
Reducing Memory Accesses with
a System-Level Design Methodology in

Customized Dynamic Memory Management
David Atienza', Stylianos Mamagkakist, Francky Catthoort, Jose M. Mendias', Dimitrios Soudrist

* DACYAAJCM Avda. Complutense sin, 28040, Madrid, Spain.
t VLSl Center-Demokritus Univ.. Thrace. 67100 Xanthi. Greece.

t IMEC, Kapeldreef 7 5 3001 Heverlee, Belgium

Absmcf- Currently, portable consumer embedded devices
are increasing more and more their capabilities and can now
implement new algorithms (e.g. multimedia and wireless pro-
tocols) that a few years ago were resewed only for powerful
workstations. Unfortunately, the original design characteristics
of such applications do not often allow to port them directly in
current embedded devices. These applications share complex and
intensive memory use. Furthermore, they must heavily rely on
dynamic memory due to the unpredictability of the input data
(e.g. 3D streams features) and system behaviour (e.g. number
of applications running concurrently defined by the user). Thus
they require that the dynamic memory subsystem involved is
able to provide the necessary level of performance for these
new dynamic applications. However, actual embedded systems
haw very limited resources (e.g. speed and power consumed
in thc memory subsyslcm) to provide efficient general-purpose
dynamic memory management. In this paper we propose a new
methodology to design custom dynamic memory managers that
provide the performance required in new embedded devices
by reducing the amount of memory accesses to handle these
new dynamic multimedia and wireless nehvork applications.
Our results in real-life dynamic applications show significant
improvements in memory B C C ~ S S ~ S of dynamic memory managers
, i.e. up to 58%, compared to state-of-the-art dynamic memory
management solutions for complex applications.

1. INTRODUCTION

Over the last decade, the differences between the appli-
cations to be executed on top line Digital Signal Processors
(DSPs) and portable devices have been fading. The new com-
plex applications (e.g. network protocols, 3D games, MPEG4
video rendering) introduced in DSPs designed exclusively
for performance are now implemented on hand-held devices
where memory resources and performance are much more
limited. Therefore extensive (and very time-consuming) refine-
ments must be applied to the initial design and implementation
of these new applications in order to be suitably poned to
current embedded consumer devices.

One of the fundamental characteristics of these new and
complex multimedia applications (e.g. MPEGZ 1) or wireless
network protocols is that they extensively employ Dynamic
Memory (or DM from now on) for their operations [9]. A high
variation in the use of resources at each moment in time exists
because of the strong internal dynamism and the unpredictable
input data (e.g. input frames) of such applications. Thus a
(static) worst-case memory footprint of these new applications

would lead to an unacceptable overhead in memory footprint
and memory bandwidth requirements for current embedded
systems [2]. On the other hand, dynamic solutions can de-
allocate memory before the end of the scope and re-allocate it
at run time as needed. Therefore, DM solutions can continue to
work in almost any case, because they only allocate memory
for the dynamic data types [Z], which are actually present.
Hence, DM management should be used in cost- and failure-
sensitive realisations of such embedded applications.

When DM management solutions are used in new con-
sumer embedded devices, general-purpose DM management
mechanisms [I61 cannot be directly implemented because they
imply too much overhead (e.g. memory accesses) for the
limited resources of embedded devices. Therefore, in recently
proposed real-time 0% for embedded systems [13], DM man-
agement is supported with specifically designed (or custom)
DM managers considering the specific set of applications that
will run on them and the underlying memory hierarchy. Note
that they are still realised in the middleware and usually not in
the hardware. However, flexible system-level approaches that
can guide designers to explore the DM management design
space for embedded systems do not presently exist. Thus,
custom DM managers for embedded systems are designed
by developers relying mainly on their own experience and
intuition. As a result, only a very limited number of design
alternatives are considered due to the very time-consuming
effon of manually implementing and refining them.

