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Abstract—Uni-modal identification systems are vulnerable to
errors in sensor data collection and are therefore more likely to
misidentify subjects. For instance, relying on data solely from an
RGB face camera can cause problems in poorly lit environments
or if subjects do not face the camera. Other identification methods
such as electrocardiograms (ECG) have issues with improper lead
connections to the skin. Errors in identification are minimized
through the fusion of information gathered from both of these
models. This paper proposes a methodology for combining the
identification results of face and ECG data using Part A of the
BioVid Heat Pain Database containing synchronized RGB-video
and ECG data on 87 subjects. Using 10-fold cross-validation, face
identification was 98.8% accurate, while the ECG identification
was 96.1% accurate. By using a fusion approach the identification
accuracy improved to 99.8%. Our proposed methodology allows
for identification accuracies to be significantly improved by
using disparate face and ECG models that have non-overlapping
modalities.

Index Terms—identification, biometrics, neural networks, fu-
sion

I. INTRODUCTION

Biometric technologies have become an important compo-
nent of many law enforcement and security systems, where
efficient and accurate results are of paramount importance
[1]. Systems focusing on information privacy and security
have similar requirements. In such systems, information from
various sources can be fused to form a decision [2], [3].
The basis of this fusion approach is to exploit information
available through multiple modalities. Various systems used
in the identification process could struggle with identifying
different subjects within a database due to sensor errors.
However, by focusing on fusing systems that are mutually
independent of each other, such as systems that depend on
different types of sensors, there should be less overlap of
errors in the information each individual systems uses to
identify subjects [2]. Therefore, if one systems struggles with
an identification of a subject, this should not affect the decision
or score another system forms. This means that a system that
makes a decision based on multiple sub-systems can be more
difficult to fool, making an attack on the identification system
harder to execute [4].

In this paper we will present a fusion approach to sub-
ject identification using electrocardiogram (ECG) and face
modalities. Part A of the publicly available BioVid Heat
Pain Database [5], [6] will be used to design and test these
identification models. This part of the dataset consists of

synchronized ECG and face data for 87 subjects, each of
which has 100 samples. Each sample contains an ECG signal
and the synchronized five second video where subjects are
exposed to differing levels of heat-pain. The goal of this paper
is to introduce a novel hybrid score- and rank- level fusion
approach for classification problems involving multiple neural
networks. Additionally, to the best of our knowledge, fusion
of neural network based ECG and face identification systems
on the BioVid dataset has yet to be done. The BioVid dataset
is the largest publicly available dataset where both of these
modalities are synchronously recorded. The use of both ECG
and face identification data to identify individuals should act
as a proof-of-concept of how system accuracy can be increased
by decentralizing decision scores over multiple disparate sub-
systems that have little to no information overlap in terms of
the initial sensor measurement.

The paper is outlined as follows: Section II covers the
necessary literature review on previous face, ECG, and fusion
identification methodologies. Section III provides details on
our proposed methodology for designing the face, ECG, and
fusion identification systems. Section IV summarizes and
discusses the results of our proposed identification system.
Section V discusses the key outcomes and future works related
to our proposed methodology and implementation.

II. LITERATURE REVIEW

A. Face Identification Methods

Methods for identifying faces have been in development
for many decades, with initial approaches using concepts
such as Hidden Markov Models (HMMs) to encode facial
features of different regions of the face [7]. Improvements
upon this approach have been made since then, with most
modern approaches focusing on convolutional neural networks
(CNNs). These networks are composed of layers with different
functions, examples of layers can be varying combinations
of convolution, pooling, and concatenation layers, with more
complex implementations having large networks of these
layers. Fundamentally the idea of using CNNs to identify
faces is similar to that of HMMs, in that facial features that
differentiate individuals are extracted and used to identify
individuals.

Collecting enough data to train these networks can be te-
dious, computationally expensive, and time-consuming. Trans-
fer learning approaches provide a framework to use previously
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trained networks as a basis for feature extraction, to which
additional layers can be added, as needed [8]. The feature
extraction steps of a pre-trained network used in a transfer
learning approach are generally not adjusted, the only aspect
of the network that are retrained are the final classification
outputs. This approach generally works well as images of any
type have similar features that can be extracted such as shapes
and color of objects.

