symbolic Finite Automata (SFA) with a constraint 
solver termed Satisfiability Modulo Theories (SMT-Z3) [2], [3] to 
generate member strings from the defined RegEx patterns.  

We trained a supervised learning model with this pattern-
driven learning data in demonstrating a proof of concept by 
applying predictive analytics to a test web application expecting 
dictionary word list as input data. The learning data are obtained 
by automata states walk to derive as many member strings in a 
given pattern. The trained models are evaluated in ROC curve 
with the TC SVM having the best performance metrics in Area 
Under Curve (AUC) value of 0.986 deployed as a Web Service 
(WS). The WS  is consumed in a Fiddler proxy Application 
Programming Interface (API) [4] for the ongoing SQLIA 
prediction as to reject intercepted requests that are positive. 

This paper lays out in six sections ending with a conclusion 
and future work summary. Section II covers related work and 
Section III focused on the background, including corpus 
generation; with Sections IV and V are detailing predictive 
analytics experiment, evaluation and results. 

II. RELATED WORK 

The research area of SQLIA has seen various methodologies 
proposed over the years by researchers which we broadly 
categorised into three groups. Firstly, SQLI Vulnerability 
(SQLIV) testing and detection [5], [6]. Secondly, defensive 



 

coding in web application code sanitation for SQLI prevention 
[7], [8]. Thirdly, dynamic runtime analysis [9], [10] including 
taint-based [11], [12] and approaches that apply AI (a similar 
approach implemented in this paper) in the detection and 
prevention of SQLIA. 

The approach presented in this article applies AI which 
requires a robust data set with various patterns in feature values to 
train a classifier. Applying ML requires robust learning data with 
patterns to train a classifier implementing TC SVM and TC LR 
algorithms to predict SQLIA accurately. Unfortunately, as there is 
no unified pre-existing data set, researchers over the years have 
resorted to various approaches in generating sample data sets with 
most proposals lacking patterns to enhance learning data, and 
fraught with complex computational overheads. Also, plausible 
approaches in the past that relied on source code will be 
inapplicable over time in emerging computing platforms like the 
Cloud where source code access for static scanning is restricted. 
Finally, some existing ML implementation lack completeness in 
being theoretical or not moving beyond the performance metrics 
or ROC curve evaluations to implement the trained models in a 
real-life application. Below gives a high-level review of some 
existing ML approaches. 

 Bockermann et al. [13] proposed using tree kernels for 
analysing SQL statements in addition to exploring feature 
vectorization of data input to an SVM classifier but found there to 
be drawbacks in the tree-kernels computational overhead. Also, 
their data set extraction depends on URL strings which are 
repeating strings lacking patterns. 

Komiya [14] proposed SVM to detecting SQLIA from user 
inputs extracted from blank separation (counting number of 
terms) and tokens. Its drawback was requiring access to source 
code in detecting SQLIA. 

Choi et al. [15] train an SVM classifier using feature 
vectorization by N-Grams. The data set is a collection of full 
query structure vectorised to N-Grams, but the training data is not 
robust enough for a good performance metrics in big data mining. 
Also, it needs access to full source code. 

Wang and Li [16] proposed SQL query program tracing in 
which related queries are grouped based on runtime program 
trace. However, the approach’s drawback is the reliance on the 
source code for the SQL tracing grouping that is hashed to the 
vector matrix for a classifier implementing the SVM algorithm. 

Pinzón et al. [17] present a multi-agent approach that uses 
both SVM and neural networks to predict SQLIA from SQL 
queries behaviour that are stored as cases. The architecture named 
CBR cycle is computationally expensive and need access to 
source code. 

Kim and Lee [18] proposed an approach that uses the SVM 
classifier for a binary classification of internal query 
representation known as query trees. The training data comprised 
of feature vectors of transformed query trees of the internal query 
structure. It drawbacks in requiring access to the source code and 
it is computational complex because of the size of the query trees. 

The scheme presented here is an improvement on a previous 
workshop paper on applying ML predictive analytics to SQLIA 
prediction and prevention [19]. We detail in this article; the novel 

data set generation and a further improvement of the trained 
model’s prediction results on True Positives (TP) and True 
Negatives (TN), but with low False Positives (FP) and False 
Negatives (FN). The methodology adopted here has been 
empirically evaluated in the numeric encoding of both expected 
input and patterns of SQLIA types [20], [21]. The good results of 
the encoded patterns-driven data set to a supervised learning 
model in performance metrics motivated this paper. 

