
A Low Cost, High Performance Dynamic-Programming-Based
Adaptive Power Allocation Scheme for Many-Core

Architectures in the Dark Silicon Era

Xiaohang Wang∗, Zhiming Li∗, Mei Yang†, Yingtao Jiang†, Masoud Daneshtalab‡, Terrence Mak§
∗Guangzhou Institute of Advanced Technology, CAS, China

Email: {xh.wang, zm.li}@giat.ac.cn
†University of Nevada, Las Vegas, USA

Email: mei.yang@unlv.edu, yingtao@egr.unlv.edu
‡University of Turku, Finland

Email: masdan@utu.fi
§The Chinese University of Hong Kong, China

Email: stmak@cse.cuhk.edu.hk

Abstract—Power consumption of many-core chips increases in
such a rapid pace that it will soon exceed the chip’s affordable
power budget. As a result, design of a many-core chip has to
address a significant performance challenge under a tight power
budget constraint. This problem becomes more prevalent as more
of the frequencies and/or voltages of on-chip resources in a many-
core chip can be tuned, where heuristics based power allocation
approaches often lead to poor performance. Another important
problem is that the input power budget of a many-core chip might
actually undergo a rapid change at run time. In this paper, the
performance optimization problem is formally formulated, and an
Optimal Power Allocation method using Dynamic programming
(OPAD) is proposed to solve this problem. OPAD has a linear
time complexity, and it is quite scalable to the problem size.
Extensive experimental results have confirmed lower application
execution time of OPAD than that of other competing power
allocation methods, i.e., 20%∼30% reduction in applications’
execution time over three competing methods. The runtime and
hardware overhead of OPAD are also shown to be very small,
making it suitable for adaptive power allocation in future many-
core systems.

Keywords—many-core, power budgeting, dynamic programming

I. INTRODUCTION

Driven by continuous advances of CMOS technology and
request of emerging applications, multi-core and many-core
chips are widely used in cloud computing, mobile computing,
high-performance computing, as well as many other impor-
tant areas [1]. Explosive growth of computing performance,
however, comes with a rapid increase of power consumption.
According to ITRS, by the year 2020, the chip power con-
sumption will increase by as much as a factor of 10 over the
year 2012 [1]. This high power number, unfortunately, will be
far higher than the affordable power budget (maximum power
supply or thermal-compliant power budget). As a result, the
real performance lagged far behind the idealized performance
[2]. For instance, although transistor count will increase by a

This work was supported in part by National Science Foundation (NSF)
under grant no. CNS-1126688 and NSF China under grant no. 61228501.

factor of 32 in 2020, the performance speedup can only be
7 ∼ 8 folds, according to a study indicated in [2]. This gap
is caused by the “dark silicon” phenomenon [2] that only half
of the chip’s transistors can actually be powered on at a given
time due to its power budget limit.

A subtle solution to this dark silicon problem is to
maximize chip performance under a limited power budget.
Optimization of such power budgeting [3] problem can become
very complicated due to two challenging facts. First, in a state-
of-the-art many-core chip, operating frequencies of many of
its cores (or IPs) are tunable. For example, consider a 16-
tile many-core system, where the frequency of each core can
take one of the four allowed frequencies. The total frequency
combination is as large as 416, which is about 4×109, and the
optimal solution is obtained by exhaustively searching through
all these solutions. Heuristic-based approaches [4]–[6] can only
find sub-optimal solutions, which might severely impact the
chip performance.

Second, the power budget might change very fast and
suddenly due to IR drop (resistive voltage drop), power supply
noise, or change in external power supply. As so, a good
power budgeting algorithm must be running fast enough (low
run time overhead) to track these power budget changes.
However, most existing power management algorithms [4]–
[6] take unacceptably long time (often in the range of millions
of clock cycles), leading to unknown chip behavior or poor
performance.

To address two aforementioned challenges, a novel power
allocation approach, Optimal Power Allocation using Dynamic
programming (OPAD), is proposed in this paper. Essentially,
the performance optimization under power budget problem is
first formulated and it is solved by OPAD featuring a novel
dynamic programming network with a linear time complexity.
We summarize our main contributions as follows.

