
The Wizard of OS: a Heartbeat for Legacy

Multimedia Applications

Tommaso Cucinotta∗, Luca Abeni†, Luigi Palopoli†, Fabio Checconi∗

∗Scuola Superiore Sant’Anna, Pisa, Italy

Email: {t.cucinotta,f.checconi}@sssup.it
†Università di Trento, Trento, Italy

Email: {luca.abeni,luigi.palopoli}@unitn.it

Abstract—Multimedia applications are often characterised by
implicit temporal constraints but, in many cases, they are
not programmed using any specialised real-time API. These
“Legacy applications” have no way to communicate their tem-
poral constraints to the OS kernel, and their quality of service
(QoS), being necessarily linked to the temporal behaviour, fails
to satisfy acceptable standards. In this paper we propose an
innovative way for dealing with these applications, based on
the combination of an on-line identification mechanism (which
extracts from high-level observations such important parameters
as the execution rate) and an adaptive scheduler (specialised for
legacy applications) that identifies the correct amount of CPU
needed by each application.

Preliminary experimental results are reported, proving the
effectiveness of the proposed idea in providing a widely used
multimedia player on Linux with appropriate QoS guarantees,
through an appropriate choice of the scheduling parameters.
Finally, a detailed road-map is presented with the possible
extensions to the approach.

I. INTRODUCTION

In recent times, general-purpose (GP) computers have

emerged as one of the most effective means to produce, store

and distribute multimedia contents. Very frequently personal

computers operated by general-purpose Operating Systems

(OS) are used for video and audio streaming, for editing home-

made movies, for video conferencing. From the perspective

of the OS, such applications are very challenging. They are

time-sensitive in that the Quality of Service (QoS) provided

by the application to the user depends on the respect of

some temporal constraints. On the other hand, such timing

requirements are not hard, in fact moderate and occasional

delays are acceptable as long as the anomaly is kept in check.

Since applications usually share a common computing plat-

form, a prominent issue is the development of scheduling

policies that can be used to ensure their correct and timely

evolution. A very interesting technology is the one of soft real-

time schedulers, and specifically the resource reservations [1].

These algorithms ensure a correct temporal partitioning of the

system resources whereby each application is guaranteed a

share of its computing power regardless of the behaviour of

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7 under grant
agreement n.214777 “IRMOS – Interactive Realtime Multimedia Applications
on Service Oriented Infrastructures”.

the other applications present in the system. This solution has

been complemented by adaptive mechanisms to figure out the

CPU requirement of time varying or unknown applications

and choose the scheduling parameters appropriately [2], [3].

However, an assumption invariably made by such algorithms

is that the application is structured as a (typically periodic)

stream of jobs and that it makes use of some specialised

API available on the underlying OS for: 1) communicating

the required scheduling parameters, 2) notifying the start and

the termination of each job. This way it is possible for the

system to sample the value of some quantities related to the

QoS of the application and take corrective control actions (by

changing the bandwidth allocated to the task) as needed.

Unfortunately, the programming interface available today

on a GPOS for real-time computing is mostly limited to

the POSIX real-time extensions [4]. This API provides fixed

priority scheduling, timers and mechanisms for bounding the

priority inversion problem. While such features are very useful

for embedded applications, they do not prove so effective for

GP multimedia applications, for which the availability of a

soft real-time scheduler is much more important.

Only recently have real-time APIs supporting this class

of time-sensitive applications been proposed, as a result of

several research projects. This is for example the case of

the architecture developed in the context of the FRESCOR

European Project1, or the real-time services which are being

designed in the context of the IRMOS European Project2.

While open-source applications may be modified in order

to take advantage of the new real-time OS functionalities, for

legacy applications, the source-code is not usually available,

and the constraints on their life-cycles (subject to commercial

policies) hinder the evolution of the application. For this class

of applications, designers contrive to ensure an acceptable tim-

ing behaviour by heuristic and often ineffective solutions, such

as the generous use of internal buffering (which introduces

latency and decreases the interactivity level of the application).

The main problem with legacy applications is that they do not

communicate to the OS the start-time and end-time of their

jobs [5]. Therefore, there is no way for the system to associate

1More information is available at http://www.fresocr.org.
2More information is available at http://www.irmosproject.eu.

deadlines to jobs.

The purpose of this work is then to extend the benefits

of real-time scheduling to this kind of applications, without

imposing any modification to the applications themselves. This

is a challenging and multifaceted problem whose solution re-

quires: 1) the ability to correctly infer such important parame-

ters as the activation period of the application, 2) an adaptation

of the scheduling parameters to the application ensuring its

correct and timely progress. We address the first problem by

a combination of two technologies: a tracer, that extracts a

time-series of events from the kernel, and a frequency-domain

analyser, that extracts the most important frequencies from the

time series and identifies the fundamental (pitch) frequency

to guess the execution rate of the application. We address the

second problem using a feedback scheduler (initially presented

in [5]) that, observing the evolution of some scheduling

parameters, identifies the computation requirements of the task

and adjusts the reserved bandwidth accordingly. One of the

crucial points made in this paper is that the effectiveness of

the feedback scheduler is greatly magnified by the availability

of the task period, reconstructed by the frequency analyser.

A. Paper Structure

The paper is organised as follows. In Section III, the

problem of the identification of optimum scheduling param-

eters, and specifically of the period, for legacy multimedia

applications is introduced. In Section IV, the general proposed

methodology for addressing the problem is presented, while in

Section V it is validated by practical experiments conducted

on a prototype implementation of the proposed technique on

Linux. In Section II, the related work in the research literature

is briefly overviewed, and in Section VI the road-map for

further research on the topic is presented. Finally, conclusions

are drawn in Section VII.