In this paper, we propose a new methodology that allows
developers to effectively define and create custom DM man-
agement solutions with the required performance for current
embedded devices. This is done by reducing the amount of
memory accesses of the data used inside the DM management
subsystem to handle new dynamic multimedia and wireless
network applications. It is based on a systematic definition and
guided exploration of the DM management design space for
embedded systems according to their particular DM behaviour.
In contrast with our recent work [Z] that focused on reduced
memory footprint, we propose new factors of influence and a
new order for the exploration of the relevant design space
for reduced amount of memory accesses and an enhanced
performance. The factors that influence our decisions for the
formalization of the methodology are different and thus we

0-7803-863 1-0/04/$20.00 02004 IEEE. 93

design different custom DM managers. In the end, using
our own DM libraries [I] we can automate the creation
of the proposed customized DM managers. The rest of the
paper is organized in the following way. In Section II, we
describe some related work. In Section 111 we present our DM
management design space of decisions for reduced amount
of memory accesses in dynamic applications. In Section IV
we define the order to traverse it, in order to achieve the
required performance for current embedded systems. Later, in
Section V, we introduce our real-life applications and present
the experimental results obtained. Finally, in Section VI we
conclude the paper with a summary of our main contributions.

Currently the hasis for an efficient DM management in
a general context is already well established and work is
available about general-purpose DM management implemen-
tations and policies [16]. Also, research exists on custom DM
managers that improve performance and fragmentation (but
not memory accesses) using locality of references [16].

In memory management for embedded systems [IZ], the
DM is usually partitioned into fixed blocks to store the
dynamic data. Then, the free blocks are placed in a sin-
gle/doubly linked list [I21 due to performance constraints
with a simple (but fast) fit strategy, e.g. first fit [16]. Also,
in new consumer embedded systems where the range of
applications to he executed is very wide, variations of state-
of-the-art general-purpose DM managers are frequently used.
For instance, Linux-based systems use as their basis the Lea
DM manager [I61 and Windows-based systems include in
their foundations the Kingsley DM manager [16]. Finally,
recent real-time OSs for embedded systems (e.g. [13]) include
support for dynamic allocation via platform-specific (custom)
DM managers based on simple region allocators [I61 with a
reasonable performance.

Regarding methods to build DM managers, [5] proposes
an infrastructure of C++ layers that can he used to improve
performance of general-purpose managers. However, this ap-
proach lacks the required formalization to consistently design
and profile custom DM managers.

Finally, optimizations for static data in embedded systems
is available (see e.g. [4] for a good tutorial overview). These
techniques are fully complementary to our work.

111. METHODOLOGY DESCRIPTION
Our methodology enables the design of custom DM man-

agement mechanisms for new dynamic embedded applications
(e.g. multimedia) with reduced amount of data accesses inside
the DM managers. To this end, we first define the relevant
design space of DM management decisions in multimedia and
wireless network applications for reduced amount of memory
accesses. Then, we indicate a suitable order to traverse it
according to the relative influence of each decision with
respect to memory accesses of the deiallocated data of the
DM manager. This order is decided with the results of the
corresponding simulations, which provide valuable run-time
behaviour information of the applications. Finally, a custom

11. RELATED WORK

E.Poo1 dlVbion based on criteflon

1 Sze

E.SpliH!q 61-

INumberdMmb(ocXsize 2whan

Fig. I .
amount of memory accesses exploration

DM management design space of relevant decisions far reduced

DM manager is designed according to the specific DM be-
haviour of the application under study (e.g. allocation sizes).

In order to perform the final run-time evaluation, imple-
mentation and simulation of the custom DM managers, we
have developed a C++ library that implements the decisions
in our DM design space (see [I] for information about the
corresponding profiling tool). Therefore, this library enables
a semi-automatic code generation o f the DM managers with
common profiling for all of them. Apart from the profiling tool,
in our recent work [Z] we have proposed a DM methodology
for reducing memory footprint, hut no memory accesses have
been addressed there. The most relevant design space decisions
and the final order to traverse it are quite different for these
two objectives. So this paper contains a brief summary in
Subsection Ill-A of the entire design space (which is largely
the same for both) hut it also contains novel factors of
influence to steer the memory accesses related decisions and
traverse the design space (see Section 1V).