1) OPAD can generate globally optimal power allocation
solution under a given power budget.

2) The run time of OPAD is much lower (e.g., a few to dozens
of cycles) than that of any other known power allocation

978-1-4799-1284-1/13/ $31.00 c�2013 IEEE 61

algorithms. One big advantage of OPAD is that it can
achieve much better performance when the power budget
undergoes a rapid change.

3) OPAD can be used for many-core systems to control the
power consumption of various on-chip resources at a finer
grain by hierarchically forming frequency domains, which
is scalable in terms of network size.

4) Extensive experimental results confirm the superiority of
OPAD over other power allocation schemes in terms of
performance.

The paper is organized as follows. Section II reviews the
related work. Section III introduces the performance-power
model followed by the problem definition in Section IV. The
description of the DPN based power allocation scheme is
detailed in Section V. Section VI provides the experimental
results and analysis of the proposed approach. Finally, Section
VII concludes the paper.

II. RELATED WORK

As power is becoming one of the major barriers for many-
core systems, optimizing performance under given power
budget has become an increasingly important problem, which
brings the so-called power budgeting problem [3] up to the
front. In the literature, online power budgeting can be achieved
by applying various circuit and/or architectural techniques,
including frequency/voltage scaling [3], [7], or power gating
to control the power consumed by the resources [6].

Frequency/voltage scaling [6], [8] can be performed either
at the chip or at the core level. Chip-wide frequency scaling
[8] treats the frequencies of the on-chip cores as one variable,
and these frequencies are scaled up/down altogether with the
same scaling factor. This rigid scheme, although simple, tends
to result in quite poor chip performance.

The problem of performance optimization under power
budget is solved either using some sort of heuristics [3], [4],
[6], [7], or formulating it as a linear programming program [7].
Heuristics-based approaches do not generate optimal solutions
and their performance can degrade severely with the increase
of the number of resources to be controlled. The linear
programming-based approach might take long time to find the
solution.

III. MODELS AND NOTATIONS

This section defines the performance and power models
which help in formulating the problem.

A. Architectural model

We are targeting an NoC-based many-core system, where
each tile consists of a processor, a router and an L2 cache bank.
A tile can just have an L2 cache and a router, or a processor
and a router (without L2 cache). In the case of heterogeneous
systems, a tile can be any resources connecting to the NoC.
Tiles can be grouped virtually into regions where each tile
inside one region runs at the same frequency.

B. Performance model

Frequency scaling is used to balance between power con-
sumption and performance. Suppose there are a total of N
regions in the chip whose respective frequencies are f1, ..., fN .
Each of these regions can be either a single tile or a cluster
of multiple tiles. Performance given in execution cycles is
modeled in terms of the frequencies of the regions/tiles, as
follows,

Cycle = gcycle (f1, . . . , fN) (1)

The NoC of a many-core system is hierarchically parti-
tioned into N regions to trade power control granularity for
a more manageable solution space size. The tile(s) inside one
region has (have) the same frequency. The total number of
regions now is the same as the number of frequency variables
in Eqn. 1.

Regression models [9] are used to find the gCycle in Eqn. 1
through curve fitting. Our experiment has indicated that the
following model in Eqn. 2 can result in less errors, and this
model will be validated in the experimental part in Section
VI.B.

lnCycle = a0 +
N∑

i=1

ai ·
√
fi (2)

where ai is the regression coefficient w.r.t. fi. At the k-th time
interval, the frequencies of N regions are set randomly with a
vector

−→
fk =< f1, ..., fN > and the cycles Cyclek is measured.

With K time intervals, the training data {<
−→
fk, Cyclek >

, k = 1, ...,K} are collected. A linear regression model with
the maximum likelihood estimator [9] will find the coefficients
(ai’s) with the training data set.

C. Power model

Assuming all the cores are operating in the same voltage
level (dynamic frequency scaling only), the total dynamic
power of a many-core chip of interest can be determined as
follows:

N∑

i=1

αi · Ci · fi · V 2 =
N∑

i=1

bi · fi (3)

where αi is the switching activity, Ci is the effective capaci-
tance, V is the voltage, bi ≡ αi · Ci · V 2.