II. RELATED WORK

The problem of dynamically adapting the amount of CPU

time reserved to an application (introduced in Section I)

can be addressed by applying feedback control to real-time

scheduling [6], [7], [2], [8], [3]: while the applications execute,

their real-time behaviour is monitored and corrective actions

are taken changing the scheduling parameters so that specified

QoS objectives are met. If additional assumptions can be

made on the application, it is possible to use application level

feedback such as the one shown in [9]. However, both the

used of a specialised API and (all the more) the availability

of application level adaptive mechanisms cannot be assumed

in the context of legacy applications.

The problem of finding an appropriate allocation for legacy

applications is known in the Internet community. In particular

in [10] the authors propose an architecture using proxy servers

to determine the network requirements of Internet applications.

In the domain of real-time scheduling, there has been some

work in dynamically inferring task parameters for legacy

applications. For example, BEST [11] tries to infer the task

periods by monitoring the times at which the tasks enter

the scheduler ready queue. Compared to BEST, the approach

presented in this paper separates the scheduling algorithm from

the task parameters estimation (allowing to easily combine

different reservation-based scheduler with different adaptation

mechanisms and period detection heuristics), and uses a more

advanced algorithm for detecting periodic tasks.

Other techniques that could possibly be used as a basis for

adaptive scheduling of legacy applications have been proposed

in the past [12], [13], but to the best knowledge of the authors

the first technique developed explicitly to this purpose is in

[5], where a feedback scheme for legacy applications was

proposed (by almost the same authors of this paper) that uses a

simple multiplicative/additive scheme to identify the resource

requirements by using a coarsely quantised feedback variable.

In this paper, the latter approach is enhanced and made

more effective by complementing the feedback controller with

a trace analyser that extracts meaningful information on the

task (in our case the period of the tasks) from the time-series

of events recorded in the Kernel. This analyser requires the

use of two distinct technologies: a tracer component inside

the kernel and a spectrum analyser to identify the period of

the task. The latter problem is well known in the literature of

digital processing of sound signals, where different approaches

have been developed to extract the pitch and identify the

fundamental frequency [14], [15]. Such approaches served as

a good starting point for our analyser, but we had to adapt

them to the analysis of a time-series of events.

As far as the problem of tracing events in the kernel is

concerned, there are various mechanisms available, like Linux

Tracer Toolkit (LTT/LTTng)3, or the more recent ftrace4

tracer integrated into the mainstream kernel.

III. PROBLEM PRESENTATION

To provide legacy applications with a resource allocation

as tight as possible to their actual requirements, the periods

of such applications must be correctly identified. The need

for such a period identification mechanism is shown in this

section.

After the introduction of background concepts and defini-

tions in Section III-A, the investigation is carried on from the

theoretical real-time scheduling perspective in Section III-B.

Then, a set of experimental results are shown in Section III-C,

which, confirming the theoretical expectations, constitute a

fundamental motivation of the presented work.

A. Background and Definitions

In real-time theory, a system is often modelled as a set

Γ = {τi} of real-time tasks; in this paper, the term task is used

to denote either a process (owning a private memory space)

or a thread (sharing the memory space with other threads).

A very simple yet popular model of a real-time task is the

one where a task τi is modelled as a stream of jobs and is

described by a pair (Ci, Pi): Ci is the worst-case execution

3More information is available at http://ltt.polymtl.ca.
4More information is available at: http://lxr.linux.no/linux+v2.6.30/

Documentation/trace/ftrace.txt.

time for the individual jobs of τi, and Pi is the minimum inter-

arrival time between two consecutive jobs (or the task period in

case of periodic tasks). Every job should terminate before the

arrival of the next job, and this represents an implicit temporal

constraint.

In this work, a legacy application τi (either a single task or

a set of tasks) is guaranteed by using a resource reservation,

which allows to reserve to τi an amount of time Qs
i every

period T s
i . The reservation allows to control both the execution

rate of the application (the allocated fraction of the CPU

is Qs
i /T s

i) and its responsiveness (the reservation period T s
i

controls the allocation granularity).

The scheduling algorithm used in this work to implement

the reservation behaviour is the Constant Bandwidth Server

(CBS) [16], which implements CPU reservations based on

EDF. The basic CBS idea is to schedule tasks based on their

scheduling deadlines ds
i , with ds

i increased by T s
i every time

τi executes for a time Qs
i . More formally, the CBS works

by maintaining two variables for every reservation: the server

budget qi (used for accounting) and the current scheduling

deadline ds
i (used for assigning a priority to the scheduled task

and for enforcement). Such variables are updated as follows:

• when τi is created, qi and ds
i are initialised to 0;

• when τi activates at time t, the scheduler checks if the

current scheduling deadline can be used (if qi < (ds
i −

t)Qs
i /T s

i), otherwise a new scheduling deadline ds
i = t+

T s
i is generated and qi is recharged to Qs

i ;
• while task τi executes, the server budget qi is decreased

as dqi = −dt (accounting rule);

• when the budget is exhausted (qi = 0), it is recharged

to Qs
i and the scheduling deadline is postponed (ds

i =
ds

i + T s
i) (enforcement rule).

Summing up, when scheduling a legacy application through

a CBS (Qs
i , T

s
i), the problem is to infer reasonable values for

Qs
i and T s

i that allow to serve the application so that it can

meet its timing constraints.

B. Period and Budget Adaptation

If the WCET Ci and the period Pi of a real-time task

τi are known, the traditional approach to reservation-based

scheduling exploits such knowledge to set T s
i = Pi and

Qs
i = Ci so that all the task’s deadlines are met [16].

However, for a legacy real-time application, the enclosing

reservation providing scheduling guarantees may not neces-

sarily know the exact period. Therefore, identifying a correct

budget allocation that allows the task to respect its deadline is

not an obvious problem.