A. Our DM managemen: design space for reduced amount of
memoT accesses

DM management basically consists of two separate tasks,
i.e. allocation and deallocation. Allocation is the mechanism
that searches for a block big enough to satisfy the request of
a given application and deallocation is the mechanism that re-
turns this block to the available memory of the system in order

94

to be reused later. In real applications, the blocks are requested
and returned in any order, thus creating "holes" among used
blocks. These holes are known as memory fragmentation. On
the one hand, internal fragmentation occurs when a bigger
block than the one needed is chosen to satisfy a request. On
the other hand, if the memory to satisfy a memory request
is available, but not contiguous (thus it cannot be used for
that request), it is called external fragmentation. Hence, on
top of memory delallocation, the DM manager has to take
care of fragmentation issues. This is done by splitting and
merging free blocks to keep memory fragmentation as small
as possible.

We have classified all the important design options that
compose the design space of DM management in different
decision trees. The design space was created afier careful
analysis of the most common DM managers [I61 and many
custom solutions (e.g. 1131) so that it can define any custom
or general-purpose DM manager. In the following we describe
the five main categories of Figure 1 and the important decision
trees inside them for the creation of DM managers with
reduced amount of memory accesses (they are explained in
detail in [Z]):

A. Creafing block structures, which handles the way block
data structures are created and later used by the DM managers
to satisfy the memory requests.

B. Pool division based on, which deals with the number of
pools (or memory regions) present in the DM manager and
the reasons why they are created.

C. Allocating blocks, which deals with the actual actions
required in DM management to satisfy the memory requests
and couple them with a free memory block.
D. Coalescing blocks, which concerns the actions executed

by the DM managers to ensure a low percentage of external
memory fragmentation, i.e. merging two smaller blocks into a
larger one.

E, Splitting blocks, which refers to the actions executed by
the DM managers to limit internal fragmentation, i.e. splitting
one larger block into two smaller ones. The leaves of El and
E2 are the same as DI and D2.

IV. ORDER FOR REDUCED AMOUNT OF DM DATA
ACCESSES

A. Factors of influence for DM data accesses
The main factors that affect memory accesses of the data

inside the DM manager are the accesses to traverse the pools,
the accesses to traverse the blocks within the pools and
the internal and external memory defragmentation function
accesses:

I)The traversing pools accesses consist of the accesses
used by the DM manager to find the correct pool to allo-
cate, deallocate or use a specific memory block. The pool
organization is controlled by category B Pool division based
on. When memory pools contain many blocks, their internal
organization frequently becomes more complex. Thus, more
memory accesses are needed to find a single memory block
(e.g. fewer accesses are required to find a block searching in

10 pools that contain 20 blocks each, than to find a block
in 2 pools that contain 100 blocks each). Additionally, more
complex memory pools will prevent the system from reaching
high levels of fragmentation. For example, a system with
several different allocation size requests is likely to have less
fragmentation, when you have two pools with 400 bytes in
total (one pool with 20 IO-byte-blocks and one pool with
10 20-byte-blocks) compared to when you have just one
pool with 20 20-byte-blocks (again 400 bytes), because the
requested blocks can be distributed more evenly according to
their sizes. Therefore, less defragmentation function accesses
will be needed. As a result, we can conclude that category
B is the most important category to minimize the memory
accesses.

II)The traversing block accesses are those made by the DM
manager to find a specific memory block to be allocated,
deallocated or used within a certain pool. The category of the
DM management design space, related to traversing blocks
accesses, is category C Allocating BlockF. For example, fewer
memory accesses are used, if the First fit algorithm is
chosen, because the DM manager looks for the first available
block inside the pool, not for the block that matches best to
the requested size (Best fit). In this way, we achieve fewer
accesses, but have more memory fragmentation, thus more
defragmentation function accesses will be needed, if memory
footprint is a design constraint.

I1I)The internal defragmentation function accesses are used
to split big memory blocks to fit smaller block requests. In
our design space, the internal defragmentation accesses are
controlled by category E (Splifting blocks) and its main impact
is on applications, that deal with small blocks [16]. E.g. if only
500-byte blocks are available inside the pools and you want to
allocate 20-byte blocks, it would require at least 25 memory
accesses to split one 500-byte block to 25 blocks of 20 bytes
to avoid internal fragmentation.