We present in this article a supervised learning model that 
uses a data set input from patterns of expected input data, 
including SQLIA types and SQL keywords to train various 
classifiers with a better performance metrics trained model 
deployed as WS. The scheme relies on the intercepted input data 
at runtime to detect and prevent SQLIA as against static queries 
comparison including source code scanning for vulnerabilities 
(white-box and black-box penetration testing)  as proposed in 
most existing approaches applying runtime analysis. 

III. BACKGROUND THEORY  

The scheme presented here uses a web proxy to intercept web 
requests of any intent and applies predictive analytics techniques 
to predict SQLIA at the SQL injection points. 

 A web proxy is the most suitable to intercept web requests, 
including those originating from any injection mechanisms to 
SDN Cloud applications’ endpoints. An application-level proxy 
performs better in intercepting and decrypting of obfuscated web 
requests than low-level network packet interception tools which 
suffer from messages fragmentation in a large volume of gigabits 
per seconds of packets in the wire. Injection mechanisms to a 
vulnerable application can originate from web page forms, 
second-order injection, exploiting web-enabled server variables, 
query strings, and through cookies.  

An intruder would employ the following SQLIA types 
techniques to carry out the attack at the injection points in any 
combination. These SQLIA exploits techniques are Tautology; 
Union; Piggybacked; Invalid/Logical queries; Time-based; 
Obfuscation encoding and Stored procedure. The SQLIA types 
are also a source of SQLIA positive labelled feature values in the 
scheme presented here. 

A. SQL Language structure and injection point 

SQL element comprises of tokens which are labelled SQLIA 
positive in the data set discussed in this article. SQL tokens 
comprise of keywords that include identifiers, operators, literals 
and punctuation symbols. The SQL syntax language element has 
the following: SQL Clause (WHERE, SET, UPDATE, etc.); 
predicate (as in LoginName = ‘bob’); and, expression (as in ‘bob’ 
OR 2=2) which is illustrated in Fig. 1 below.  

The presence of SQL tokens in web requests’ expected input 
data when the SQL query injection point is analysed is predicted 
as SQLIA. In a SQL query, the WHERE clause predicate and the 
expression used to control query results are the SQL injection 
spots. A malicious query string can be passed to a SQL 
expression in tautological SQLIA type (e.g., ‘x’=’x’ OR 2=2) to 
return results from a table far beyond the developer’s intention. 
This location has been explored in SQLIA research including 
SQLProb by Liu et al. [22] in detection and preventing SQLIA. 



 

SELECT loginName, password FROM tblUser

 WHERE LoginName= 'bob ' OR 2=2--
           WHERE
            clause

SQL 
Statement

Predicate

Expression

http://localhost/bsid/DataPage.aspx?LoginName=bob'OR%201=1--

Query string

 

Fig. 1. Query string, SQL query element and injection hotspot. 

B. Obtaining the learning data (corpus) 

 We explore automata states walk to generate a data set of 
patterns of expected input data where none exists to train a 
supervised learning model. Also, a pattern-driven approach 
prevents the security implications of making the learning data 
input to ML being a repository that lay bare the expected input 
data. 

Fig. 2 below illustrates the fundamentals of Finite State 
Automata (FSA) [23], [24] states walk that forms the building 
block to our learning data extraction techniques. These automata 
states walk collation to generate all possible accepted member 
strings shown in Table I is automated, employing a utility named 
Regular expression explorer (Rex) [3] by Veanes et al. [26]. Rex 
is an implementation of SFA which uses Z3 [25] constraint solver 
[2] to generate as many member strings as possible from a 
defined RegEx constraint patterns. In Rex, the RegEx implements 
an NFA with an epsilon move and a further conversion of NFA to 
a Deterministic Finite Automata (DFA) for optimisation.  

 

Fig. 2. States walk from expected input string to generate member strings.  