If a reservation (Qs
i , T

s
i) is used to serve a single task τi, it

is possible to investigate the relationship between (Ci, Pi),
(Qs

i , T
s
i), and the QoS provided to the task (in terms of

missed deadlines). This analysis can be performed by using the

concept of supply-bound function ZQs

i
, T s

i
(·), describing the

worst-case amount of time provided by a (Qs
i , T

s
i) reservation

to a task τi starting at time 0.
Since the reservation abstraction guarantees that Qs

i units

of CPU time are provided to τi in a reservation period T s
i ,

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Time

Z20, 100(t)
Z16, 80(t)
Z12, 60(t)
Z10, 50(t)
Z6, 30(t)

Figure 1. Supply-bound function for different periods, at equal
utilisation of the resource.

the worst-case CPU allocation corresponds with the case in

which the task is scheduled at the end of the reservation period.

Hence, ZQs

i
, T s

i
(t) is 0 if t < T s

i −Qs
i , increases with a gradient

1 if T s
i − Qs

i ≤ t < T s
i , is equal to Qs

i if T s
i ≤ t < 2T s

i −
Qs

i , etc... Some examples of various supply-bound functions

with equal utilisation (Qs
i /T s

i) but different server periods are

shown in Figure 1, and the resulting supply-bound function is:

ZQs

i
, T s

i
(t) =

{

hQs
i if t ∈]hT s

i , (h + 1)T s
i − Qs

i]
t − (h + 1)(T s

i − Qs
i) otherwise

, (1)

with h ,

⌊

t
T s

i

⌋

. Note that a similar concept of supply-bound

function is often used in hierarchical scheduling analysis -

for example, see [17]. The difference between the function

presented here and the one used for analysing hierarchical

scheduling systems is that the scenario under investigation

is much simpler due to the fact that a single task is being

enclosed within the reservation.

Based on this definition, one possible test that guarantees

that every deadline is respected is based on Time Demand

Analysis [18]. Such a test checks that the amount of time

provided by the reservation to the task before the deadline

is enough to serve a job (i.e., ≥ Ci). In other words, a

time-instant exists such that the supply-bound function for the

reservation is greater than the worst case execution time of the

real-time task:

∃t ∈ [0, Pi] s.t. Ci ≤ ZQs

i
, T s

i
(t) (2)

Such test may be used to compute the minimum budgets

that should be granted to the reservation in order to allow the

served real-time task to meet all of its deadlines. Figure 2 (a)

reports the minimum values of Qs
i needed to correctly sched-

ule a real-time task with a period of P = 100ms and a WCET

of C = 20ms (i.e., a utilisation of 20%). Figure 2 (b) reports

the corresponding fraction of CPU Qs
i /T s

i reserved to the task.

As the plots reveal, setting a completely wrong reservation

period (and under the assumption that the feedback-based

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Server period (ms)

Minimum budget (ms)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Server period (ms)

Minimum bandwidth

(b)

Figure 2. Minimum value of Qs

i (a) and corresponding fraction
of CPU bandwidth Qs

i /T s

i (b) required to correctly schedule a
(20ms, 100ms) real-time task.

scheduler manages to identify the corresponding minimum

budget), may lead to waste of CPU bandwidth. Indeed, even

if we rule out the choice of very small periods leading to an

unrealistic overhead, it is possible to increase of more than a

half the bandwidth requirements of the task, as compared to

the actual requirements. If the server period is greater than the

task period, then the situation goes even worse, because the

bandwidth waste grows uncontrolled. On the other hand, the

picture also shows that the best budget assignment is found

in correspondence of a server period equal to the actual task

period, or an integer sub-multiple of it. However, the choice

equal to the task period is the most robust, because small

errors in terms of the task period determination are quite well

tolerated and lead to the lowest bandwidth wastes. This is also

highlighted from Figure 1, showing that, among the supply

functions with a utilisation equal to the one of the served task

(20%), only the ones with a server period equal to the task

period (100) or an integer sub-multiple preserve a supply value

of 20 time-units in correspondence of the task deadline (100),
while the other curves exhibit lower values.

In the previous example, a single task is being considered,

but generally a real-time application may be composed of

multiple threads of execution with different real-time param-

eters. When using a single reservation for serving all those

threads, the analysis presented above can be extended by

reusing concepts from the theory of hierarchical real-time

systems [19], [20], [21], [17]. In particular, this requires to use

a different definition for ZQs

i
, T s

i
(t) and to consider a demand-

bound function instead of the WCET in Equation 2.

C. An Example

The theoretical analysis presented in the previous subsection

is confirmed by some simple examples with two real-time

applications (each of them composed by one periodic task)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

P
(f

 >
 t
)

Finishing time f (us)

T=10
T=30
T=40
T=50
T=90

Deadline

Figure 3. CDF of the response times for a task with period P = 40ms
and various reservation periods T s.

executed on real hardware. To this purpose, each real-time

application has been assigned a reservation with arbitrarily set

server periods, while the budget was dynamically computed

by the LFS algorithm [5] (see Section IV-A) to reduce the

number of missed deadlines.

Figure 3 shows the Cumulative Distribution Function (CDF)

of the response-time of one of the periodic real-time tasks

(having period P = 40ms), when it is controlled by LFS,

under various choices of server period. The figure shows that

picking a server period smaller than or equal to the application

period attains a quite good performance. In fact, the CDFs

for T s < P show very short tails after 40ms (a minimum

amount of deadline misses is inherent to the way LFS works).