B. ECG Person Identification Methods

Person identification with ECG signals have been researched
extensively in recent years, with many varying (but also all
successful) methodologies being developed [9]. The ECG
signal itself contains many temporal and frequency features
which is used to uniquely identify individuals and is covered
extensively in [9]. For brevity, this paper will omit the tech-
nical details on the ECG features. More recently, algorithms
using CNNs have been achieving record accuracies for person
identifications, reaching up to 100% identification accuracy
on various self-collected and public ECG datasets [10], [11].
These proposed CNNs generally involve little pre-processing
(in comparison with more traditional methods outlined in [9])
and yield excellent results.

C. Fusion Methods for Identification Problems

Fusion systems, as already briefly mentioned in the intro-
duction, are a popular topic of research in the field of biomet-
rics and identification. Fusion systems involve an assessment
of the reliability of the processed information in disparate sys-
tems. This assessment is used to create of a fusion algorithm
that merges the results of both systems to provide an overall
improvement over the individual identification systems [12].
In theory, is it more difficult to fool multiple identification
systems [4], and thus it is of benefit to consider fusion systems
for identification system design purposes.

Score-level fusion is the preferable approach for biometric
data as classifier scores are easily accessed and processed to
be combined [13]. This is in contrast with sensor or feature-
level fusion where the sensor data may not be easily combined
(for example, two-dimensional images from a camera and
one-dimensional signals from an ECG). Important information
which may improve classification results is lost when using
decision-level fusion over score-level fusion [13]. In general,
development of score-level fusion methodologies involves
determining how much influence each classifier in the fusion
system has over the final class output.

For biometric identification purposes, fusion methodologies
have primarily been focused on face, palm, and ear biometrics
[14], [15]. Fusion methods combining ECG and face data have
only used more traditional pre-processing and classification
methods (such as K-nearest-neighbours and support vector
machines) in the past [16], [17]. State-of-the-art methodologies
such as the use of deep neural networks have not been
extensively researched for use in a fusion system involving
face and ECG data.

This paper aims to propose a novel fusion subject identifi-
cation algorithm using deep neural networks on ECG and face
modalities.

III. PROPOSED METHODOLOGIES

Our approach involves developing a face identification
model (outlined in subsection III-A) and an ECG identification
model (outlined in subsection III-B). The novelty of our
contributions is the fusion algorithm presented in subsection
III-C.

A. Face Identification

Several steps were taken to extract and prepare data as input
to VGG16 network [18], the pre-trained network used as a
basis in this face identification. First, one image was extracted
from each of the 8700 videos. The pre-trained VGG16 network
is used to minimize the training time needed for the face
identification algorithm. Each image was analyzed via Open
CV’s [19] Haar like cascade implementation [20] to extract the
face present in the image. Due to the nature of the database
and subjects being free to move as they wished, sometimes
many frames would have to be analyzed before an image with
a face present could be extracted.

Transfer learning was used to classify subjects in Part A
of the BioVid Heat Pain Database. The pre-trained VGG16
network [18] was imported with Keras using a Tensorflow
backend. A dense layer with 87 outputs, equal to the number
of subjects within the database, was added to the output of the
VGG16 network. Training on the other layers in the network
was turned off to utilize the weights of the original trained
network. This minimizes the amount of time needed to train
our network.

Images were partitioned into 10 subsets which were used
to perform 10-fold cross validation.

B. ECG Person Identification

The ECG data corresponding to each of the 8700 videos was
extracted and processed to have a normalized amplitude with
values in [0,1]. Next, the mean of each signal was subtracted
so each sample was 0-mean. The first R wave (in general,
the R wave peaks are the largest amplitude peaks in an ECG
signal) was detected and shifted to t = 0s and the remaining
signal was truncated to contain 4 seconds of data. For the
BioVid dataset, this means each ECG sample contained 2048
points.

Figure 1 shows the architecture for the ECG identification. It
is a CNN consisting of 3 convolutional layers and then 3 fully
connected layers. The architecture shown was heuristically
chosen for maximum accuracy. The fully connected layers are
followed by 50% dropout layers to prevent overfitting during
the training. The training and testing uses the same 10-fold
cross-validation method used in the face identification system.
The training and testing partitions are kept the same as the
face identification validation so that the results can be directly
compared.
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Fig. 1. Architecture for the ECG person identification network.