If, besides the core frequencies, the core voltages can
also be adjusted (dynamic voltage and frequency scaling), the
dynamic power can be calculated as

N∑

i=1

αi · Ci · fi3/K2 =
N∑

i=1

difi
3 (4)

where K is a constant. Similarly, di ≡ αi · Ci/K2.

62

IV. PROBLEM DEFINITION

Following the performance and the power models described
above, the power budgeting problem aims to minimize the
overall execution time under the input power budget. It is
formulated as

minCycle = gcycle (f1, . . . , fN) (5)

subject to
N∑

i=1

bi · fi ≤ P (6)

for each
fi ∈ {F1, . . . , FM} (7)

The power model in Eqn. 6 is determined by applying
either Eqn. 3 or 4; P is the input power budget, which could be
a function of time t. Eqn. 7 specifies a discrete set of frequency
values that each frequency variable fi can take.

The problem can be viewed as, given N tile regions whose
frequencies can take {F1, . . . , FM} and the power budget P ,
find the assignment of the frequencies of the regions, so as to
minimize the execution cycles modeled in Eqn. 2.

Dropping the ln notation in Eqn. 2 and converting the
min operator to max in the objective equation, the above
problem definition has the same form as a bounded knapsack
problem [10], which is NP-hard. On the other hand, the power
budget P might also change fast, which requires the problem
be solved with low run time and hardware overhead. Heuristic
based approaches, like [3], [4] might fail to find a good
solution with low execution cycles, due to the fact that the
number of possible combinations of assigning N variables
grows exponentially. Linear programming [7] or exhaustive
search take unacceptable long time to find the optimal solution.

The above challenge pushes us to develop a new algorithm
to find optimal solutions with high parallelism in nature and
low run time and hardware overhead, as in next section.

V. DYNAMIC PROGRAMMING BASED OPTIMAL ONLINE
POWER ALLOCATION

A. Overview of the OPAD algorithm

To solve the problem defined in Section IV optimally,
the OPAD algorithm transforms the problem into a dynamic
programming network based solver as shown in Fig. 1. A
regression algorithm is applied either online or offline to
obtain the performance model (section III.B), which relates
the frequencies of relevant regions to performance (measured
as cycles) in Eqn. 1. The regression model according to Eqn. 2
can be found in a curve fitting manner.

Inspired by the dynamic programming approach to solve
the knapsack problem, the above problem can also be solved
in polynomial time as follows.

Since the logarithmic function in the objective (Eqn. 2)
is monotonic, minimizing Eqn. 2 is equivalent to minimizing
N∑
i=1

ai ·
√
fi. Let Ci,p denote the minimum cycles of assigning

t

{ , , 1,..., }k kf Cycle k K

Fig. 1. The OPAD system block diagram.

{f1, ..., fi} with
i∑

j=1
bj · fj ≤ p and 0 ≤ p ≤ P . Thus, for

each fi,

• if
i∑

j=1
bj · fj > p, Ci,p = Ci−1,p.

• Otherwise, Ci,p = min{Ci−1,p, Ci−1,p−bifi +
ai
√
fi}|fi=Fj .

In this way, CN,P is the minimum cycles by assigning
the N variables. The dynamic programming algorithm can be
summarized in Algorithm 1.

Algorithm 1: Dynamic Programming Based Frequency
Assignment

Input: ai, bi: the coefficients in Eqns. 2 and 3
Output: Ci,p: the minimum cycles given the power

budget ≤ p.
Function: Find the minimum cycles.
begin

Initialize all the Ci,p to be 0;
for each fi do /* i = 1, ..., N */

for each Fj , do /* {F1, . . . , FM} */
for each p ≤ P do

if
i∑

j=1
bj · fj > p then

Ci,p = Ci−1,p;
else

Ci,p = min{Ci−1,p, Ci−1,p−bifi +
ai
√
fi}|fi=Fj ;

end
end

end
end

To accelerate the computation, a multi-stage dynamic pro-
gramming network (DPN) is designed to solve the problem
with linear time complexity. It is first constructed by mapping
the terms in the constraints (Eqn. 3) and objective (Eqn. 2)
equations to the weights of vertices or edges. Then the DPN
is traversed to find a minimum weight path corresponding to
the optimal solution.