TABLE I.  TRANSITIONS / STATES WALKS INTERPRETATION  

 

 

 

 

Alphabet  

∑= {b,o} 

 

Transitions Accepted 

member strings 

0,1 1,2 2,3 

b o b bob 

b o o boo 
o o b oob 

o o o ooo 
o b o obo 

b b b bbb 
b b o bbo 
o b b obb 

To simplify the presented derivation techniques of generating 
the member strings, we use a string “bob” throughout this 
section. The process can be replicated as many feature values as 
desired in the intended data set. It also must be pointed out that 
the context of this paper is big data scenario with a large volume 

of feature values of strings, numeric and alphanumeric in nature 
that a normal string signatures lookup will not be scalable. The 
string “bob” is a minute representation for the simplification of 
the big picture in the significant learning data generation.  

The RegEx pattern input file to Rex command line is written 
as: Rex /r: InputFile.csv /k: 8 where r and k are the source input 
file and the size command options to generate member strings 
respectively. The input file would contain patterns around original 
strings and size where exist, e.g. ̂ [bob]{3}$. Alternatively, where 
there are no precursor strings, RegEx patterns are inferred from 
the structure and size of the expected input data, e.g. (^[b](?:[a-
z]{2})$). These methods are described in the subsequent sections 
below. 

1) RegEx pattern from strings and size of dictionary word list: 

A string S is a finite combination of symbols {b,o} that is 

extracted from the alphabet which is denoted by Σ. Therefore, the 

string “bob” with symbols is expressed as alphabet Σ = {b, o}. 

The Language L is a set of strings with a defined length denoted 

by |S|. In this example, the string “bob” has length three 

represented as |S| = 3. Applying Kleene Closure or Plus denoted 

by Σ + then, Σ + = Σ * - ɛ = Σ 1 ∪ Σ 2 ∪ Σ 3 ∪…. n where Σ * - ɛ is 

the Kleene Star (Σ *) minus epsilon or an empty string (ɛ), Σ 1..n 

are  the finite sets of possible member strings with the length that 

can be generated. Therefore if alphabet Σ = {b,o},|S|=3, then the 

accepted member strings is expressed as Σ + = {bob, boo, oob, 

ooo, obo, bbb, bbo, obb} as shown in Fig. 2 collated in Table I. 

2) RegEx pattern from strings structure and size of expected 

input data:  We apply RegEx to produce constraints of patterns 

that exist in an expected input data passed to Rex utility to derive 

member strings. The RegEx pattern (^[b](?:[a-z]{2})$) accept 

strings that start with symbols b with any combinations of 

symbols [a – z] where string length |S| = 2, then the total string 

length is |S| = 3. Therefore, Σ += {bhz,bwc,bdy,bsj,blm,bzc, 

bam,bby} are accepted member strings as  shown in Fig. 3 

automata states walk diagram.  

 

Fig. 3. States walk from RegEx pattern to generate member strings.  

  3) Member strings transposition: We further measure the 

string distance to compare the pattern of the original string with 

derived member strings by string transposition as to filter the 

anagram patterns of the generated member strings. We explore 

R stringdist (string matching package in R) [27] in the member 

string transposition to improve the performance of the data set 

in a binary classifier including an intruder attempt to circumvent 

the classifier by transposition (shuffled strings). Table II is a 

snippet of the original string “bob” with the derived member 

strings distance values. Table III illustrates string distance 

patterns measure by comparing Hamming H and qgrams Q to 

obtain the transposed (anagram) member strings [27].  



 

TABLE II.  STRING DISTANCE MEASURES BETWEEN ORIGINAL AND 

DERIVED MEMBER STRINGS 

 

TABLE III.  FILTERED FEATURE VALUES CONTAINING TRANSPOSITION OF 

ORIGINAL STRING WHEN H= 0 AND Q != 0 

 

  4) SQLIA labelling: The derived member strings as detailed 

above is labelled SQLIA negative (0) while the presence of 

SQL tokens, symbol and existing known SQLIA signatures 

during member strings preprocessing is labelled SQLIA 

positive (1). The binary class of 0 or 1 is to be predicted at 

SQL query injection points. The learning data labelling routine 

in R language is illustrated in the Fig.4 flow chart below.  
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Start 

x= Input file containing 

RegEx Patterns  

WHILE <> EOF Run rex.exe on each 

line of x to generate member strings. 