The CDFs for T s > 40ms are qualitatively similar to the plots

corresponding to T s = 50 or T s = 90, and have been removed

from the figure to make it more readable. However, looking at

Figure 4 (which shows the corresponding dynamic bandwidth

allocations made by LFS) it is clear that the best allocation is

the one with the server period equal to the application period,

corresponding to a lower bandwidth utilisation of the system

(again, some curves for T s > 40ms are not shown for the

purpose of clarity, as they are similar to the T s = 40ms curve).
On the other hand, the two figures show that using any other

value as server period either leads to a significant waste of

bandwidth, or to poor performance in terms of deadline misses.

The bandwidth waste resulting from the use of integer sub-

multiples of the task period as server period, is greater than

theoretically foreseen in Section III-B. This was also expected,

because the discussion in Section III-B refers to the minimum

theoretical budget needed to schedule the real-time task hosted

by the reservation, and it does not deal with such issues as how

such budget may possibly be found. Due to the particular way

LFS works, as it will become more clear in Section IV-A, the

necessary budget is greatly over-estimated, in such cases.

The experiments above show that the best results, both in

terms of application performance, and of bandwidth allocated

within the system, are achieved when the server period is set

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100 120 140 160 180

R
e
s
e
rv

e
d
 C

P
U

 B
a
n
d
w

id
th

 Q
/T

Task instance

T=10
T=30
T=40
T=50

Figure 4. Fraction of CPU bandwidth allocated to a periodic task
(C = 20ms, P = 40ms) by LFS.

equal, or as close as possible, to the task period. This is why in

this paper the problem of period detection for legacy real-time

applications is investigated.

IV. PROPOSED APPROACH

The approach proposed in this paper is summarised in Fig-

ure 5. A real-time application is monitored while it is running,

by intercepting the events which are needed (or useful) for

inferring its period. Then, the times at which these events have

been generated are analysed to infer the application period, if

any. Then, a first rough estimate of the budget needed by the

application (with the estimated period) is built, and a CPU

reservation is attached to the application threads (by schedul-

ing them through a CBS). Then, the maximum budget Qs
i is

continuously adapted on-line while the application is running,

by using the Legacy Feedback Scheduling mechanism. The

period estimation process is repeated periodically to gather

updated information on the application period. As shown later,

this process adds a little overhead to the system which is

perfectly sustainable.

The events that are considered as mostly relevant for the

purpose of period identification are the ones corresponding to

when the application blocks waiting for either a signal or the

arrival of a packet from the network or disk, and when it wakes

up later. Such events usually occur in correspondence of the

call of some blocking system call, like read(), usleep(),

nanosleep(), etc.

Therefore, in this preliminary work, a tracing program

named qostrace5 has been developed making use of the

standard ptrace() call available on Linux to intercept the

system calls made by an application at run-time. This program

can be used to trace an application while it is running: the

application is suspended in correspondence of each system

call entry and exit, and control is passed to the tracer process

which can perform various kind of inspections on the traced

5For the reader convenience, the program is available at the URL:
http://retis.sssup.it/∼tommaso/eng/papers-estimedia09.html.

Period Estimation for
Real−Time threads

On−line Application
Monitoring/Tracing

Events

Period

Attach reservation to
Real−Time threads

Period Refinement x
Real−Time threads

On−line Budget
Refinement

On−line Application
Monitoring/Tracing

Events

Refined Period

On−line WCET
Estimation

Budget

Change reservation
parameters

Refined Budget

Figure 5. Scheme of the proposed approach.

 0
 55120 55160 55200 55240

Time (ms)

Figure 6. Events generated by mplayer.

application before it continues its execution. For the purpose

of this paper, only the time at which system calls were entered

and left was relevant, so the traced program was suspended

only for the minimum necessary time (see Section V-B for

overhead measurements).

Figure 6 shows an excerpt of the set of events generated

by the mplayer software while playing a video at 25fps,
i.e., with a period of 40ms. As the picture highlights, every

application period there is a conspicuous number of events in

correspondence of the activation of each application job.

In the proposed approach, the sequence of time instants

(t1, . . . , tN) at which these events occurred, over a sufficiently

long time-window, is reinterpreted as a time-continuous signal

f(·) with a null value everywhere, except at the times in which

events were detected, where it exhibits Dirac’s Deltas:

f(t) =

N
∑

i=1

δ(t − ti). (3)

Then, the first harmonic of this signal is taken as the applica-

tion period.

As an example, Figure 7 plots the frequency-transform

obtained for the events collected from the mplayer run

whose excerpt is shown in Figure 6.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Frequency (Hz)

’transform.dat’

Figure 7. Frequency-transform of the events generated by mplayer.

In order to compute the first harmonic, the following heuris-

tic algorithm is proposed in this preliminary work:

1) compute a sampling of the modulus of the frequency-

transform of f(·) over a target frequency-range

[fmin, fmax], at steps of δf, by means of the following

formula:

F(f) =

∣

∣

∣

∣

∣

N
∑

i=1

e−j2πfti

∣

∣

∣

∣

∣

; (4)

2) peaks (local maximum values) of the obtained sampled

frequency-transform are identified (ordered from the

smallest to the greatest frequency value): f1, . . . , fm;
3) only peaks for which F(·) is higher than K times its

average value F are considered as candidate frequency

values;

4) if the resulting set of candidate values is empty, then

declare the application as non-periodic and terminate;

5) if the resulting set of candidate values is composed of at

most M ≥ 1 values, then simply pick the frequency fi

corresponding to the maximum of F(·), and terminate;

6) a weighted linear-regression is performed among the

candidate frequencies fi, using the F(fi) values as

weight factors, resulting into a regression line: fi =
F1i + F0;

7) if the squared error of the linear-regression is smaller

than a threshold E, then the frequency peak fi which is

closest to the regression line F1 coefficient is picked as

the detected frequency, and terminate;

8) otherwise, simply the frequency fi corresponding to the

maximum of F(·), among the candidate frequencies.