63

In DPN construction, each vertex represents a different
power budget. An edge exists between two vertices in adjacent
stages if the power consumption of assigning the frequency
equals to the difference in the power budgets of the two
vertices.

In DPN traversal, each edge is assigned a weight by the
term in Eqn. 2, i.e., minimum cycles by assigning frequency
to a variable. Thus, finding the minimum weight path is
equivalent to an optimal frequency assignment. The traversal
can be done in parallel. Each vertex at current stage selects the
edge such that, the sum of the edge weight and the minimum
cycles achieved by the later stage is minimum. This sum
is transmitted back to vertices in the previous stage. In this
manner, after reaching the source, the minimum weight path
is found in linear time.

In the following, the transformation of the problem to a
DPN (which runs Algorithm 1 in parallel) is introduced first,
followed by the two operations in DPN which correspond to
finding the optimal solution.

B. The definition of the dynamic programming network

The dynamic programming algorithm (Algorithm 1) can
be mapped to a DPN which finds solutions in parallel. Fig. 2
shows the transformation of the problem into a dynamic
programming network, i.e., construction of the DPN. Once
the DPN is constructed, it only needs minor update to remove
some vertices and edges according to current power budget.

Definition 1. Dynamic programming network. A dynamic
programming network is denoted as a graph DPN(V,E), with
V and E represent the sets of vertices and edges, respectively.

• Each vertex is assigned with two properties, Cycle and
P , where Cycle

(
vi,j

)
denotes the minimum cycles given

the power budget P
(
vi,j

)
equal to j.

• The weight of an edge ei,j,k = (vi,j , vi+1,k), represented
as wi,j,k. wi,j,k = ai

√
fi|fi=(j−k)/bi equals to the corre-

sponding term in Eqn. 2.

Let N denote the number of frequency variables, M be the
number of values that can be taken by each frequency variable,
and P be the power budget given at time t. Of the total of P×
(N +1) vertices in a DPN, the network is organized as N +1
stages (as there are N frequency variables), and each stage
has P vertices (corresponding to the available power budget
levels). Two dummy vertices, S and D, are added before stage
1 and after stage N + 1, respectively, as in Fig. 2.

Two steps are involved for the transformation to DPN, i.e.,
DPN construction and traversal.

C. DPN construction

The DPN construction has three steps as follows.

• Let
P (vi,j) = j (8)

• An edge ei,j,k is added between vertices
(
vi,j , vi+1,k

)
, if

k + bi · fi|fi=Fl = j, for l ∈ {1, ...,M} (9)

where bi is defined in Eqn. 3.

P

S

P

D

1

N

i i
i

b f P

fi F1 FM

1
1

1
1
| f F

b f

0

1min

N

i i

i

a a f

Cycle e

1
1

1
1

weig
ht :

| f F

a
f

P

1

1

1
|

M

f
F

b
f

1

1

1

w
ei
gh
t :

|
M

f
F

a

f

P

f1 fN

N

P

1|
N

N
N f F

b f
1

weig
ht :

|
N

N
N

f F

a
f

| N

M

N

N

f
F

b

f

we
ig
ht
:

| N

M

N

N

f
F

a

f

Fig. 2. Transformation of the optimization problem to a dynamic program-
ming network. In total, there are P × (N +1) vertices. In the first step, each
vertex represents the power budget after assigning a frequency variable in its
previous stage. In the second step, a minimal weight path corresponds to the
optimal solution is found by dynamic programming.

• Repeat the above steps to connect N stages of the vertices.

Note that fm with 1 ≤ m < i (of the stags proceeding stage
i) are assigned a value at stage i, while fn with i < n ≤ N
(stages after stage i) are yet to be assigned. Eqn. 9 states
that an edge ei,j,k is added between two vertices vi,j and
vi+1,k located at two adjacent stages if k + bi · fi|fi=Fl =
j, for some l ∈ {1, ...,M}, which means, there is a path
between two adjacent vertices if the difference in their power
budgets equals to the power consumption by assigning a
frequency Fl to the variable with l ∈ {1, ...,M}.