C. Fusion Identification Methodology

We used 10-fold cross-validation to have 10 models for each
system. The partitioning of the data during the 10-fold cross-
validation was kept the same for both systems so the models
can be paired up. For example, the first model for the face
identification system was trained and tested on the same data
as the first model of the ECG identification system, as such
the results can be directly combined and compared.
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Fig. 2. The results of 10-fold cross validation for each model. Each fold
produces a subject accuracy score S for each model.

We use a hybrid score- and rank-level fusion algorithm for
our fusion identification system. The fusion network uses two
types of scores for each model to compute a final decision.

The first score is the model confidence score. Each model
has an 87 length vector, C, output containing values which
can be interpreted as a vector of confidence values. Each
sample that is fed into the identification model has its own

vector of confidence values. Cecg
k,n and Cface

k,n refer to the C
vectors for the kth fold and nth sample for the respective
ECG and face models. C face

k,n−i and Cecg
k,n−i are the values in

the ith element in the for kth fold and nth sample in C. There
are 8700 different vectors C for each model since the BioVid
dataset contains 8700 samples. Since there are 20 models for
each fold (1 for face and 1 for ECG, per fold) and 8700
samples per model, we have 20 × 8700 = 174, 000 distinct
C vectors. During the training of the face and ECG models,
C was fed through a softmax activation layer for classification.
For the fusion system, we remove the softmax activation
layer to use the values of C. Let argmaxn(A) be the index
for the nth largest element in any one-dimensional vector
A. argmax1(C) provides the first ranked subject prediction
for the respective model and sample. argmax2(C) through
argmax5(C) provides the second through fifth ranked subject
predictions. Similarly, let maxn(A) be the value of the nth

largest element in any one-dimensional vector A.

The second score is the subject accuracy score, S. S is
another 87 length vector. Each element in S contains the
score for the subject with subject number corresponding to the
element index. For each model we can calculate a score on
a per-subject basis and there are 87 subjects with 90 training
samples per subject for this dataset. Secg

k and Sface
k refer to S

for the kth fold for their respective ECG and face models .
Sface
k−i and Secg

k−i are the values in the ith element in the for kth

fold S vector. A visual representation of the structure of the
vectors is depicted in Figure 2. The algorithm used to calculate
Secg
k is shown with Algorithm 1.

Algorithm 1 checks the top five ranked predictions from
the ECG model and calculates a confidence score difference,
confDiff. confDiff is the difference between the most confident
prediction and the correct prediction. The larger confDiff is,
the less confident the model is on the true (correct) subject’s
class. Line 18 of Algorithm 1 awards subjects that are correctly
identified in the top 5 ranked predictions. If the true subject is
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Fig. 3. Diagram showing the process flow of calculating a final confidence score, F, vector. The classified subject is given by taking argmax(F) and is
found to be subject 5.

Algorithm 1 Score calculation algorithm for fold k of the
ECG model, Secg

k

1: Y← true subject numbers for fold k training set
2: Secg

k ← 0 · J1,M . M is number of classes
3: for n = 0 to N do . N samples in training set
4: Cecg

k,n ← model confidence scores for sample n

5: if argmax1(C
ecg
k,n) = Yn then

6: confDiff← 0
7: else if argmax2(C

ecg
k,n) = Yn then

8: confDiff← max1(Cecg
k,n)−max2(Cecg

k,n)

9: else if argmax3(C
ecg
k,n) = Yn then

10: confDiff← max1(Cecg
k,n)−max3(Cecg

k,n)

11: else if argmax4(C
ecg
k,n) = Yn then

12: confDiff← max1(Cecg
k,n)−max4(Cecg

k,n)

13: else if argmax5(C
ecg
k,n) = Yn then

14: confDiff← max1(Cecg
k,n)−max5(Cecg

k,n)
15: else
16: confDiff← 1.0
17: end if
18: Secg

k−Yn
← Secg

k−Yn
+ 1.0− confDiff

19: Secg
k−argmax (Cecg

k,n)
← Secg

k−argmax (Cecg
k,n)
− confDiff

20: if Secg
k−argmax (Cecg

k,n)
< 0 then

21: Secg
k−argmax (Cecg

k,n)
← 0

22: end if
23: end for
24: Secg

k ← Secg
k

/(
N/M

)

not present within the top five ranked predictions of the model,
confDiff is assigned a value of 1.0 and no score is awarded
to the model. Additionally, Line 19 of Algorithm 1 reduces
the score any subjects falsely identified by the model using
confDiff to punish false identifications. Note that Jnn,mm is
the matrix of ones with dimensions nn×mm. Algorithm 1 is
used to calculate Sface

k as well, replacing Secg
k with Sface

k and
Cecg

k,n with Cface
k,n.