A much simpler algorithm may be simply obtained by di-

rectly picking the maximum of the F(·) frequency-transform

(which presumably corresponds to the first peak). However,

sometimes it may happen that the maximum is not found in

correspondence of the first harmonic, but of a larger harmonic.

However, for the class of multimedia applications that have

been traced (video and audio decoders and players), usually it

happens that most (but rarely all) of the candidate frequencies

identified at step 3 are non-first harmonic, i.e., all integer

multiples of the same value. The purpose of the linear-

regression is to identify the first harmonic also in these cases.

Note that E, M , fmin, fmax, δf and K constitute tunable

parameters of the algorithm. In what follows, E = 0.1, fmin =
10Hz, fmax = 200Hz, δf = 1Hz, K = 2.5, and M = 2
have been used.

A. Legacy feedback algorithm

To properly serve a time-sensitive task (or set of tasks), the

two reservation’s parameters Qs
i and T s

i have to be computed.

While the reservation period T s
i can be selected by using

the techniques presented above, the maximum budget Qs
i can

be adapted through feedback scheduling. For example, the

execution time of the tasks can be monitored, and Qs
i can

be assigned based on the monitored values, or the Legacy

Feedback Scheduler (LFS) [5] can be used6.

LFS applies feedback scheduling to “unaltered” legacy

applications by defining a scheduling error ǫi = ds
i −t (instead

of ǫi = ds
i − di, as in adaptive reservations) and by using

such scheduling error ǫi to adapt Qs
i : if ǫi > T s

i then we can

deduct that the application has not been given enough time

and Qs
i should be increased. A more formal definition of the

LFS algorithm follows:

1) The control algorithm is executed for all time-sensitive

tasks with a fixed periodicity T sample;

2) Every T sample time units the scheduling error ǫ =
(ǫ1, . . . ǫn) of time-sensitive tasks τi is sampled;

3) The reserved times Qs = (Qs
1, . . . Q

s
n) are updated as

Qs = f(Qs, ǫ), where ǫ = (ǫ1, . . . ǫn);
4) The scheduling parameters of the different tasks are

updated.

Various feedback functions f() have been proposed; in this

paper, the simplest one, LFSg, (which is more robust against

uncertainties in the tasks periods) is used:

Qs
i =

{

αQs
i ǫi > T s

i

Qs
i − β otherwise

V. EXPERIMENTAL RESULTS

In the framework proposed above, we have implemented

two blocks: the estimator of the activation rate of the threads,

and the online mechanism for period adaptation. In this section

we show the results we achieved on a real-life multimedia

application. In particular, we will stress on the effectiveness

of the period analyser and on its efficiency (the overhead it

introduces). Then we will show the improvement in the effi-

ciency of the feedback scheduler when it uses the parameters

produced by the period analyser.

A. Observation Period and Precision

First, the precision of the proposed technique, in relation

to the duration of the observation time-period, is analysed.

To this purpose, the mplayer multimedia player for Linux

has been launched multiple times on the same movie, and

the proposed tracer was attached at approximately the same

relative time-instant from the start of the play, but at varying

durations of the observation. Figure 8 reports the obtained

frequency-transforms in the various cases of observation dura-

tions ranging from 0.2 seconds to 4 seconds. It is clear that, in-

creasing the observation duration, the peaks of the frequency-

transform corresponding to the real application frequency

6Notice that Adaptive Reservations cannot be directly used because legacy
applications do not use a real-time API.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Frequency (Hz)

’mplayer/transform-0.2.dat’
’mplayer/transform-0.4.dat’
’mplayer/transform-0.6.dat’
’mplayer/transform-1.0.dat’
’mplayer/transform-2.0.dat’

Figure 8. Frequency-transform of the events obtained by tracing
mplayer at varying tracing durations.

 0

 10

 20

 30

 40

 50

 0 1 2 3 4

D
e
te

c
te

d
 F

re
q
u
e
n
c
y
 (

H
z
)

Tracing time (s)

mplayer

Figure 9. Period automatically detected over the frequency transforms
of Figure 8, at varying tracing durations.

(25Hz) become much more neat. Moreover, for an observation

period of 0.2 seconds or below, the first harmonic is detected

almost correctly, with a little error. On the other hand, with

observation durations from 0.4 seconds (and beyond), the

application frequency is detected without mistakes, but the

frequency peak becomes more evident and sharp by increasing

the observation duration.

Finally, Figure 9 shows the period as automatically detected

by the detection algorithm heuristic. As it can be seen, with

very short tracing times like 0.2s, corresponding to barely 5
jobs of the player, the frequency is slightly underestimated,

while increasing the tracing time to 0.4s (corresponding to

barely 10 jobs) allows to properly detect the working fre-

quency. Increasing the tracing time beyond 0.4s does not seem

to lead to any advantages.

Summarising, the preliminary experimental validation con-

ducted over the mplayer application shows that a tracing

time of barely 10 jobs is sufficient for detecting the period

of the application with a sufficient precision. This confirms

the usability of the methodology sketched out in Figure IV, in

which the application is periodically traced in order to detect

possible variations in its run-time period. However, in order

to verify the feasibility of the approach, it is very important to

gather overhead measurements of the introduced mechanism,

what is done in the section that follows.

Table I
MEASURED OVERHEAD, OBTAINED WITH DIFFERENT TRACERS.

Tracer in use Total duration (s) System time (s)

None 21.02 ± 0.14 0.15 ± 0.02

strace 22.03 ± 0.11 0.84 ± 0.04

qostrace 21.60 ± 0.16 0.51 ± 0.04

B. Tracer Overhead

Some experiments have been performed to gather informa-

tion about the run-time overhead caused by the proposed rate

estimation mechanism on the (legacy) real-time applications

that are being traced, as well as on the system. In this section,

the focus is entirely on the tracing mechanism which is needed

by the period detection overhead (in other words, the run-

time overhead due to budget adaptation is not measured. For

the LFS algorithms, such details can be found in the original

paper [5]).