D. DPN traversal

The DPN traversal has two steps.

• The edge ei,j,k is assigned with weight

wi,j,k = ai
√

fi|fi=(j−k)/bi (10)

where ai and bi are defined in Eqns. 2 and 3.
• Find a minimum weight path from S to D, which

corresponds to the optimal solution of the problem.

The weight of each edge equals to the corresponding term
in Eqn. 2 as shown in Fig. 2. When the power budget P
changes, some vertices vi,j and the corresponding edges are
removed if the power budget of vi,j (i.e., j) exceeds P . To find
the minimum weight path under the power constraint in linear
time, the following dynamic programming equations can be
calculated within N iterations [11], [12] following a backward
moving procedure (from D back to S). At each stage, each
vertex calculates the following value, a modified version of the
Bellman equations [11], [12].

64

Cycle
MIN

(vi,j) = min
∀vi+1,k,an edge ei,j,k exists between(vi,j ,vi+1,k)

{wi,j,k + Cycle
MIN

(vi+1,k)}
(11)

where CycleMIN (D) = 0, and wS,1,k = wN,D,k = 0, with
k ∈ [1, P], i.e., the edges connecting S to the vertices in the
first stage and the vertices in stage N to D have a weight of
0.

Thus, the calculation of Eqn. 11 will become to find the
minimum weight path (optimal solution) under the power
constraint in N steps as follows,

Cycle∗
MIN

(PATHS,D) = min
ei,j,k∈PATHS,D

{
i=N,j=P,k=P∑

i=1,j=1,k=1

wi,j,k}

= min
fi∈{F1,...,FM}

N∑

i=1

ai
√
fi

(12)

where PATHS,D is the set of all the paths from S to D.
The optimal path from vi,j to vi+1,µ at each vertex vi,j
(corresponding to the assignment of each frequency variable fi
by (j−µ)/bi) along the minimum weight path can be obtained
as follows:

vi+1,µ = argmin
∀vi+1,k,an edge ei,j,k exists between(vi,j ,vi+1,k)

{wi,j,k + Cycle∗
MIN

(vi+1,k)}
(13)

where the optimal assignment of fi is Fl = (j − µ)/bi. In
this way, the optimal assignment of each frequency variable is
found and the system can be tuned to run under this frequency
configuration.

The pseudo-code in Algorithm 2 shows the traversal of the
DPN to find the minimum weight path from S to D. Both DPN
construction and traversal take N iterations. Each iteration only
involves add and compare operations which could be done in
one cycle. Thus, the run time is 2N cycles.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

Experiments are performed using an in-house developed
event-driven many-core simulator [13], [14]. Table I lists
the configuration of the many-core simulator. The Orion 2.0
power library [15] is admitted into our simulator. Evaluation
is performed over a suite of benchmarks: 9 benchmarks in
PARSEC [16] and all the benchmarks in SPLASH-2 [17].
These benchmarks are cross-compiled into MIPS-compatible
binaries. For the sake of space, only two representatives from
SPLASH-2, barnes and raytrace, are listed in Table II.

In all the experiments, we select a 8 × 8 2D mesh as the
underline NoC topology. Four regions are formed in the NoC,
where all the tiles within one region run at the same frequency.
We compare the performance of the proposed OPAD against
three other best known schemes: (1) PGCapping [6], where

Algorithm 2: FindMinWeightPath
Input: ei,j,k: the weight of each edge, for

i, j ∈ [1, N + 1] and k ∈ [1, P].
Output: Cycle (vi,j):the minimum cycles of each

vertex after assigning fi.
Function: Find the minimum weight path &
corresponding to the optimal solution.
begin