We calculate a difference between these scores, Dk = Secg
k −

Sface
k . Dk contains values which describe how well each model

performs relative to the other model. A positive value for Dk−i

indicates that the ECG model is, loosely speaking, ”better”
than the face model at correctly identifying subject i. Similarly,
a negative value for Dk−i indicates that the face model is
better than the ECG model at correctly identifying subject i.
Dk can be normalized if desired. We empirically determined
that normalizing Dk to be within [−0.20, 0.20] provided the
best results in our experiment.

To make a prediction we can feed a sample n through
the face and ECG identification models to retrieve the Cface

k,n

and Cecg
k,n for that particular sample. We then calculate fused

confidence scores, ffacek,n and fecgk,n, using Equations 1 and 2.

ffacek,n = Cface
k,n ·

(
0.5 · J1,M − Dk

)
(1)

fecgk,n = Cecg
k,n ·

(
0.5 · J1,M + Dk

)
(2)

fk,n exists for each model as ffacek,n and fecgk,n and follows the
same subscript and superscript conventions as C. 0.5 · J1,M is
an M = 87 length vector of containing 0.5 in each element
where M = 87 is the number of subjects. (0.5 · J1,M ± Dk)



is an M = 87 length vector which contains values that are
considered to be the weights for each subject. The better a
model performs (relative to the other model), the larger the
values in (0.5 · J1,M ±Dk) will be. (0.5 · J1,M ±Dk) creates
a larger influence over the final decision for the model which
performs better for any particular subject.

Equation 3 describes the calculation of the final confidence
score, F. The predicted subject is for the fusion system is
determined by finding argmax(F).

Fk,n = ffacek,n + fecgk,n (3)

For pedagogical purposes, we will work through an example
prediction of the fusion system using the trained model from
the first fold. Figure 3 depicts the classification process of
arbitrarily chosen test sample 3 from the fold 1 of the 10-
fold cross-validation. The face and ECG data for test sample
3 is input to their respective classifiers to provide Cf and Ce.
The fused confidence scores, f, are then calculated by finding
the dot product of each C vector with the result of (0.5 ·
J± D). Finally, the fused confidence score vectors are added
together to get the final confidence score F. The predicted
class, argmax1(F), is found to be subject 5.

For validation of our fusion system we once again use 10-
fold cross-validation. This will allow us to directly compare
the results of the face, ECG, and fused systems. We also test
the fusion system performance under noisy data conditions by
artificially generating poor quality samples by adding additive
white gaussian noise to the face and ECG samples. The
samples from every second and third subject for the face
identification system are degraded with noise. The samples
from every seventh subject for the ECG identification system
are degraded. These subjects are chosen specifically to ensure
the following conditions are present in the dataset:

• There are subjects with good quality samples for both
models (such as samples for subjects 1 and 5).

• There are subjects with good quality samples for the face
model but poor quality samples for the ECG model (such
as samples for subjects 7 and 35).

• There are subjects with good quality samples for the ECG
model but poor quality samples for the face model (such
as samples for subjects 2 and 3).

• There are subjects with poor quality samples for both
models (such as samples for subjects 14 and 21).

IV. RESULTS AND DISCUSSION

Table I summarizes the results of the 10-fold cross-
validation done for each of the identification models. The
face identification model performed extremely well with an
average test accuracy of 98.8%. Errors in the face identification
model were often caused by samples where the subject is
turning their heads to extreme angles which obscures certain
facial features and prevents the face detection algorithm from
detecting and centering the face. Figure 4 shows a sample
where the subject’s head is tilted and turned at an extreme
angle. The ECG identification system performed fairly well

TABLE I
SUMMARY OF THE 10-FOLD CROSS-VALIDATION RESULTS FOR THE FACE,

ECG, AND PROPOSED FUSION IDENTIFICATION SYSTEMS.