1V)The external defragmentation function accesses are used
to coalesce small memory blocks to fit bigger block requests.
E.g. if you want to allocate a 50-Kbyte block, but only 500-
byte blocks exist inside the pools, it would require at least
100 memory accesses to coalesce 100 blocks to provide the
necessary amount of memory requested. In this case, the
external defragmentation memory accesses are controlled by
category D (Coalescing blockr) in our DM management design
space. As expected, it its main impact is on applications, which
deal with big blocks [16].

Note the distinction between categories D and E, which try
to deal with internal and external fragmentation, as opposed
to category B and C that try to prevent it. Prevention requires
less memory accesses than the defragmentation functions.

B. Order of the trees for reduced amount of DM data accesses
Due to the big size of the design space and the many differ-

ent options available to the designer, we have concluded to a
sequential order of the decision trees and their corresponding
leaves to achieve reduced amount of memory accesses. This
order is derived from extensive simulations and the factors

95

Correct order
E, Pool division Lo*lnlrmsl E. Spllttlng Bbck5

Fig. 2. Example of correct order between decision lrecs

of influence for DM accesses. Therefore, the correct leaf for
tree A2 should be decided first to define the global structure
of the blocks. Secondly, it is important to define the various
pool structures of the DM manager. This is the most important
step for the construction of the DM manager, because as we
can see in Subsection IV-A the pool organization (controlled
by category B) is the most crucial factor and can achieve a
dramatic reduction in memory accesses and prevent fragmen-
tation. Thirdly, it must he decided how to deal with internal
and external fragmentation (thus categories D and E go next),
which is an important issue among dynamic applications.
Next, the trees in category C, which control the memory
accesses for traversing the blocks within pools and prevent
further memory fragmentation, are decided. Finally, the rest
of the trees in category A (i.e. AI, A3 and A4), which control
the memory size per block, are decided. As a result, after
running the needed simulations to establish the importance
of each factor of influence for memory accesses and also
considering the interdependencies among the different options
(they are explained in detail in [2]), the final order within
the DM design space for the reduced amount of memory
accesses exploration is as follows: A2->B3->BI->B2->A5-
>E2->D2->EI->Dl->CI->C2->Al->A3->A4.

If the order we have just proposed is not followed, un-
necessary constraints are propagated to subsequent decision
trees, and thus the most suitable decisions cannot be taken
in the remaining decision trees. Figure 2 shows an example
of this. Suppose that the order was E2 and then BI. When
deciding the correct leaf for E2, the usual choice would be
to choose the Always leaf (e.g. [13]). This seems reasonable
at first sight, because it makes sense to split a memory block
if it is bigger than the block requested and reuse later the
remaining block for another allocation [16]. Now, we can
choose the Single pool leaf for the tree B1, because
there is no need to have many pools with different sized
blocks. If we need a block size that does not exist, we split
a bigger sized block. Hence, the final DM manager always
chooses the blocks available in a single pool and splits them
if they are bigger than the requested size, thus increasing
dramatically the accesses due to defragmentation purposes (i.e.
splitting mechanisms). However, the internal fragmentation
problem can be solved without wasting too many accesses

DRRScheddr~ 3DRsndsmg 3Dlmsps
A W J u n %ram R e c m S N e t a n

fig. 3
normalized to our custom DM managers)

Memory acceSXs cornpansan between DM Managers (results

on defragmentation mechanisms. Therefore, it is necessary to
decide first the leaf for the BI tree and then decide the leaf
for the tree E2. Hence, we select first the leaf One pool
per s i z e in tree B1, so that we have many different block
sizes available, but in separated pools. In this way, we create
too little internal fragmentation to he considered important.
Then, we have more freedom to select the correct leaf for
E2, i.e. the Never leaf, which never invokes a splitting
mechanism, thereby reducing the total memory accesses due
to defragmentation.

V. EXPERIMENTAL RESULTS
We have applied the proposed methodology to three case

studies that represent different new multimedia and wireless
network application domains: the first case study is a 3D
rendering system where the objects are represented as scalable
meshes, the second one is part of a new 3D image reconstruc-
tion system, and finally the third one is a scheduling algorithm
from the network protocol domain. The results shown in this
section are average values after a set of I O simulations for
each DM manager, where all the final values were very similar
(variations of less than 3%). The results were compared to
the generallpulpose DM managers Lea (Linux) and Kingsley
(Windows XP), and to custom DM managers (e.g. Obstacks)
whenever they were applicable. All the DM managers were
created with the same DM library and the same profiling tools
have been used for all of them [I].