The simplest way to collect the data needed for the rate

estimation algorithm is to use the strace program, which

is available on Linux (and on other Unix-like systems) and

provides the needed tracing functionality. The strace pro-

gram works by using the ptrace() system call, and risks

to exhibit a considerable overhead due to the behaviour of

the program (as it works by intercepting all the system calls

and important events (signals, etc...) and by writing a well-

formatted and human-readable report on the standard error

while tracing the program). Obviously, the overhead caused

by strace depends on the amount of system calls (or traced

events) generated by the traced program.

To reduce the tracing overhead, a custom tracer has been

developed, exploiting the same principle as strace, named

qostrace. This program, given the pid of the process to

trace on the command-line, attaches to it by means of the

ptrace() system call. However, it limits itself to store into

an in-memory array the set of events of interest, along with

their time of occurrence, then it performs on the data set the

required computations.

A first rough measure of the overhead has been performed

through the use of the time utility while transcoding a video

with ffmpeg7. First, the program is run without any tracer

active, then the program is traced with strace and finally

with qostrace. The average duration of the transcoding

process and the time spent inside the kernel are shown in

Table I; all the values are in seconds, the averages are taken

over ten repetitions, the standard deviation for each measure

is shown. In this case the overhead imposed by strace is

about the 4.8%, while with qostrace it goes down to the

2.8%.

Note that the overhead is quite high because the traced pro-

gram is frequently invoking system calls. The tracing overhead

has also been measured on a second program, and precisely a

video player based on ffmpeg and GDK/GTK8. Such video

7More information is available at http://www.ffmpeg.org.
8More information is available at http://www.gtk.org.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 50 100 150 200 250

R
e
s
e
rv

e
d
 C

P
U

 B
a
n
d
w

id
th

 Q
/T

Task Instance

T=20
T=30
T=40
T=50

Figure 10. CPU bandwidth allocated to the player as a function of
time.

player is based on a periodic task which periodically reads a

video frame from a stream by using libavformat, decodes

it by using libavcodec, converts it to the RGB colour-

space, and finally displays the RGB data by using GDK. The

time needed to read, decode, convert to RGB, and display a

video frame (corresponding to the execution time of a real-

time job) has been measured when the program is traced and

when it is not traced. Note that this video player spends most

of the time in decoding a frame and converting it to RGB

(without invoking any system call), and the number of invoked

system calls is quite low. As a result, the tracing overhead is

lower than the one measured in the previous experiment.

The experiment has been repeated 30 times, computing the

averages and the 95% confidence intervals of the execution

times. When the video player is not traced, the average

time needed to read, decode, convert, and display a frame

is 22.313ms, and the 95% confidence interval is 0.073ms.
When the program is traced with strace, the average time

is 22.965ms, which is 2.9% higher, with a 95% confidence

interval of 0.137ms. When qostrace is used instead, the

average time is 22.559, with a 95% confidence interval of

0.085ms; as a result, the increase in the execution times is

about 1.1%.

C. Efficiency in Resource Allocation and Period

Some experiments show the relationships between the reser-

vation period T s
i (set equal to the estimated task period Pi),

the accuracy of the CPU allocation performed by LFS, and the

QoS achieved by the application. Such experiments have been

performed by using an implementation of the CBS in the Linux

kernel [22] and playing an MPEG4 stream at 25fps (hence,

the player has a period equal to Pi = 1000/25 = 40ms)
and using LFS to dynamically adapt the amount of CPU

time reserved to the player task. The experiments showed that

if T sample >> T s
i then the exact T sample value does not

significantly affect the performance, and the reported experi-

ments have been ran with T sample = 500ms. The inter-frame

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000

P
(f

 >
 t
)

Finishing time f (us)

T=10
T=30
T=40
T=50
T=80

Figure 11. CDF of the inter-frame times for the player.

Table II
INTER-FRAME TIMES AND ALLOCATED CPU AS A FUNCTION OF T

s

i
.

T
s

i
(ms) 90 and 95 percentile of average / maximum

the inter-frame times (ms) allocated CPU bandwidth

20 41.803 / 44.383 0.385653 / 0.536840

30 40.1 / 55.639 0.358286 / 0.516393

40 43.189 / 46.109 0.325452 / 0.452615

50 56.074 / 60.148 0.336614 / 0.500588

60 59.066 / 62.393 0.344995 / 0.492892

70 53.076 / 61.370 0.348372 / 0.486546

80 58.853 / 62.339 0.342492 / 0.449763

90 60.319 / 68.516 0.324594 / 0.404568

100 53.959 / 74.186 0.318421 / 0.421542

times (intervals between the visualisations of two consecutive

frames) and the allocated CPU bandwidth Qs
i /T s

i have been

measured when LFS uses different reservation periods T s
i .

The fraction of CPU time reserved by LFS to the player

during the first 250 jobs (to make the figure more under-

standable, only a small number of jobs have been displayed)

is shown in Figure 10. Note that the peak CPU bandwidth

allocated if T s
i = 20ms or T s

i = 30ms is more than 50%,

whereas the peak CPU bandwidth allocated for T s
i = 40ms

is less than 45%. Hence, if T s
i < 40ms LFS tends to be

more aggressive, causing some transient CPU over-allocations.