Initialize all the Cycle (vi,j) to be ∞, except
Cycle (D) = 0;
for stages i from N − 1 to 0 do

for each vertex vi,j do
for adjacent vertex vi+1,k do /* an edge
ei,j,k connecting vi,j and vi+1,k */

if
Cycle

(
vi+1,j

)
+ wi,j,k < Cycle (vi,j)

then
Cycle (vi,j) =

Cycle
(
vi+1,j

)
+ wi,j,k;

fi = (j − k)/bi;

end
end

end
end

TABLE I. PARAMETERS USED IN THE SIMULATION

Number of processors 64 (MIPS ISA 32 compatible)
Fetch/Decode/Commit
size

4 / 4 / 4

ROB size 64
L1 D cache (private) 16KB, 2-way, 32B line, 2 cycles, 2 ports, dual

tags
L1 I cache (private) 32KB, 2-way, 64B line, 2 cycle
L2 cache (shared)
MESI protocol

64KB slice/node, 64B line, 6 cycles, 2 ports

Main memory size 2GB
On-chip network parameters

NoC flit size 72-bit
Data packet size 5 flits
Meta packet size 1 flit
NoC latency router 2 cycles, link 1 cycle
NoC VC number 4
NoC buffer 5 × 12 flits

TABLE II. BENCHMARKS

PARSEC streamcluster, swaptions, ferret, fluidanimate, blackscholes,
freqmine, dedup, canneal, vips

SPLASH-2 barnes, raytrace

both the number and the frequency of tiles can be adjusted,
(2) PEPON [3], where the frequency of each processor and
last-level cache bank can be adjusted, and (3) DPPC [7], a
linear programming based approach.

In what follows, we will present the verification of regres-
sion model of the performance vs. frequency first. Next the
performance of the proposed OPAD is compared against that of
related approaches. In the end, the hardware cost and overhead
of the DP-based optimization are analyzed.

65

0

5

10

15

ba
rne

s

bla
cks

ch
ole

s

ca
nn

ea
l

de
du

p
fer

ret

flu
ida

nim
ate

fre
qm

ine

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s

N
or

m
al

iz
ed

 e
rro

r (
%

)
Error of the regression models

proposed model lm nnet

Fig. 3. Comparison of the three models, linear regression (lm), neural network
(NNet) and the proposed model as in Eqn. 2. The NoC is partitioned into 4
regions with each region has a block size of 2× 8. All the errors (NRMSE)
are normalized to the mean value of the cycles.

B. Precision of the performance model

Suitable performance model plays an important role in
the problem formulation. To justify the accuracy of the
performance model in Eqn. 2, we compare it against two
other approaches, the linear regression model (lm), and neural
network model (nnet). The metric used here is the normalized
root square mean squared error (NRMSE), which is defined in
Eqn. 14.

NRMSE =√
∑K

t=1 (Ĉyclet − Cyclet)
2

K
/(Cyclemax − Cyclemin)

(14)

where Cyclet are execution cycles, Ĉyclet are the cycles by
regression, K is the number of total training data, Cyclemax

and Cyclemin are the respective maximum and minimum
execution times when the training data are applied.

Fig. 3 shows the errors of the three regression models,
where the proposed regression model has shown significantly
smaller error than the other two.

The parameters might need to be updated as time goes by.
Thus, in the experiments, the model parameters in Eqn. 2 are
updated every 10M cycles similarly as in Section III.B. Note
that the update of the model parameters is independent of the
DPN calculation. Once the model is updated, the edge weights
will also be updated.

C. Comparison of the power allocation methods

In this set of experiments, a single application is run each
time. OPAD is compared against PGCapping, PEPON, and
DPPC, and Fig. 4 shows the performance of the four methods
when the power budget is high, 150W as in (a), and low, 90W
as in (b). From Fig. 4 one can see that OPAD has the lowest
execution time under both high and low power budgets. When
the power budget is high, OPAD records an average of 26 %,
28 % and 30 % less time that of PGCapping, PEPON, and
DPPC , respectively. When the power budget becomes low, on
average, OPAD needs 19 %, 25 % and 16% less execution time
than that of PGCapping, PEPON, and DPPC, respectively.