The first case study presented is a 3D video rendering
application [17]. It belongs to the new category of 3D algo-
rithms with scalable meshes [IO] that adapt the quality of each
object displayed on the screen according to the position of the
user watching them (i.e. Quality of Service). The objects are
internally represented by vertices and faces (or triangles) that
need to he dynamically stored due to the uncertainty at compile
time of the features of the objects to render. The results were
obtained with Visual C+t 6.0 on a Pentium Ill at 800 Mhz
with 256 MBytes SDRAM and running Windows XP.

Initially, we profile the application to get a global view of
its DM behaviour. Then, we take the decisions in the trees
according to the order we have developed. The order of the
decisions in the corresponding trees is different than [2] and
therefore we will choose the right leaves to create the custom
DM manager with the least memory accesses. First, we make
a decision in tree A2 (Block sizes) and our decision is to have

96

Many block sizes to prevent internal fragmentation, because design exploration includes the knowledge of the specific DM
the 3D video rendering application requests memory blocks behaviour of the application, which cannot be done in Kingsley
that vary greatly in size depending on the data struchxe to since its design is general-purpose. Therefore, our custom
allocate (e.g. vertices, faces). In this way, we can avoid having manager includes similar stack-like optimizations as Obstack
defragmentation memory accesses later. After this, in trees in the first three phases of the rendering process. Then, in
BI (Pool division based on size), B2 (Pool division based on the last three phases, the faces are used independently in a
order) and B3 (Poolsrrucrure), a complex pool implementation disordered pattern and they are freed separately. Thus, our DM
with tree different-sized freelists is selected, i.e. One pool manager includes separate pools for each of the specific sizes
per size and order. In this way, we prevent most of the of the objects used in these phases, i.e. 40, 44 and 84 bytes.
possible fragmentation and provide fast finding of the correct This very specific structure simplifies the complex infrasrmc-
block size, with few memory accesses (in [2] we had chosen ture of Kingsley, where more than 20 different allocation sizes
to have a Single pool to save as much space as possible). (and pools) are selected and frequently checked for a new
Then, in tree A5 (Flexible block size manager) we choose allocation. Thus, Kingsley produces more memory accesses
to Ask for more memory, so that no memory accesses than our custom DM manager.
are spent on defragmentation functions (in contrast to [2], The second real-life application we have used to test
where the splitting and coalescing mechanisms were invoked our methodology is a 3D vision reconstruction system [I41
in every memory allocation). In trees E2 and D2 (When) we (see [15]. The results were obtained with gcc v3.2 on a
choose Never and, in trees El and DI (Number of m m Pentium 111 at 800 Mhz with 256 MBytes SDRAM and run-
and min block size) we choose One (per pool), due to the ning GNULinux 2.4. It heavily uses DM due to the variable
interdependencies involved with the previous tree A5 (in [2] features of input images. This implementation reconstructs 3D
we had chosen the complete opposite leaves Always and images by matching corners [I41 detected in 2 subsequent
Not fixed). Next, in tree Cl (Fit algorithms), we select frames. The operations on the images are particularly memory
First fit to minimize the amount of memory accesses to intensive, e.g. each matching process between two frames
traverse the pools (in [2] we had chosen Exact fit to avoid with a resolution of 640 x 480 uses over IMb, and the
fragmentation, but which increases significantly the amount of accesses of the algorithm (in the order of millions of accesses)
memory accesses). In tree C 2 (Ordering blocks wirhin pools), to the images are randomized. Thus, classic image access
we select the LIFO ordering because the rendering algorithm optimizations such as row-dominated accesses versus column-
delallocates blocks in a phase-like fashion that is very suitable wise accesses cannot be applied to reduce the amount of
for a reuse structure with such kind of order. Next, in tree memory accesses.
A1 (Block srrurture), we choose the fastest dynamic data In this real-life application we reporl the results obtained
type for this particular application, i.e. Doubly linked with our custom DM manager and those obtained with two
list with memory f o r the last accessed el- frequently used DM managers for such kind of applications
ement in any pool. This effectively minimizes the where performance is important, i.e. Kingsley and a manually
amount of traversing accesses within the pools according to optimized version of a typical region manager found in new
the de/allocation behavior of this particular application. Then, embedded OSs [13]. Figure 3 shows the results obtained.
in the trees A3 (Block rags) and A4 (Block recorded info), we These results indicate that our custom DM manager reduces
choose a Header field to accommodate information ahout the total amount of memory accesses compared to Kingsley
the Status (in [2] we had chosen also Size). Finally, (14.8%) and new region managers (22.7%).
after taking these decisions following the order described in These reductions in memory accesses occur, as in the
Section IV, we determine those decisions of the final custom previous case study, because our DM manager isolates the
DM manager that depend on its particular run-time behaviour representative sets of allocation sizes (only few as often occurs
in the application via simulation (e.g. for this applicaiton we in new multimedia applications) in several isolated pools with
obtained the best results with 4 different freelists for the Pool optimizations based on their particular delallocation pattern
srrucrum tree). (e.g. sequential allocation of memory blocks, stack-like deal-