Since the amount of time allocated to the player if T s
i > Pi

is quite similar to the T s
i = Pi = 40ms case, all the plots for

T s
i > 50ms have been removed from the figure (to make it

more readable). Notice that this figure shows that T s
i < 40ms

causes an overestimation of the allocated bandwidth, but does

not clearly show the problems with T s
i > 40ms. Such

problems are visible when looking at the player’s performance:

in fact, if T s
i > 40ms the inter-frame times tend to increase,

as shown Figure 11 which displays the CDF of the inter-frame

times (again, some curves have been removed from the figure

to make it more readable). From the figure, it is easy to see

that the case with T s
i = 40ms is the one performing better

(the tail of the CDF is shorter - in the ideal case, the CDF

should be a step going from 0 to 1 at 40ms). Table II reports

the 90-percentile and 95-percentile of the inter-frame times,

and the average and maximum allocated bandwidth for more

values of the server period, confirming that T s
i = 40ms is the

best choice.

VI. FUTURE WORK

The authors plan to work on various improvements to the

mechanism presented in this paper, on different aspects: the

tracing mechanism, the period detection algorithm, the legacy

feedback-based controller, and the support for multi-thread

applications. A detailed description of the road-map follows.

A. Tracing mechanism

The tracing program used in this paper, qostrace, uses

the ptrace() system call, implying the need for suspending

the traced process at each occurrence of a relevant event,

passing control to the tracing program, then continuing. Even

if the overhead incurred by such a mechanism, as measured in

the previous section, is sustainable for a large class of systems,

it is useful to search for mechanisms which may possibly have

a lower impact on the applications that are running.

Therefore, it is foreseen to investigate, in the future, on the

use of a kernel-level tracing mechanism registering scheduling

events of interest for the traced application, for example the

time instants at which the traced process blocks and unblocks.

One possibility that we are evaluating is the one of recurring

to the use of low-level tracers that already exist for the

Linux kernel, like the Linux Trace Toolkit Next Generation

(LTTng)[23], [24], the utrace [25] and uprobes frame-

work [26], or the ftrace [24] tracer recently integrated into

the mainstream Linux kernel. Such tools can provide a plethora

of information on the timing behaviour of the kernel and

running applications. However, it must be considered that they

are developed and maintained mainly as debugging helpers,

and are not designed to be actually enabled in a “production”

environment. For example, the sched_switch tracer of

ftrace, when configured into the kernel and enabled at run-

time, exports by means of the debugfs information about all

the scheduling events that occur into the system, not only of

the traced processes, therefore it is expected that the implied

overhead be much higher than strictly necessary. Moreover,

ftrace requires administrator’s privileges for being used.

Therefore, while the above mentioned tools (as well as the

ptrace() system call used in this paper) may be leveraged

to build prototypes and proof-of-concepts, it is envisaged in

the future the development of a dedicated full-featured kernel-

level tracer, or the modification of one of the existing tracing

frameworks, for the purpose of overcoming the just mentioned

limitations.

B. Detection Algorithms

The algorithm for period detection presented in this paper

is still preliminary. While being effective for the experimental

results gathered in this paper, the algorithm needs more exten-

sive validation over a larger class of multimedia applications,

comprising single-threaded and multi-threaded applications,

and especially commercial legacy software largely used in

multimedia streaming, such as QuickTime(TM) or others.

Concerning the appropriateness of the period detection

algorithm, the type of considered events needs a much deeper

investigation. For example, it should be checked if by reducing

or extending the set of system calls intercepted by qostrace

an improvement of the algorithm precision, at equal observa-

tion time-window, may be obtained.

Also, an extensive evaluation of the impact of the fmin,

fmax, δf , K, and Mparameters on the algorithm precision

and overhead needs to be performed.

The feedback-based controller used in this paper is also

subject to a variety of improvements, the first one being the

type of “probe” the feedback-based control loop is based upon.

In fact, the boolean information about the CBS deadline having

been post-poned or not constitutes a very rough information

about how tight the budget in use fits the actual application

requirement. Improvements in this direction may be done by

exploiting information about the actual execution-time of the

reserved threads, as logged by the kernel and available, for

example, by means of the clock_gettime() system-call

via the CLOCK_THREAD_CPUTIME_ID clock. Alternatively,

specific functions made available by the real-time scheduling

framework might be exploited. For example, the AQuoSA [27]

real-time scheduler implementing Hard CBS reservations, pro-

vides the (qres_get_time()) function for the purpose of

allowing applications to read how much budget was actually

consumed by the set of threads attached to the reservation (as

a whole, without any need to query for the individual threads).

With the possibility to directly read the amount of budget

actually consumed within the reservation, it would be much

easier to decide what budget to assign for the future application

jobs. For example, a simple maximum over a moving window

of last observed values of consumed budget, or a percentile

estimation of the budget consumption distribution, like done

in [28], would constitute valuable approached to experiment

with.

C. Multi-thread applications

The experimental results presented in this paper are limited

to simple applications with a unique evident periodicity, while

it is planned to experiment with more complex applications,

possibly composed of multiple concurrent threads with pos-

sibly different periodicity. For example, a multimedia appli-

cation with multiple threads (such as the VideoLAN Client -

VLC9), one dedicated to loading the video from the disk (or

receiving it from the network), one to video processing and

one to audio processing, may possess a different periodicity

for the three threads.

VII. CONCLUSIONS

In this paper, we have discussed a framework for scheduling

legacy real-time applications in general purpose operating

systems. In particular we have identified two technologies

9More information is available at http://www.videolan.org/vlc/.

whose concurrent application promises to disclose important

opportunities in scheduling this type of applications. The

first technology is a frequency domain analyser that uses

data collected in the kernel to infer important parameters

of the application (such as the execution rate). The second

technology is a feedback scheduler that changes the reserved

budget to track the computation requirement of the application.