Measure string distance of member 

strings & compute anagram y. 

 

IF exist SQL tokens, 

symbols, attack 

signatures in y?  

Labelled SQLIA 

positive (1)  

Labelled SQLIA 

negative (0)  

End End 

 

Fig. 4. Data set feature values labelling Flow Chart. 

IV. APPROACH: PREDICTIVE ANALYTICS EXPERIMENT AND 

DEPLOYMENT 

Predictive Analytics provides a robust approach to big data 
mining. We apply predictive analytics in this paper in mitigating 
SQLIA. The approach is built on MAML studio, which is a 
Cloud-based machine learning platform. The experimental steps 
are detailed below. 

A. A high-level overview of the experimental steps: 

1) Data set extraction: The learning data containing feature 

values is used here in the MAML studio to train a supervised 

learning model contains pattern-driven data set described in 

detail in Section III (B). We obtained 479,000 member strings 

with additional 862 unique SQL tokens extracted from Microsoft 

SQL reserved keywords [28]. The feature values labelling is 

described above in Section III (B4) which is represented by 

binary values of 0 or 1. 

2) Text preprocessing: This stage involves R Scripting that 

incorporates all the defined RegEx constraints detailed in Section 

III (B) to parsed learning data. The feature values are parsed for 

patterns, duplicates, normalised to lower cases and the removal 

of the missing attribute values which results in the pruning of the 

feature values to 362,603. The data set is sampled to provide an 

even distribution of the feature values. The imbalanced feature 

values of majority labelled SQLIA negatives over positives were 

corrected with Synthetic Minority Over-Sampling Technique 

(SMOTE)[17]. The entire data of 725206 is split equally with 

362,603 row items labelled SQLIA negatives and 362,603 row 

items as SQLIA positives. The SMOTE improves the accuracy 

and F1 score statistical measures in an evenly distributed corpus.  

3) Features hashing to the matrix: The hashing is to 

transform the data set feature values into a binary vector matrix 

of 215 (32,768) columns required for training a classifier in ML 

by setting the hashing bit size to 1 (unigrams of N-grams) where 

N = 1. The hashing procedure creates a dimensional input of the 

matrix with a faster lookup of feature weights by substituting the 

string comparison with the hash value comparison. Applying 

hashing to text features improves the performance and scalability 

of predictive analytics that is lacking in existing SQLIA 

signature-based detection approaches. We use a unigram hashing 

of strings into the binary matrix as the intention is to analyse 

intercepted strings as a unit at the proxy. We observed analysing 

a string as a unigram offers a better prediction of TP and TN than 

analysing a phrase of a group of strings together (N-Grams > 1).  
4) Split of vector matrix between training and testing data: 

We divide the matrix values of the hashed features into a ratio of 
80:20 (training:  test) of which 80% forms the training data input 
to the classifier while 20% as test data for evaluations. We further 
optimised the classifier in the MAML studio with Tune Model 
Hyperparameters (TMH) module to improve TP and TN 
predictions, but with low FN results of 162 achieved in TC SVM 
as shown in Section V Table 1V.  

5) Training the prediction model: Both TC LR and TC SVM 

algorithms employ linear kernel which offers a binary prediction 

at the proxy a linear separation between SQLIA positive and 

negative presence in a web request. This linearity of the classes 

which can be demarcated in a straight line makes algorithms 

(classifiers) using linear kernel a preferred choice in binary 

classification. Also, the two classifiers show good accuracy and 

fast training times in performance metrics. TC SVM has the 

advantage of being scalable with significant features set as used 

here in vectorization (hashing) that generates higher 

dimensionality of hashed columns. TC SVM and TC LR 

algorithms are trained with the training data of the partitioned 

matrix values. We achieved in the trained model AUC values of 

0.984 and 0.986 for TC LR and TC SVM respectively in ROC 

curve but with TC SVM having fewer FP and FN.  