To verify the real time power adaptiveness of the four
methods, Fig. 5 compares the four methods with a varying
power budget. The input power budget in Fig. 5 has two

0

1

2

3

ba
rne

s

bla
cks

ch
ole

s

ca
nn

ea
l

de
du

p
fer

ret

flu
ida

nim
ate

fre
qm

ine

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s

No
rm

al
ize

d
cy

cle
s

Normalized execution time

OPAD PGCapping PEPON DPPC

(a)

0

0.5

1

1.5

2

ba
rne

s

bla
cks

ch
ole

s

ca
nn

ea
l

de
du

p
fer

ret

flu
ida

nim
ate

fre
qm

ine

ray
tra

ce

str
ea

mclu
ste

r

sw
ap

tio
ns vip

s

No
rm

al
ize

d
cy

cle
s

Normalized execution time

OPAD PGCapping PEPON DPPC

(b)

Fig. 4. Execution time of the four approaches under the power budget of (a)
150W and (b) 90 W.

phases: a fast changing phase that the power budget varies
rapidly, in the range of microseconds, and a slow changing
phase that the power budget varies slowly, in the range of
milliseconds. The closer the actual power consumption is to
the input power budget, the less the energy loss, and thus the
better result. Using this criteria, from Fig. 5 (a), one can see
that OPAD outperforms all the other three methods, especially
when the power changes rapidly. This is due to low runtime
overhead of OPAD, in the level of a few dozen cycles, while
the other three methods need a few to ten or even hundred
million cycles. With such long run time overhead, the three
methods fail to track the varying power budget, which leads
to high energy loss. Fig. 5 (b) shows the power consumption
when the input power budget varies at a slow pace. Compared
to Fig. 5 (a), the matching of the power consumption to
the input power budget of PGCapping, PEPON, DDPC is
improved. Yet, the matching of these three methods is still
poor compared to OPAD. For both cases in Fig. 5 (a) and (b),
OPAD has the best match of power consumption with the input
budget, resulting in the least energy loss.

From the above experiments, OPAD can have lower execu-
tion time given the same input power budget compared to three
state-of-the-art methods, PGCapping, PEPON, and DPPC. On
the other hand, as OPAD has much lower overhead in power
allocation, it is a beneficial method for many-core systems in
which the power budget varies rapidly. Power consumption of
OPAD matches the input budget much better than the other
three methods, resulting in less energy loss. Thus, OPAD is
suitable for online adaptive power allocation.

D. Hardware cost and runtime overhead

The hardware cost of the proposed OPAD is mainly due to
the nodes in the dynamic programming networks. Each node
operation includes a 16-bit comparator and an adder. Each

66

0 50 100 150 200 250 300 350 400 450 500
40

50

60

70

80

90

t (µs)

Po
we

r (
W

)
Input power budget & actual power consumption

 power budget OPAD PGCapping PEPON DPPC

(a)

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120

t (ms)

Po
we

r (
W

)

Input power budget & actual power consumption

 power budget OPAD PGCapping PEPON DPPC

(b)

Fig. 5. Input power budget vs. actual power consumption under different
power budget variation rates. The power budget varies at the scale of (a)
microsecond and (b) millisecond.

node has an area of 121 µm2 and consumes 20 µW of power
(assuming switching activity of 0.5) using Synopsys Design
Compiler under 65nm TSMC library. As there are a total of
P × (N + 1) vertices in DPN, for a system with 16 regions
and P in Eqn. 3 normalized to 10, the whole DPN area can be
20570 µm2 and consumes 3.4 mW of power. For reference,
a single 5 × 5 router with 2 virtual channels, flit size of 75
bits, and 4 flit-depth FIFO has an area of 145890 µm2 and
consumes 8 mW of power. That is, the total area and power
consumption of the DPN is 14 % and 42 %, respectively, of
a single router.

The total run time of the OPAD to allocate power online
is 2N cycles, where N is the region number (number of
frequency variables). For an 8-region partition, only 16 cycles
is needed. As a comparison, PGCapping, PEPON, and DPPC
each typically takes about 10 ∼ 100 M cycles, which is 6 to 7
orders of magnitude higher than that of OPAD. In OPAD, the
regression model takes 105 cycles to compute. However, this
is infrequently invoked; it only occurs at the initialization or
at update interval for model error correction (typically, every
10 million cycles).