In this case, we have compared our custom DM manager location, LIFO). Thus, a limited overhead in accesses is needed
with Lea, Kingsley and Obstacks [16]. The results depicted to identify the right pool for each allocation or deallocation
in Figure 3 shows that our custom DM manager produces of the data in each pool. In Kingsley, a much higher amount
less memory accesses than Lea and Obstacks, i.e. 58.5% of accesses is required due to the wide range of block sizes
and 30.2% less respectively. In addition, Kingsley requires (and lists of free blocks) it allows. Also, due to its general-
less memory accesses than Obstacks because its optimizations purpose orientation, all the pools include the same organization
for the stack-like behaviour of the first three phases of the and no particular access pattern delallocation optimizations
rendering process cannot be used in the last three phases, are applied for each allocation size. Therefore, the overall
which include many more additional maintenance accesses amount of memory accesses increases significantly. Similarly,
compared to Kingsley. Finally, our custom manager further the region manager does not allow to define different strategies
reduces the amount of memory accesses produced by Kingsley for each region it includes. Furthermore, the overhead of using
(18.1% less). This improvement is due to the fact that our more than one size'(and then more than one region) inside

97

the region manager creates an additional overhead in accesses
that cannot be removed due to the maintenance block of each
region. This distributed organization implies more memory
accesses than our custom DM manager, which includes only
one unified table'for all the pols.

The third case study is the Deficit Round Robin (DRR)
application from the NetBench benchmarking suite [I I]. It is
a scheduling algorithm implemented in many routers today
that performs a fair scheduling by sending the same amount
of data from each internal queue. It uses DM because the real
input can vary enormously depending on the network traffic. In
our experiments, real traces of internet network traffic up to 50
Mbitisec [8] have been used. The results were obtained with
gcc v3.3 on a AMD Athlon at 1200 Mhz with 256 MBytes
SDRAM and running GNUlLinux 2.4.

In this case, we have compared our custom solution to state-
of-the-art general-purpose managers, i.e. Lea [I61 and Kings-
ley [I61 (see Section I1 for more details). As Figure 3 shows,
our custom DM manager uses fewer memory accesses than
Lea or Kingsley, because it sacrifices reasonably-increased
memory footprint for reduced memory accesses. On the one
hand, our custom DM manager chooses to prevent as much
memory fragmentation as possible, but does not invoke defrag-
mentation mechanisms like Lea, thus considerably reducing
the amount of memory accesses. On the other hand, our
custom DM manager employs more application-specific fit
strategies and block ordering than Kingsley, thereby gaining
advantage on memory accesses. To conclude, our custom DM
manager reduces the amount of memory accesses by 37.7%
compared to Kingsley and 56% compared to Lea.