B. Publishing and consuming the prediction web service 

The system requirements regarding RAM and the hard disk 
are very low as the one-off workload of training the classifier 
including retraining is handled in the Cloud by the MAML 
platform. The solution is scalable, and it is meant to detect and 
prevent SQLIA in web requests as illustrated in Fig. 5 below 
detailing how the excellently trained model is consumed in a web 
proxy and web form in an ongoing SQLIA detection and 
prevention. Critical to the deployment in every new web 
application domain context, the administrator or system expert 
needs to feed the data engineering or text preprocessing module 



 

with new rules that match the patterns present in the new 
expected input data which triggers the retraining of the classifier 
to adapt to a new application domain context [19]. 

 

Fig. 5. A design overview including consuming a trained model at the web 

proxy API and client forms in an ongoing SQLIA detection and 

prevention [19]. 

V. EVALUATION AND PERFORMANCE METRICS 

ROC curve and AUC are widely used by data scientists to 
measure the performance metrics in ML analytics. It provides a 
valid empirical statistical measure for the evaluation of results. 
ROC curve, which has its origin in World War II to predict radar 
images for threats has been widely accepted in interpreting 
medical test results [29] and recently in computing data sciences.  

We extracted an evenly distributed data set of 725206 
attribute values or row items by preprocessing and equal 
balancing of feature values as described in Section IV (A2). 
These feature values to be predicted contain an equal 
representation of labelled strings deemed valid web requests and 
SQLIA threat as described in data extraction labelling in Section 
III (B4). The string attributes values were hashed to obtain a 
matrix represented by Xij that refers to the element in rows i and 
columns j of the input variables matrix X. The output variable to 
predict Y is a single vector representation by Yi where i is the 
index or row count. Thus, the learning data l is represented by 
Equation (1) below as a dimension of matrix Xij to predict an 
output vector matrix Yi where n is the top row count of index i. A 
function of X denoted as f(X) to predict a labelled output Y. 
Therefore, f(X)=Y, where x is input and y is the predicted output.  

l = (xj( i ), y ( i )….. xj( i ), y ( i )) = Xij , Yi …. Xnj , Yn                                 

We split the hashed string features matrix and associated 
predictor variables into a ratio 80:20 % of 725206 with 580164 
matrix values as a training set while the remaining 145042 as a 
test set. We observed a split ratio of 80:20 (training: test) resulted 
in better performance metrics compared with other split ratios that 
were tried. The training set is evaluated under various binary 
classification algorithms or classifiers to select a better 
performing classifier determined by the AUC performance value. 
The linear kernel driven algorithms presented here are 
implemented in MAML (Azure ML) Studio using the TC LR and 
TC SVM classifiers. We observed linear kernel driven classifiers 
are better performing in the binary classification of two classes in 
predicting the discrete value of 0/1. The AUC provides an overall 
performance measure between the classifier algorithms as 

illustrated in Fig. 6 for which the TC SVM with AUC value of 
0.986 was observed to be better performing than the TC LR of 
AUC value 0.984.  

While the 80% training sample is the part fed to the classifier 
to train the prediction model, the remaining 20% is the test data 
vectors, values unseen by the classifier which is the subject of this 
empirical evaluation presented here. The test data input variables 
of 145042 rows are scored to generate score probabilities of a 
range 0 ≤ x ≤ 1 where x is the input matrix to predict output y. 
The score probabilities provide a measure of observations that are 
correctly predicted as TP and TN including the two prediction 
errors of FP and FN within the range {0,1}. These prediction 
observations of TP, TN, FP and FN are presented in tables below, 
are calculated to determine how many of these observations score 
probability values fall within each score bins set of {0,1}.  

Therefore, the expected output is y = 0 or SQLIA negative if 
the function of the predictor variables x is closer to 0 expressed as 
f(x) ≈ 0. Conversely, the prediction output is y = 1 or SQLIA 
positive when the function of predictor variables x is closer to 1 
denoted as f(x) ≈ 1. Also, the prediction errors rate is used to 
gauge the performance of a classifier as illustrated in Table IV (a 
snippet of Table V and VI) with TC SVM achieving low FN 
(162). However, 1923 FP events were observed in TC SVM 
which indicates such web requests that are falsely alarmed will be 
referred to the system monitor for a further review.  