VII. CONCLUSION

In this paper, an optimal adaptive power allocation method
was proposed to optimize performance under a given power
budget. The proposed method has two major steps. First, a
performance-power model is created either online or offline
that relates the performance/power to the frequency variables
of various on-chip resources. Second, a dynamic programming
network is used to solve the power allocation problem in an

optimal way. The proposed method was compared against three
state-of-the-art power management methods, i.e., PGCapping,
PEPON, and DPPC via extensive experiments. On average,
the proposed method can reduce as much as 30 % execution
time over the other three methods. One big advantage of
the proposed method is its extremely low run-time overhead
and hardware cost, making it particularly suitable for power
adaptation in many-core systems with rapidly changing power
budget.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,” in Proc.
Design Automation Conf, pp. 746–749, ACM, 2007.

[2] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in Proc. Int’l Symp.
Computer Architecture, pp. 365–376, IEEE, 2011.

[3] A. Sharifi, A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R.
Das, “PEPON: performance-aware hierarchical power budgeting for
NoC based multicores,” in Proc. Int’l Conf. Parallel Architectures and
Compilation Techniques, pp. 65–74, ACM, 2012.

[4] S. Imamura, H. Sasaki, N. Fukumoto, K. Inoue, and K. Murakami, “Op-
timizing power-performance trade-off for parallel applications through
dynamic core and frequency scaling,” Proceedings of the RESoLVE,
2012.

[5] S. Reda, R. Cochran, and A. Coskun, “Adaptive power capping for
servers with multi-threaded workloads,” IEEE Micro, vol. 32, no. 5,
pp. 64–75, 2012.

[6] K. Ma and X. Wang, “PGCapping: exploiting power gating for power
capping and core lifetime balancing in CMPs,” in Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques, pp. 13–22, ACM,
2012.

[7] K. Ma, X. Wang, and Y. Wang, “DPPC: dynamic power partitioning and
control for improved chip multiprocessor performance,” IEEE Trans.
Computers, in press, 2013.

[8] J. Li and J. F. Martinez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in Proc. Int’l Symp.
High-Performance Computer Architecture, pp. 77–87, IEEE, 2006.

[9] C. M. Bishop, Pattern recognition and machine learning. Springer New
York, 2006.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2001.

[11] T. Mak, P. Cheung, K. Lam, and W. Luk, “Adaptive routing in
network-on-chips using a dynamic-programming network,” IEEE Trans.
Industrial Electronics, vol. 58, no. 8, pp. 3701–3716, 2011.

[12] D. P. Bertsekas, Dynamic programming and optimal control, vol. 1.
Athena Scientific Belmont, 1995.

[13] X. Wang, T. Mak, M. Yang, Y. Jiang, M. Daneshtalab, and M. Palesi,
“On self-tuning networks-on-chip for dynamic network-flow dominance
adaptation,” in ACM/IEEE Int’l Symp. Networks-on-Chip, in press,
2013.

[14] J. Xue, A. Garg, B. Ciftcioglu, J. Hu, S. Wang, I. Savidis, M. Jain,
R. Berman, P. Liu, M. Huang, H. Wu, E. G. Friedman, G. Wicks, and
D. Moore, “An intra-chip free-space optical interconnect,” in Proc. Int’l
Symp. Computer architecture, pp. 94–105, ACM, 2010.

[15] K. Samadi, A. Kahng, B. Li, and L. S. Peh, “Orion 2.0: a fast and
accurate NoC power and area model for early-stage design space
exploration,” in Proc. Design, Automation and Test in Europe Conf.
and Exhibition, pp. 423 – 428, IEEE, 2009.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” in Proc. Int’l
Conf. Parallel Architectures and Compilation Techniques, pp. 72–81,
ACM, 2008.

[17] J. P. Singh, W. D. Weber, and A. Gupta, “SPLASH: stanford parallel ap-
plications for shared-memory,” ACM SIGARCH Computer Architecture
News, pp. 5–44, 1992.

67