Lastly, to evaluate the complexity of the design process with
our methodology, note that the design and implementation
of the source code of the custom DM managers for each
case study took us only two weeks using the methodology
presented in this paper and the semi-automatic source code
generation with our DM library [I]. As Figure 4 shows,
these DM managers improve the execution time up to 47%
compared to the execution time of the fastest general-purpose
DM manager observed in these case studies, i.e. Kingsley,
thus increasing the performance of the DM subsystem. These
reductions in memory accesses and the increased performance
are achieved at the cost of increasing the total DM footprint in
comparison with the results obtained by other DM managers,
i.e. Lea or Obstacks, and our own previous results [2] (in
the worst case, the memory footprint of the DRR scheduling
algorithm was increased from 1.20 MBytes to 2.02 MBytes).
This indicates that trade-offs exist within our DM design space
between the relevant design factors for embedded system (e.g.
reducing memory footprint by increasing the amount of more
memory accesses). These trade-offs can be exploited by our
methodology (by slightly modifying our exploration order and
cost functions) if the requirements of the final design need it.

VI. CONCLUSIONS

Embedded devices have lately increased their capabilities
and now complex applications (e.g. multimedia) can be ported

2ffi

150 D L ~ D (Unux)l Regdlbc

VYJ

%I

0

oKwIw IWW

DRRSchatuhng 3DRBndotiw 3Dlmge
*leondun ?.wem RnxnsmNnim

Fig. 4. Execution time comparisons between DM Managen (results normal-
ized to our custom DM managers)

to them. Such applications include intensive DM requirements
(e.g. memory accesses and performance) that must be heavily
optimized for an efficient mapping on current embedded
devices. Within this context, new design methodologies must
be available to suitably use the resources available in these
final embedded devices. In this paper we have presented a new
methodology that defines and explores the DM management
design space of relevant decisions in order to design custom
DM managers with reduced amount of memory accesses for
such dynamic applications. Due to the focus of our methodol-
ogy to the data accesses inside the DM managers, the results
achieved in real applications show significant improvements
over state-of-the-art general-purpose and manually optimized
custom DM managers.

ACKNOWLEDGMENTS

This work is partially supported by the Spanish Government
Research Grant TIC200210750, the European founded program
AMDREL IST--2001-34379 and E.C. Marie Curie Fellowship
contract HPMT-CT-2000-0003 1.

REFERENCES

[I] D. Atienla 61 al. Modular Consrmction and Power Modelling of DM
Managers for Embedded Systems. In Pmc. o/PATMOS, Greece, 2004.

[Z] D. Atienla et al. DM Manag. Design Method. for Reduced Mcm.
Footpdnt in Multimedia and Network Apps. In Pmc. @DATE, 2004.

[3] G. Anardi, et al. A customizable memory management framework for
Cft. SW Practice ond Experience, 1998.

[4] L. Bcnini et al. System level power optimatian techniques and 1001s.
In ACM TODAES, 2000.

[S] E. D. Berger, et al. Composing high-performance memory allocafars.
In Pmc. o fACMSlGPUNPLDI , USA, 2GQI.

[6] E. G . Daylight, et al. Analyzing energy friendly phases of dyn. apps.
in terms of sparse datl. In Pmc. of ISLPED, USA, 2M2.

171 N. Jouppi. Westem research laboratory, cacti, 2002. htfp://
research.compaq.com/wrl/people/jouppi/CACTI.html.

[a] The Internet traffic archive, ZWO. http:l/ita.ee.lbl.savj.
[9] M. Leeman, et al. Methodology far refinement and oplim. of DMM far

emb. syst in multimedia. In Pmc. ofSiPS, 2003.
[I O] D. Luebke, et al. Level ofDetoi l for 3D Crops. Morgan-Kauf., 2002.
[I I] G. Memik, et 81. Netbench A benchmarking suite for network proces-

sors CARES Tech. Repon 2W1-2-01.
[I21 N. Murphy. Safe mem. usage with DM allcation. Emb. Syslemr, 2000.
1131 Rims, Multipmc. Real-timeOS, 2M2. http://www.rtems.Org.
[I41 M. Pollefeys, et al. Metee 3D surface reconsrmction from ""calibrated

image sequences. In LNCS, vol. 1506, 1998.
[I S] Targei jr, 2002. http:/lwww.targetj=.org.
116) P. R. Wilson, et al. Dynamic Storage allocation, a survey and Entical

review. In 1.1. Workhop on Mem. Manag., UK, 1995.
[I71 M. Woo, et al. OpenCL Pmgramming Guide. Silicon Graphics, 1997.

98

http:l/ita.ee.lbl.savj
http://www.rtems.Org
http:/lwww.targetj=.org