TABLE IV.  A SNIPPET OF PREDICTION  OBSERVATIONS AT DEFAULT 

THRESHOLD AT 0.5 REPEATED ACROSS {0,1} 

 Events Positive  Negative  

Positive TP 

TC SVM=72359, LR =  69421 

FP 
TC SVM = 1923, LR = 2088 

Negative FN 

TC SVM= 162, LR = 3100 

TN 
TC SVM=70598, LR = 70433 

The MAML studio sets by default the cut-off threshold for the 
prediction of TP and TN including the errors of FP and FN to be 
0.5. This cut-off of 0.5 is a predetermined threshold employed by 
classification algorithms; it is a trade-off between the cost 
function of x to predict y against the performance metrics 
statistical measures; which the latter is the default. Therefore f(x) 
< 0.5 score probability value is predicted as SQLIA negative (0) 
while f(x) ≥ 0.5 is predicted as SQLIA positive (1). The 145042 
values of score probabilities are partitioned into ten score bins of 
0.1 increments of the set {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. 
The predicted observations are aggregated across these score bins 
using the score probability values as shown in Table V and VI. 

TABLE V.  OBSERVATIONS AT VARIOUS CUT-OFF POINTS BETWEEN {0,1} 

OF THE TC LR TRAINED MODEL 

Score  Bins TP FN FP TN PE NE PO NO FPR TPR/Recall Accuracy P FI Score

1 0 72521 0 72521 72521 72521 0 145042 0 0 0.5 0 0

0.9 52479 20042 1399 71122 72521 72521 53878 91164 0.01929096 0.72363867 0.85217385 0.974034 0.830370493

0.8 58756 13765 1568 70953 72521 72521 60324 84718 0.02162132 0.81019291 0.89428579 0.974007 0.884579773

0.7 62924 9597 1674 70847 72521 72521 64598 80444 0.02308297 0.86766592 0.92229147 0.974086 0.917801326

0.6 66303 6218 1760 70761 72521 72521 68063 76979 0.02426883 0.91425932 0.94499524 0.974142 0.94325101

0.5 69421 3100 2088 70433 72521 72521 71509 73533 0.02879166 0.95725376 0.96423105 0.970801 0.963979726

0.4 71704 817 4794 67727 72521 72521 76498 68544 0.06610499 0.9887343 0.96131465 0.937332 0.962347083

0.3 72325 196 8374 64147 72521 72521 80699 64343 0.11547 0.99729733 0.94091367 0.896232 0.944067354

0.2 72371 150 12508 60013 72521 72521 84879 60163 0.17247418 0.99793163 0.91272873 0.852637 0.919580686

0.1 72390 131 18708 53813 72521 72521 91098 53944 0.25796666 0.99819363 0.87011348 0.794639 0.88486056

0 72521 0 72521 0 72521 72521 145042 0 1 1 0.5 0.5 0.666666667
Abbrevation

s &

Formula

True 

Positive

(TP)

Faslse

Negative 

(FN)

False 

Positive

(FP)

True 

Negative

(TN)

Positive

 Event 

(PE)

 =TP+FN

Negative

 Event 

(NE)

=FP+TN

Positive                                                                                                                                                                                                                                                          

Observ                                                                                                                                                                                                                                                              

ations(PO)

=TP+FP

Negative

Obser

vations (NO)

=FN+TN

False 

Positive 

Rate  (FPR)

=FP / (FP+TN)

True

Positive 

Rate (TPR)

=TP / PE

(TP+TN)

/  Total 

events (TE)

TE = 145042

Precision 

(P)

=TP / PO

FI Score 

=2*(TPR*P) /

(TPR+P)

 



 

TABLE VI.  OBSERVATIONS AT VARIOUS CUT-OFF POINTS BETWEEN {0,1} 

OF THE TC SVM TRAINED MODEL 

Score  Bins TP FN  FP TN PE NE PO NO TE FPR TPR/Recall Accuracy P FI Score

1 0 72521 0 72521 72521 72521 0 145042 145042 0 0 0.5 0 0

0.9 56446 16075 1505 71016 72521 72521 53878 91164 145042 0.02075261 0.77834007 0.878794 0.97403 0.86525845

0.8 63346 9175 1692 70829 72521 72521 60324 84718 145042 0.023331173 0.87348492 0.925077 0.973984 0.92100117