Experimental results gathered on a prototype of the pre-

sented mechanism show how the two technologies combine

nicely, overcoming the limitations of previous work by the

same authors that simply operated at the scheduler level,

reacting to the changes of the some scheduling parameters.

The work presented here is intended as a first step toward

a more complete and general approach. We have hinted to

some of the directions that we will take in carrying out

our research activity. The most important contribution of this

paper is that our preliminary collection of data done with a

prototype implementation is very promising indeed in terms

of the potential of the approach.

REFERENCES

[1] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A resource-centric approach to real-time and multimedia systems,” in
Proceedings of the SPIE/ACM Conference on Multimedia Computing

and Networking, January 1998.

[2] L. Abeni and G. Buttazzo, “Adaptive bandwidth reservation for multi-
media computing,” in Proceedings of the IEEE Real Time Computing

Systems and Applications, Hong Kong, December 1999.

[3] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli, “Qos
management through adaptive reservations,” Real-Time Systems Journal,
vol. 29, no. 2-3, March 2005.

[4] IEEE, Information Technology -Portable Operating System Interface

(POSIX)- Part 1: System Application Program Interface (API) Amend-

ment: Additional Realtime Extensions., 2004.

[5] L. Abeni and L. Palopoli, “Adaptive real-time scheduling for legacy ap-
plications,” in IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA 2008), Hamburg, Germany, September
2008, pp. 583–590.

[6] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Design and evaluation of
a feedback control edf scheduling algorithm,” in Proceedings of the 20th

IEEE Real-Time Systems Symposium, Phoenix, AZ, December 1999.

[7] B. Li and K. Nahrstedt, “A control theoretical model for quality of
service adaptations,” in Proceedings of Sixth International Workshop on

Quality of Service, 1998.

[8] G. T. C. Lu, J. Stankovic and S. Son, “Feedback control real-time
scheduling: Framework, modeling and algorithms,” Special issue of

RT Systems Journal on Control-Theoretic Approaches to Real-Time

Computing, vol. 23, no. 1/2, September 2002.

[9] C. C. Wüst, L. Steffens, W. F. Verhaegh, R. J. Bril, and C. Hentschel,
“Qos control strategies for high-quality video processing,” Real-Time

Syst., vol. 30, no. 1-2, pp. 7–29, 2005.

[10] C. A. Tsetsekas, S. Maniatis, and I. S. Venieris, “Supporting qos for
legacy applications,” in ICN, ser. Lecture Notes in Computer Science.
Springer, 2001, pp. 108–116.

[11] S. Banachowski and S. Brandt, “The best desktop soft real-time sched-
uler,” in Work-in-Progress session of the Real-Time Systems Symposium

(RTSS 2001), London, December 2001.

[12] S. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic integrated
scheduling of hard real-time, soft real-time and non-real-time processes,”
in Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS

2003), 2003, pp. 396–407.

[13] C. Lin and S. Brandt, “Efficient soft real-time processing in an integrated
system,” in Work in Progress Proceedings of the 25th IEEE Real-Time

Systems Symposium (RTSS WIP 2004).

[14] D. Gerhard, D. Gerhard, and D. Gerhard, “Pitch extraction and funda-
mental frequency: History and current techniques,” Tech. Rep., 2003.

[15] P. McLeod and G. Wyvill, “A smarter way to find pitch,” in Proceedings

of International Computer Music Conference, ICMC, 2005.
[16] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard

real-time systems,” in Proceedings of the IEEE Real-Time Systems

Symposium, Madrid, Spain, December 1998.
[17] G. Lipari and E. Bini, “A methodology for designing hierarchical

scheduling systems,” Journal of Embedded Computing, vol. 1, no. 2,
2004.

[18] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” in
Proceedings of the Real Time Systems Symposium, 1989, pp. 166–171.

[19] A. K. Mok and X. A. Feng, “Towards compositionality in real-time
resource partitioning based on regularity bounds,” in RTSS ’01: Pro-

ceedings of the 22nd IEEE Real-Time Systems Symposium. Washington,
DC, USA: IEEE Computer Society, 2001, p. 129.

[20] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis
of hierarchical fixed-priority scheduling,” in ECRTS ’02: Proceedings

of the 14th Euromicro Conference on Real-Time Systems. Washington,
DC, USA: IEEE Computer Society, 2002, p. 173.

[21] A. Easwaran, I. Lee, I. Shin, and O. Sokolsky, “Compositional schedu-
lability analysis of hierarchical real-time systems,” in ISORC. IEEE
Computer Society, 2007, pp. 274–281.

[22] L. Abeni and G. Lipari, “Implementing resource reservations in linux,”
in Proceedings of Fourth Real-Time Linux Workshop, Boston, MA,
December 2002.

[23] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low impact
performance and behavior monitor for GNU/Linux,” in Proceedings of

the Ottawa Linux Symposium (OLS 2006), July 2006, pp. 209–224.
[24] M. Desnoyers, “Lttng, filling the gap between kernel instrumentation and

a widely usable kernel tracer,” Linux Foundation Collaboration Summit,
April 2009.

[25] R. McGrath, “Utrace,” Linux Foundation Collaboration Summit, April
2009.

[26] J. Keniston, “Uprobes: User space probes,” Linux Foundation Collabo-
ration Summit, April 2009.

[27] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA — adap-
tive quality of service architecture,” Software – Practice and Experience,
vol. 39, no. 1, pp. 1–31, 2009.

[28] L. Palopoli, L. Abeni, T. Cucinotta, G. Lipari, and S. K. Baruah,
“Weighted feedback reclaiming for multimedia applications,” in Pro-

ceedings of the 6
th IEEE Workshop on Embedded Systems for Real-

Time Multimedia (ESTImedia 2008), Atlanta, Georgia, United States,
October 2008, pp. 121–126.