Fold
Face Test
Accuracy

(%)

ECG Test
Accuracy

(%)

Fusion Test
Accuracy

(%)
1 98.966 96.897 100.000
2 99.195 95.977 99.540
3 98.506 98.161 99.540
4 98.736 95.862 100.000
5 98.966 94.023 99.655
6 99.080 95.632 99.885
7 98.736 96.437 99.770
8 98.161 95.517 99.540
9 98.966 96.897 99.885
10 99.080 95.977 100.000

avg ± std 98.839 ± 0.30 96.138 ± 1.02 99.782 ± 0.19

with an average test accuracy of 96.1% accuracy. Errors
from the ECG identification system often came from samples
which contained a very high power, low frequency distortion.
Figure 5 shows an example of a sample with this distortion.
The reason for this distortion is unknown and the BioVid
dataset does not comment on why these distortions occur. We
hypothesize these distortions are likely a result of improper
sensor connections to the subject.

Fig. 4. Examples of poorly classified face samples.

Fig. 5. Example of a normalized and time-gated ECG signal that has been
corrupted with a high power, low frequency noise.

The fusion identification system was able to improve the
identification accuracy to 99.8%. More specifically, of the 870



TABLE II
SUMMARY OF THE 10-FOLD CROSS-VALIDATION RESULTS FOR THE FACE,

ECG, PROPOSED FUSION, AND WEIGHTED SUM FUSION SYSTEMS.

Fold
Face Test
Accuracy

(%)

ECG Test
Accuracy

(%)

Proposed
Fusion Test
Accuracy

(%)

Weighted
Sum Test
Accuracy

(%)
1 69.195 81.149 94.368 92.644
2 66.437 77.586 94.483 92.529
3 66.552 78.391 94.023 91.839
4 65.632 72.644 93.333 91.379
5 66.552 72.184 91.609 88.736
6 66.552 76.322 94.598 92.414
7 67.931 76.782 94.368 91.379
8 65.172 76.437 94.253 90.805
9 65.862 77.241 93.103 91.724

10 65.977 74.023 93.908 91.724
avg ± std 66.586 ± 1.12 76.276 ± 2.57 93.805 ± 0.87 91.517 ± 1.08

test samples for each fold, the fusion identification system
averaged only about 1.85 errors for each fold. These results
demonstrate the well known benefit of having multi-modal
biometrics for identification. The novel combination of deep
neural networks for face and ECG identification is able to
perform extremely well on the BioVid dataset with well
controlled data collection environments. The use of multiple
sensors with mutually independent failure modes has been
shown to significantly improve identification results.

Table II shows the results of the system under noisier data
conditions. A comparison to the popular score-level fusion
method, the weighted sum, as described in [13], is also
included. The proposed fusion system was able to improve
the individual accuracies of 66.6% and 76.3% to 93.8%. Our
proposed fusion method also exceeds the 91.5% accuracy of
the weighted sum method.

V. CONCLUSIONS AND FUTURE WORKS

The BioVid Heat Pain Database was used to create two sep-
arate identification models, one neural network model for face
identification and one neural network model for ECG identifi-
cation. A novel hybrid score- and rank-level fusion identifica-
tion system was proposed and shown to improve identification
results. Individually, using 10-fold cross-validation, the face
identification model achieved an accuracy of 98.8% and the
ECG identification model achieved an accuracy of 96.1%
across 87 subjects. Using the same validation method, our
fusion algorithm was able to achieve an accuracy of 99.8%.
To further test our proposed fusion algorithm, we artificially
degrade the quality of the samples by adding additive white
gaussian noise to the samples to reduce the identification rates
of the face and ECG models. Our proposed fusion system was
able to improve individual rates of 66.6% and 76.3% for the
face and ECG models, respectively, to 93.8%, a significant
improvement over the individual systems. Longer term future
work will include:

• The proposed fusion algorithm is unsuitable for more than
two modalities. Modifications to the proposed algorithm
are needed to accommodate for more modalities.

• Applying the proposed methods to databases with noisier
data to better analyze and understand the performance and
sources of error for the proposed fusion system.
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