0.7 67886 4635 1806 70715 72521 72521 64598 80444 145042 0.024903132 0.93608748 0.955592 0.974086 0.95470878

0.6 71088 1433 1887 70634 72521 72521 68063 76979 145042 0.026020049 0.98024021 0.97711 0.974142 0.9771815

0.5 72359 162 1923 70598 72521 72521 71509 73533 145042 0.026516457 0.99776616 0.985625 0.974112 0.98579729

0.4 72324 197 1921 70600 72521 72521 76498 68544 145042 0.026488879 0.99728355 0.985397 0.974126 0.98556886

0.3 72340 181 2179 70342 72521 72521 80699 64343 145042 0.030046469 0.99750417 0.983729 0.970759 0.98394995

0.2 72355 166 6175 66346 72521 72521 84879 60163 145042 0.08514775 0.99771101 0.956282 0.921368 0.9580208

0.1 72376 145 13108 59413 72521 72521 91098 53944 145042 0.180747646 0.99800058 0.908626 0.846661 0.91612291

0 72521 0 72521 0 72521 72521 145042 0 145042 1 1 0.5 0.5 0.66666667  
 

  

Fig. 6. ROC curve of the trained models comparing the performance in AUC 

of TC LR against TC SVM classifiers. 

The statistical measures provide the performance metrics of a 
trained model. We calculated the statistical measures at the 
various  thresholds {0,1} as shown in Table V where TC LR at 
default has the following: Accuracy = 0.964, Precision = 0.971, 
Recall = 0.957and F1 Score = 0.964.  Table VI is calculated as 
the preceeding, where TC SVM has an improved performance 
metrics with Accuracy = 0.986, Precision = 0.974, Recall = 0.998, 
F1 Score = 0.986 and AUC of 0.986 as shown in Fig. 6. 

VI. CONCLUSION AND FUTURE WORK 

We demonstrated in this paper a pattern-driven data set 
generated using SFA in the absence of a pre-existing data set to 
apply predictive analytics to SQLIA detection and prevention in a 
big data context. We empirically evaluated our results in ROC 
curve. Future work involves employing multi-class classifier in 
predicting the different SQLIA types. 

REFERENCES 

[1] CodeCurmudgeon, “SQLi Hall-of-Shame,” The Code Curmudgeon, 
2016. [Online]. Available: http://codecurmudgeon.com/wp/sql-
injection-hall-of-shame/. [Accessed: 12-Aug-2016]. 

[2] M. Veanes, N. Bjorner, and L. de Moura, “Symbolic Automata 
Constraint Solving,” vol. 6397. 2010. 

[3] M. Veanes, “Rex @ rise4fun from Microsoft,” Microsoft Research. 
[Online]. Available: http://rise4fun.com/rex. 

[4] E. Lawrence, “Fiddler free web debugging proxy,” Telerik. [Online]. 
Available: http://www.telerik.com/fiddler. [Accessed: 11-Feb-2015]. 

[5] G. Wassermann and Z. Su, “An analysis framework for security in 
Web applications,” SAVCBS 2004 Specif. Verif. Component-Based 
Syst., p. 70, 2004. 

[6] I. Medeiros, N. Neves, and M. Correia, “Detecting and Removing 
Web Application Vulnerabilities with Static Analysis and Data 
Mining,” IEEE Trans. Reliab., vol. 65, no. 1, pp. 54–69, Mar. 2016. 

[7] S. Thomas, L. Williams, and T. Xie, “On automated prepared 
statement generation to remove SQL injection vulnerabilities,” Inf. 
Softw. Technol., vol. 51, no. 3, pp. 589–598, 2009. 

[8] A. Owasp, “OWASP Top 10 Proactive Controls 2016,” 2016. 

[9] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and 
Monitoring for NEutralizing SQL-injection Attacks,” Proc. 20th 
IEEE/ACM Int. Conf. Autom. Softw. Eng., pp. 174–183, 2005. 

[10] Y. S. Jang and J. Y. Choi, “Detecting SQL injection attacks using 
query result size,” Comput. Secur., vol. 44, pp. 104–118, 2014. 

[11] W. G. J. Halfond, A. Orso, and P. Manolios, “WASP: Protecting 
web applications using positive tainting and syntax-aware 
evaluation,” IEEE Trans. Softw. Eng., vol. 34, no. 1, pp. 65–81, 
2008. 

[12] A. Kie, P. J. Guo, and M. D. Ernst, “Automatic Creation of SQL 
Injection and Cross-Site Scripting Attacks,” 2009. 

[13] C. Bockermann, M. Apel, and M. Meier, “Learning SQL for 
database intrusion detection using context-sensitive modelling 
(extended abstract),” in Lecture Notes in Computer Science, 2009, 
vol. 5587 LNCS, pp. 196–205. 

[14] R. Komiya, I. Paik, and M. Hisada, “Classification of malicious web 
code by machine learning,” in Proceedings of 2011 3rd 
International Conference on Awareness Science and Technology, 
iCAST 2011, 2011, pp. 406–411. 

[15] J. Choi, C. Choi, H. Kim, and P. Kim, “Efficient malicious code 
detection using N-gram analysis and SVM,” in Proceedings - 2011 
International Conference on Network-Based Information Systems, 
NBiS 2011, 2011, pp. 618–621. 

[16] Y. Wang and Z. Li, “SQL Injection Detection via Program Tracing 
and Machine Learning,” LNCS, vol. 7646, pp. 264–274, 2012. 

[17] C. I. Pinzón, J. F. De Paz, Á. Herrero, E. Corchado, J. Bajo, J. M. 
Corchado, C. I. Pinz??n, J. F. De Paz, ??lvaro Herrero, E. Corchado, 
J. Bajo, and J. M. Corchado, “IdMAS-SQL: Intrusion Detection 
Based on MAS to Detect and Block SQL injection through data 
mining,” Inf. Sci. (Ny)., vol. 231, pp. 15–31, 2013. 

[18] M.-Y. Y. Kim and D. H. Lee, “Data-mining based SQL injection 
attack detection using internal query trees,” Expert Syst. Appl., vol. 
41, no. 11, pp. 5416–5430, 2014. 

[19] S. O. Uwagbole, W. J. Buchanan, and L. Fan, “Applied Machine 
Learning Predictive Analytics to SQL Injection Attack Detection 
and Prevention,” in 3rd IEEE/IFIP Workshop on Security for 
Emerging Distributed Network Technologies (DISSECT), 2017. 

[20] S. O. Uwagbole, W. Buchanan, and L. Fan, “Applied web traffic 
analysis for numerical encoding of SQL injection attack features,” in 
European Conference on Information Warfare and Security, 
ECCWS, 2016, vol. 2016–Janua. 

[21] S. Uwagbole, W. Buchanan, and L. Fan, “Numerical Encoding to 
Tame SQL Injection Attacks,” in IEEE/IFIP DISSECT, 2016. 

[22] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb : A 
Proxy-based Architecture towards Preventing SQL Injection 
Attacks,” Conf. Proc. 2009 ACM Symp. Appl. Comput., pp. 1–8, 
2009. 

[23] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas 
immanent in nervous activity,” Bull. Math. Biophys., vol. 5, no. 4, 
pp. 115–133, 1943. 

[24] M. O. Rabin and D. Scott, “Finite Automata and Their Decision 
Problems,” IBM J. Res. Dev., vol. 3, no. 2, pp. 114–125, 1959. 

[25] M. Veanes, P. de Halleux, N. Tillmann, P. De Halleux, and N. 
Tillmann, “Rex: Symbolic regular expression explorer,” in ICST 
2010 - 3rd International Conference on Software Testing, 
Verification and Validation, 2010, pp. 498–507. 

[26] M. Veanes, “Applications of symbolic finite automata,” in Lecture 
Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, 
vol. 7982 LNCS, pp. 16–23. 

[27] M. van der Loo, “{stringdist}: an {R} Package for Approximate 
String Matching,” R J., vol. 6, no. 1, pp. 111–122, 2014. 

[28] Microsoft, “Reserved Keywords (Transact-SQL),” MSDN. [Online]. 
Available: https://msdn.microsoft.com/en-us/library/ms189822.aspx. 

[29] T. G. Tape, “Using the Receiver Operating Characteristic (ROC) 
curve to analyze a classification model,” Univ. Nebraska Med. 
Cent., pp. 1–3, 2000. 

 


